Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2019

Open Access 01-12-2019 | Tremor | Research

Controlling a motorized orthosis to follow elbow volitional movement: tests with individuals with pathological tremor

Authors: Gil Herrnstadt, Martin J. McKeown, Carlo Menon

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2019

Login to get access

Abstract

Background

There is a need for alternative treatment options for tremor patients who do not respond well to medications or surgery, either due to side effects or poor efficacy, or that are excluded from surgery. The study aims to evaluate feasibility of a voluntary-driven, speed-controlled tremor rejection approach with individuals with pathological tremor. The suppression approach was investigated using a robotic orthosis for suppression of elbow tremor. Importantly, the study emphasizes the performance in relation to the voluntary motion.

Methods

Nine participants with either Essential Tremor (ET) or Parkinson’s disease (PD) were recruited and tested off medication. The participants performed computerized pursuit tracking tasks following a sinusoid and a random target, both with and without the suppressive orthosis. The impact of the Tremor Suppression Orthosis (TSO) at the tremor and voluntary frequencies was determined by the relative power change calculated from the Power Spectral Density (PSD). Voluntary motion was, in addition, assessed by position and velocity tracking errors.

Results

The suppressive orthosis resulted in a 94.4% mean power reduction of the tremor (p < 0.001) – a substantial improvement over reports in the literature. As for the impact to the voluntary motion, paired difference tests revealed no statistical effect of the TSO on the relative power change (p = 0.346) and velocity tracking error (p = 0.283). A marginal effect was observed for the position tracking error (p = 0.05). The interaction torque with the robotic orthosis was small (0.62 Nm) when compared to the maximum voluntary torque that can be exerted by adult individuals at the elbow joint.

Conclusions

Two key contributions of this work are first, a recently proposed approach is evaluated with individuals with tremor demonstrating high levels of tremor suppression; second, the impact of the approach to the voluntary motion is analyzed comprehensively, showing limited inhibition. This study also seeks to address a gap in studies with individuals with tremor where the impact of engineering solutions on voluntary motion is unreported. This study demonstrates feasibility of the wearable technology as an effective treatment that removes tremor with limited impediment to intentional motion. The goal for such wearable technology is to help individuals with pathological tremor regain independence in activities affected by the tremor condition. Further investigations are needed to validate the technology.
Literature
1.
go back to reference Deuschl G, Bain P, Brin M. Consensus statement of the Movement Disorder Society on tremor. Ad Hoc Scientific Committee. Mov Disord. 1998;13(Suppl 3):2–23.PubMed Deuschl G, Bain P, Brin M. Consensus statement of the Movement Disorder Society on tremor. Ad Hoc Scientific Committee. Mov Disord. 1998;13(Suppl 3):2–23.PubMed
2.
go back to reference Wenning GK, et al. Prevalence of movement disorders in men and women aged 50-89 years (Bruneck study cohort): a population-based study. Lancet Neurol. 2005;4(12):815–20.PubMedCrossRef Wenning GK, et al. Prevalence of movement disorders in men and women aged 50-89 years (Bruneck study cohort): a population-based study. Lancet Neurol. 2005;4(12):815–20.PubMedCrossRef
3.
go back to reference Louis ED, Ferreira JJ. How common is the most common adult movement disorder? Update on the worldwide prevalence of essential tremor. Mov Disord. 2010;25(5):534–41.PubMedCrossRef Louis ED, Ferreira JJ. How common is the most common adult movement disorder? Update on the worldwide prevalence of essential tremor. Mov Disord. 2010;25(5):534–41.PubMedCrossRef
4.
go back to reference HEO J-H, et al. Suppression of action tremor by sensory electrical stimulation in patients with essential tremor. J Mech Med Biol. 2016;16(08):1640026.CrossRef HEO J-H, et al. Suppression of action tremor by sensory electrical stimulation in patients with essential tremor. J Mech Med Biol. 2016;16(08):1640026.CrossRef
5.
go back to reference Louis ED, et al. Correlates of functional disability in essential tremor. Mov Disord. 2001;16(5):914–20.CrossRefPubMed Louis ED, et al. Correlates of functional disability in essential tremor. Mov Disord. 2001;16(5):914–20.CrossRefPubMed
6.
go back to reference Deuschl G, Raethjen J, Hellriegel H, Elble R. Treatment of patients with essential tremor. Lancet Neurol. 2011;10(2):148–61.PubMedCrossRef Deuschl G, Raethjen J, Hellriegel H, Elble R. Treatment of patients with essential tremor. Lancet Neurol. 2011;10(2):148–61.PubMedCrossRef
7.
go back to reference Manto M, et al. Dynamically responsive intervention for tremor suppression. IEEE Eng Med Biol Mag. 2003;22(3):120–32.PubMedCrossRef Manto M, et al. Dynamically responsive intervention for tremor suppression. IEEE Eng Med Biol Mag. 2003;22(3):120–32.PubMedCrossRef
8.
9.
go back to reference Lyons KE, et al. Benefits and risks of pharmacological treatments for essential tremor. Drug Saf. 2003;26(7):461–81.PubMedCrossRef Lyons KE, et al. Benefits and risks of pharmacological treatments for essential tremor. Drug Saf. 2003;26(7):461–81.PubMedCrossRef
10.
go back to reference Chang WS, Jung HH, Kweon EJ, Zadicario E, Rachmilevitch I, Chang JW. Unilateral magnetic resonance guided focused ultrasound thalamotomy for essential tremor: practices and clinicoradiological outcomes. J Neurol Neurosurg Psychiatry. 2015;86(3):257–64.PubMedCrossRef Chang WS, Jung HH, Kweon EJ, Zadicario E, Rachmilevitch I, Chang JW. Unilateral magnetic resonance guided focused ultrasound thalamotomy for essential tremor: practices and clinicoradiological outcomes. J Neurol Neurosurg Psychiatry. 2015;86(3):257–64.PubMedCrossRef
11.
go back to reference Hickey P, Stacy M. Deep brain stimulation: a paradigm shifting approach to treat Parkinson’s disease. Front Neurosci. 2016;10:1–11.CrossRef Hickey P, Stacy M. Deep brain stimulation: a paradigm shifting approach to treat Parkinson’s disease. Front Neurosci. 2016;10:1–11.CrossRef
12.
go back to reference Gardner J. A history of deep brain stimulation: technological innovation and the role of clinical assessment tools. Soc Stud Sci. 2013;43(5):707–28.PubMedCentralCrossRef Gardner J. A history of deep brain stimulation: technological innovation and the role of clinical assessment tools. Soc Stud Sci. 2013;43(5):707–28.PubMedCentralCrossRef
13.
go back to reference a Zesiewicz T, et al. Practice parameter: therapies for essential tremor: report of the quality standards subcommittee of the American Academy of Neurology. Neurology. 2005;64(12):2008–20.PubMedCrossRef a Zesiewicz T, et al. Practice parameter: therapies for essential tremor: report of the quality standards subcommittee of the American Academy of Neurology. Neurology. 2005;64(12):2008–20.PubMedCrossRef
14.
go back to reference Lipsman N, et al. MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. Lancet Neurol. 2013;12(5):462–8.PubMedCrossRef Lipsman N, et al. MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. Lancet Neurol. 2013;12(5):462–8.PubMedCrossRef
15.
go back to reference Elias WJ, et al. A randomized trial of focused ultrasound Thalamotomy for essential tremor. N Engl J Med. 2016;375(8):730–9.PubMedCrossRef Elias WJ, et al. A randomized trial of focused ultrasound Thalamotomy for essential tremor. N Engl J Med. 2016;375(8):730–9.PubMedCrossRef
16.
go back to reference Rosen MJ, Arnold AS, Baiges IJ, Aisen ML, Eglowstein SR. Design of a controlled-energy-dissipation orthosis (CEDO) for functional suppression of intention tremors. J Rehabil Res Dev. 1995;32(1):1–16.PubMed Rosen MJ, Arnold AS, Baiges IJ, Aisen ML, Eglowstein SR. Design of a controlled-energy-dissipation orthosis (CEDO) for functional suppression of intention tremors. J Rehabil Res Dev. 1995;32(1):1–16.PubMed
17.
go back to reference Aisen ML, Arnold A, Baiges I, Maxwell S, Rosen M. The effect of mechanical damping loads on disabling action tremor. Neurology. 1993;43(7):1346–50.PubMedCrossRef Aisen ML, Arnold A, Baiges I, Maxwell S, Rosen M. The effect of mechanical damping loads on disabling action tremor. Neurology. 1993;43(7):1346–50.PubMedCrossRef
18.
go back to reference Pledgie S, Barner KE, Agrawal SK, Rahman T. Tremor suppression through impedance control. IEEE Trans Rehabil Eng. 2000;8(1):53–9.PubMedCrossRef Pledgie S, Barner KE, Agrawal SK, Rahman T. Tremor suppression through impedance control. IEEE Trans Rehabil Eng. 2000;8(1):53–9.PubMedCrossRef
19.
go back to reference Kotovsky J, Rosen MJ. A wearable tremor-suppression orthosis. J Rehabil Res Dev. 1998;35(4):373–87.PubMed Kotovsky J, Rosen MJ. A wearable tremor-suppression orthosis. J Rehabil Res Dev. 1998;35(4):373–87.PubMed
20.
go back to reference Rocon E, Belda-Lois JM, Ruiz AF, Manto M, Moreno JC, Pons JL. Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):367–78.PubMedCrossRef Rocon E, Belda-Lois JM, Ruiz AF, Manto M, Moreno JC, Pons JL. Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):367–78.PubMedCrossRef
21.
go back to reference Hashemi SM, Golnaraghi MF, Patla AE. Tuned vibration absorber for suppression of rest tremor in Parkinson’s disease. Med. Biol. Eng. Comput. 2004;42(1):61–70.PubMedCrossRef Hashemi SM, Golnaraghi MF, Patla AE. Tuned vibration absorber for suppression of rest tremor in Parkinson’s disease. Med. Biol. Eng. Comput. 2004;42(1):61–70.PubMedCrossRef
22.
go back to reference Loureiro R, Belda-Lois JM, Lima ER, Pons JL, Sanchez-Lacuesta JJ, Harwin WS. Upper limb tremor suppression in ADL via an orthosis incorporating a controllable double viscous beam actuator. In: 9th International Conference on Rehabilitation Robotics, 2005: ICORR 2005; 2005. p. 119–22. Loureiro R, Belda-Lois JM, Lima ER, Pons JL, Sanchez-Lacuesta JJ, Harwin WS. Upper limb tremor suppression in ADL via an orthosis incorporating a controllable double viscous beam actuator. In: 9th International Conference on Rehabilitation Robotics, 2005: ICORR 2005; 2005. p. 119–22.
23.
go back to reference Swallow L, Siores E. Tremor suppression using smart textile fibre systems. J Fiber Bioeng Informatics. 2009;1(4):261–6. Swallow L, Siores E. Tremor suppression using smart textile fibre systems. J Fiber Bioeng Informatics. 2009;1(4):261–6.
24.
go back to reference Kiguchi K, Hayashi Y, Asami T. An upper-limb power-assist robot with tremor suppression control. IEEE Int Conf Rehabil Robot. 2011;2011:1–4. Kiguchi K, Hayashi Y, Asami T. An upper-limb power-assist robot with tremor suppression control. IEEE Int Conf Rehabil Robot. 2011;2011:1–4.
25.
go back to reference Ando T, Watanabe M. Myoelectric-controlled exoskeletal elbow robot to suppress essential tremor: extraction of elbow flexion movement using STFTs and TDNN. J Robot Mechatronics. 2012;24(1):141–9.CrossRef Ando T, Watanabe M. Myoelectric-controlled exoskeletal elbow robot to suppress essential tremor: extraction of elbow flexion movement using STFTs and TDNN. J Robot Mechatronics. 2012;24(1):141–9.CrossRef
26.
go back to reference Taheri B, Case D, Richer E. Adaptive suppression of severe pathological tremor by torque estimation method. IEEE/ASME Trans Mechatronics. 2015;20(2):717–27.CrossRef Taheri B, Case D, Richer E. Adaptive suppression of severe pathological tremor by torque estimation method. IEEE/ASME Trans Mechatronics. 2015;20(2):717–27.CrossRef
27.
go back to reference Bó APL, Azevedo-Coste C, Geny C, Poignet P, Fattal C. On the use of fixed-intensity functional electrical stimulation for attenuating essential tremor. Artif Organs. 2014;38(11):984–91.PubMedCrossRef Bó APL, Azevedo-Coste C, Geny C, Poignet P, Fattal C. On the use of fixed-intensity functional electrical stimulation for attenuating essential tremor. Artif Organs. 2014;38(11):984–91.PubMedCrossRef
28.
go back to reference Dosen S, et al. Online tremor suppression using Electromyography and low level electrical stimulation. IEEE Trans Neural Syst Rehabil Eng. 2014;4320:1–11. Dosen S, et al. Online tremor suppression using Electromyography and low level electrical stimulation. IEEE Trans Neural Syst Rehabil Eng. 2014;4320:1–11.
29.
go back to reference Gallego JÁ, Rocon E, Belda-Lois JM, Pons JL. A neuroprosthesis for tremor management through the control of muscle co-contraction. J Neuroeng Rehabil. 2013;10(36):1–13. Gallego JÁ, Rocon E, Belda-Lois JM, Pons JL. A neuroprosthesis for tremor management through the control of muscle co-contraction. J Neuroeng Rehabil. 2013;10(36):1–13.
30.
go back to reference Popović Maneski L, et al. Electrical stimulation for the suppression of pathological tremor. Med Biol Eng Comput. 2011;49(10):1187–93.PubMedCrossRef Popović Maneski L, et al. Electrical stimulation for the suppression of pathological tremor. Med Biol Eng Comput. 2011;49(10):1187–93.PubMedCrossRef
31.
go back to reference Widjaja F, Shee CY, Ang WT, Au WL, Poignet P. Sensing of pathological tremor using surface electromyography and accelerometer for real-time attenuation. J Mech Med Biol. 2011;11(05):1347–71.CrossRef Widjaja F, Shee CY, Ang WT, Au WL, Poignet P. Sensing of pathological tremor using surface electromyography and accelerometer for real-time attenuation. J Mech Med Biol. 2011;11(05):1347–71.CrossRef
32.
go back to reference Copur EH, Freeman CT, Chu B, Laila DS. Repetitive control of electrical stimulation for tremor suppression. IEEE Trans Control Syst Technol. 2017:1–13. Copur EH, Freeman CT, Chu B, Laila DS. Repetitive control of electrical stimulation for tremor suppression. IEEE Trans Control Syst Technol. 2017:1–13.
33.
go back to reference Zhang D, Poignet P, Widjaja F, Tech Ang W. Neural oscillator based control for pathological tremor suppression via functional electrical stimulation. Control Eng Pract. 2011;19(1):74–88.CrossRef Zhang D, Poignet P, Widjaja F, Tech Ang W. Neural oscillator based control for pathological tremor suppression via functional electrical stimulation. Control Eng Pract. 2011;19(1):74–88.CrossRef
34.
go back to reference Freeman CT, Sampson P, Burridge JH, Hughes A-M. Repetitive control of functional electrical stimulation for induced tremor suppression. Mechatronics. 2015;32:79–87.CrossRef Freeman CT, Sampson P, Burridge JH, Hughes A-M. Repetitive control of functional electrical stimulation for induced tremor suppression. Mechatronics. 2015;32:79–87.CrossRef
35.
go back to reference Copur EH, Freeman C, Chu B, Laila DS. FES based tremor suppression using repetitive control. In: 2015 54th IEEE Conference on Decision and Control (CDC); 2015. p. 6023–8.CrossRef Copur EH, Freeman C, Chu B, Laila DS. FES based tremor suppression using repetitive control. In: 2015 54th IEEE Conference on Decision and Control (CDC); 2015. p. 6023–8.CrossRef
36.
go back to reference Herrnstadt G, Menon C. Admittance based voluntary driven motion with speed controlled tremor rejection. IEEE/ASME Trans Mechatronics. 2016:1. Herrnstadt G, Menon C. Admittance based voluntary driven motion with speed controlled tremor rejection. IEEE/ASME Trans Mechatronics. 2016:1.
37.
go back to reference Herrnstadt G, Menon C. Voluntary-driven elbow orthosis with speed-controlled tremor suppression. Front Bioeng Biotechnol. 2016;4:1–10.CrossRef Herrnstadt G, Menon C. Voluntary-driven elbow orthosis with speed-controlled tremor suppression. Front Bioeng Biotechnol. 2016;4:1–10.CrossRef
38.
go back to reference Elble R, et al. Task force report: scales for screening and evaluating tremor: critique and recommendations. Mov Disord. 2013;28(13):1793–800.PubMedCrossRef Elble R, et al. Task force report: scales for screening and evaluating tremor: critique and recommendations. Mov Disord. 2013;28(13):1793–800.PubMedCrossRef
39.
go back to reference Elble R. The essential tremor rating assessment scale. J Neurol Neuromedicine. 2016:34–8. Elble R. The essential tremor rating assessment scale. J Neurol Neuromedicine. 2016:34–8.
40.
go back to reference Pennycott A, Wyss D, Vallery H, Klamroth-Marganska V, Riener R. Towards more effective robotic gait training for stroke rehabilitation: a review. J. Neuroeng. Rehabil. 2012;9:65.PubMedPubMedCentralCrossRef Pennycott A, Wyss D, Vallery H, Klamroth-Marganska V, Riener R. Towards more effective robotic gait training for stroke rehabilitation: a review. J. Neuroeng. Rehabil. 2012;9:65.PubMedPubMedCentralCrossRef
41.
go back to reference Popović LZ, Sekara TB, Popović MB. Adaptive band-pass filter (ABPF) for tremor extraction from inertial sensor data. Comput Methods Prog Biomed. 2010;99(3):298–305.CrossRef Popović LZ, Sekara TB, Popović MB. Adaptive band-pass filter (ABPF) for tremor extraction from inertial sensor data. Comput Methods Prog Biomed. 2010;99(3):298–305.CrossRef
42.
go back to reference Roberts MJ. Signals and systems - analysis using transform methods and MATLAB, 2nd_edition, 1st ed. Boston: McGraw-Hill; 2004. Roberts MJ. Signals and systems - analysis using transform methods and MATLAB, 2nd_edition, 1st ed. Boston: McGraw-Hill; 2004.
43.
go back to reference Mann KA, Werner FW, Palmer AK. Frequency spectrum analysis of wrist motion for activities of daily living. J Orthop Res. 1989;7(2):304–6.PubMedCrossRef Mann KA, Werner FW, Palmer AK. Frequency spectrum analysis of wrist motion for activities of daily living. J Orthop Res. 1989;7(2):304–6.PubMedCrossRef
44.
go back to reference Rocon E, Belda-Lois J. Pathological tremor management: modelling, compensatory technology and evaluation. Technol Disabil. 2004;16:3–18.CrossRef Rocon E, Belda-Lois J. Pathological tremor management: modelling, compensatory technology and evaluation. Technol Disabil. 2004;16:3–18.CrossRef
45.
go back to reference Elble RJ. Tremor: clinical features, pathophysiology, and treatment. Neurol Clin. 2009;27(3):679–95, v–vi.PubMedCrossRef Elble RJ. Tremor: clinical features, pathophysiology, and treatment. Neurol Clin. 2009;27(3):679–95, v–vi.PubMedCrossRef
47.
go back to reference Morrey BF, Askew LJ, Chao EY. A biomechanical study of normal functional elbow motion. J Bone Joint Surg Am. 1981;63(6):872–7.CrossRefPubMed Morrey BF, Askew LJ, Chao EY. A biomechanical study of normal functional elbow motion. J Bone Joint Surg Am. 1981;63(6):872–7.CrossRefPubMed
48.
go back to reference Aizawa J, et al. Three-dimensional motion of the upper extremity joints during various activities of daily living. J Biomech. 2010;43(15):2915–22.PubMedCrossRef Aizawa J, et al. Three-dimensional motion of the upper extremity joints during various activities of daily living. J Biomech. 2010;43(15):2915–22.PubMedCrossRef
50.
go back to reference Machowska-Majchrzak A, Pierzchała K, Pietraszek S, Łabuz-Roszak B. Essential tremor – assessment of tremor accelerometric parameters’ symmetry and the relationship between hand dominance and severity of tremor. Neurol Neurochir Pol. 2011;45(2):121–7.PubMedCrossRef Machowska-Majchrzak A, Pierzchała K, Pietraszek S, Łabuz-Roszak B. Essential tremor – assessment of tremor accelerometric parameters’ symmetry and the relationship between hand dominance and severity of tremor. Neurol Neurochir Pol. 2011;45(2):121–7.PubMedCrossRef
51.
go back to reference Louis ED, Wendt KJ, Pullman SL, Ford B. Is essential tremor symmetric? Arch Neurol. 1998;55(12):1553.CrossRefPubMed Louis ED, Wendt KJ, Pullman SL, Ford B. Is essential tremor symmetric? Arch Neurol. 1998;55(12):1553.CrossRefPubMed
52.
go back to reference Farkas Z, Csillik A, Szirmai I, Kamondi A. Asymmetry of tremor intensity and frequency in Parkinson’s disease and essential tremor. Park Relat Disord. 2006;12(1):49–55.CrossRef Farkas Z, Csillik A, Szirmai I, Kamondi A. Asymmetry of tremor intensity and frequency in Parkinson’s disease and essential tremor. Park Relat Disord. 2006;12(1):49–55.CrossRef
53.
54.
go back to reference Gao JB. Analysis of amplitude and frequency variations of essential and parkinsonian tremors. Med Biol Eng Comp. 2004;42(3):345–9.CrossRef Gao JB. Analysis of amplitude and frequency variations of essential and parkinsonian tremors. Med Biol Eng Comp. 2004;42(3):345–9.CrossRef
Metadata
Title
Controlling a motorized orthosis to follow elbow volitional movement: tests with individuals with pathological tremor
Authors
Gil Herrnstadt
Martin J. McKeown
Carlo Menon
Publication date
01-12-2019
Publisher
BioMed Central
Keywords
Tremor
Orthosis
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2019
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-019-0484-1

Other articles of this Issue 1/2019

Journal of NeuroEngineering and Rehabilitation 1/2019 Go to the issue