Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2019

Open Access 01-12-2019 | Research

Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements

Authors: Jonas Vantilt, Kevin Tanghe, Maarten Afschrift, Amber K.B.D Bruijnes, Karen Junius, Joost Geeroms, Erwin Aertbeliën, Friedl De Groote, Dirk Lefeber, Ilse Jonkers, Joris De Schutter

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2019

Login to get access

Abstract

Background

Currently, control of exoskeletons in rehabilitation focuses on imposing desired trajectories to promote relearning of motions. Furthermore, assistance is often provided by imposing these desired trajectories using impedance controllers. However, lower-limb exoskeletons are also a promising solution for mobility problems of individuals in daily life. To develop an assistive exoskeleton which allows the user to be autonomous, i.e. in control of his motions, remains a challenge. This paper presents a model-based control method to tackle this challenge.

Methods

The model-based control method utilizes a dynamic model of the exoskeleton to compensate for its own dynamics. After this compensation of the exoskeleton dynamics, the exoskeleton can provide a desired assistance to the user. While dynamic models of exoskeletons used in the literature focus on gravity compensation only, the need for modelling and monitoring of the ground contact impedes their widespread use. The control strategy proposed here relies on modelling of the full exoskeleton dynamics and of the contacts with the environment. A modelling strategy and general control scheme are introduced.

Results

Validation of the control method on 15 non-disabled adults performing sit-to-stand motions shows that muscle effort and joint torques are similar in the conditions with dynamically compensated exoskeleton and without exoskeleton. The condition with exoskeleton in which the compensating controller was not active showed a significant increase in human joint torques and muscle effort at the knee and hip. Motor saturation occurred during the assisted condition, which limited the assistance the exoskeleton could deliver.

Conclusions

This work presents the modelling steps and controller design to compensate the exoskeleton dynamics. The validation seems to indicate that the presented model-based controller is able to compensate the exoskeleton.
Literature
3.
go back to reference Kolakowsky-Hayner S, Crew J, Moran S, Shah A. Safety and feasibility of using the ekso bionic exoskeleton to aid ambulation after spinal cord injury. J Spine. 2013;4(3). Kolakowsky-Hayner S, Crew J, Moran S, Shah A. Safety and feasibility of using the ekso bionic exoskeleton to aid ambulation after spinal cord injury. J Spine. 2013;4(3).
5.
go back to reference Jezernik S, Colombo G, Morari M. Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-dof robotic orthosis. IEEE Trans Robot Autom. 2004; 20(3):574–82.CrossRef Jezernik S, Colombo G, Morari M. Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-dof robotic orthosis. IEEE Trans Robot Autom. 2004; 20(3):574–82.CrossRef
8.
go back to reference Aguirre-Ollinger G, Colgate JE, Peshkin MA, Goswami A. Active-impedance control of a lower-limb assistive exoskeleton. In: Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics. The Netherlands: Noordwijk: 2007. p. 188–95. Aguirre-Ollinger G, Colgate JE, Peshkin MA, Goswami A. Active-impedance control of a lower-limb assistive exoskeleton. In: Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics. The Netherlands: Noordwijk: 2007. p. 188–95.
10.
go back to reference Duschau-Wicke A, Zitzewitz Jv, Caprez A, Lünenburger L, Riener R. Path control: A method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Engineer. 2010; 18(1):38–48.CrossRef Duschau-Wicke A, Zitzewitz Jv, Caprez A, Lünenburger L, Riener R. Path control: A method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Engineer. 2010; 18(1):38–48.CrossRef
11.
12.
go back to reference Kawamoto H, Taal S, Niniss H, Hayashi T, Kamibayashi K, Eguchi K, Sankai Y. Voluntary motion support control of robot suit hal triggered by bioelectrical signal for hemiplegia. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. Buenos Aires: IEEE: 2010. p. 462–6. https://doi.org/10.1109/IEMBS.2010.5626191. Kawamoto H, Taal S, Niniss H, Hayashi T, Kamibayashi K, Eguchi K, Sankai Y. Voluntary motion support control of robot suit hal triggered by bioelectrical signal for hemiplegia. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. Buenos Aires: IEEE: 2010. p. 462–6. https://​doi.​org/​10.​1109/​IEMBS.​2010.​5626191.
13.
go back to reference van Asseldonk EHF, van der Kooij H. Robot-Aided Gait Training with LOPES In: In: Dietz V, Nef T., Rymer WZ, editors. Londen: Springer: 2012. p. 379–96. van Asseldonk EHF, van der Kooij H. Robot-Aided Gait Training with LOPES In: In: Dietz V, Nef T., Rymer WZ, editors. Londen: Springer: 2012. p. 379–96.
18.
go back to reference Pratt GA, Willisson P, Bolton C, Hofman A. Late motor processing in low-impedance robots: impedance control of series-elastic actuators. In: Proceedings of the 2004 American Control Conference. Boston: IEEE: 2004. p. 3245–51. Pratt GA, Willisson P, Bolton C, Hofman A. Late motor processing in low-impedance robots: impedance control of series-elastic actuators. In: Proceedings of the 2004 American Control Conference. Boston: IEEE: 2004. p. 3245–51.
24.
go back to reference Herzog A, Righetti L, Grimminger F, Pastor P, Schaal S. Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago: IEEE: 2014. p. 981–8. https://doi.org/10.1109/IROS.2014.6942678. Herzog A, Righetti L, Grimminger F, Pastor P, Schaal S. Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago: IEEE: 2014. p. 981–8. https://​doi.​org/​10.​1109/​IROS.​2014.​6942678.
25.
go back to reference Sherikov A, Dimitrov D, Wieber P. -B.Whole Body Motion Controller with Long-Term Balance Constraints. In: 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids). Madrid: IEEE: 2014. p. 444–50. Sherikov A, Dimitrov D, Wieber P. -B.Whole Body Motion Controller with Long-Term Balance Constraints. In: 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids). Madrid: IEEE: 2014. p. 444–50.
26.
go back to reference Ott C, Roa MA, Hirzinger G. Posture and balance control for biped robots based on contact force optimization. In: 11th IEEE-RAS International Conference on Humanoid Robots. Bled: IEEE: 2011. p. 26–33. Ott C, Roa MA, Hirzinger G. Posture and balance control for biped robots based on contact force optimization. In: 11th IEEE-RAS International Conference on Humanoid Robots. Bled: IEEE: 2011. p. 26–33.
31.
go back to reference Unluhisarcikli O, Pietrusinski M, Weinberg B, Bonato P, Mavroidis C. Design and control of a robotic lower extremity exoskeleton for gait rehabilitation. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco: IEEE: 2011. p. 4893–8. https://doi.org/10.1109/IROS.2011.6094973. Unluhisarcikli O, Pietrusinski M, Weinberg B, Bonato P, Mavroidis C. Design and control of a robotic lower extremity exoskeleton for gait rehabilitation. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco: IEEE: 2011. p. 4893–8. https://​doi.​org/​10.​1109/​IROS.​2011.​6094973.
32.
go back to reference Featherstone R. Rigid Body Dynamics Algorithms In: In: Featherstone R, editor. 1st. New York: Springer: 2008. p. 171–93. Featherstone R. Rigid Body Dynamics Algorithms In: In: Featherstone R, editor. 1st. New York: Springer: 2008. p. 171–93.
33.
go back to reference Spong MW. Modeling and control of elastic joint robots. Trans ASME J Dynam Syst Meas Control. 1987; 109(4):310–8.CrossRef Spong MW. Modeling and control of elastic joint robots. Trans ASME J Dynam Syst Meas Control. 1987; 109(4):310–8.CrossRef
34.
go back to reference Swevers J, Ganseman C, Tükel DB, De Schutter J, Van Brussel H. Optimal robot excitation and identification. IEEE Trans Robot Autom. 1997; 13(5):730–9.CrossRef Swevers J, Ganseman C, Tükel DB, De Schutter J, Van Brussel H. Optimal robot excitation and identification. IEEE Trans Robot Autom. 1997; 13(5):730–9.CrossRef
35.
go back to reference Vantilt J, Aertbeliën E, De Groote F, De Schutter J. Optimal excitation and identification of the dynamic model of robotic systems with compliant actuators. In: 2015 IEEE International Conference on Robotics and Automation. Seattle: IEEE: 2015. p. 2117–24. https://doi.org/10.1109/ICRA.2015.7139478. Vantilt J, Aertbeliën E, De Groote F, De Schutter J. Optimal excitation and identification of the dynamic model of robotic systems with compliant actuators. In: 2015 IEEE International Conference on Robotics and Automation. Seattle: IEEE: 2015. p. 2117–24. https://​doi.​org/​10.​1109/​ICRA.​2015.​7139478.
37.
go back to reference Chung W, Fu L-C, Hsu S-H. Motion control In: In: Siciliano B, Khatib O., editors. Springer Handbook of Robotics. Berlin: Springer: 2008. p. 133–59. Chung W, Fu L-C, Hsu S-H. Motion control In: In: Siciliano B, Khatib O., editors. Springer Handbook of Robotics. Berlin: Springer: 2008. p. 133–59.
40.
go back to reference Tanghe K, Aertbeliën E, Vantilt J, Moltedo M, Bacek T, De Schutter J. Realtime delayless estimation of derivatives of noisy sensor signals for quasi-cyclic motions with application to joint acceleration estimation on an exoskeleton. IEEE Robotics and Automation Letters (RA-L)(accepted). 2018; 3(3):1647–54. https://doi.org/10.1109/LRA.2018.2801473.CrossRef Tanghe K, Aertbeliën E, Vantilt J, Moltedo M, Bacek T, De Schutter J. Realtime delayless estimation of derivatives of noisy sensor signals for quasi-cyclic motions with application to joint acceleration estimation on an exoskeleton. IEEE Robotics and Automation Letters (RA-L)(accepted). 2018; 3(3):1647–54. https://​doi.​org/​10.​1109/​LRA.​2018.​2801473.CrossRef
41.
go back to reference Wyeth G. Australasian Conference on Robotics and Automation In: In: MacDonald B, editor. Auckland: Australian Robotics and Automation Association Inc: 2006. Wyeth G. Australasian Conference on Robotics and Automation In: In: MacDonald B, editor. Auckland: Australian Robotics and Automation Association Inc: 2006.
43.
go back to reference Vallery H, Ekkelenkamp R, van der Kooij H, Buss M. Passive and accurate torque control of series elastic actuators. In: Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego: IEEE: 2007. p. 3534–8. https://doi.org/10.1109/IROS.2007.4399172. Vallery H, Ekkelenkamp R, van der Kooij H, Buss M. Passive and accurate torque control of series elastic actuators. In: Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego: IEEE: 2007. p. 3534–8. https://​doi.​org/​10.​1109/​IROS.​2007.​4399172.
46.
go back to reference Junius K, Brackx B, Grosu V, Cuypers H, Geeroms J, Moltedo M, Vanderborght B, Lefeber D. Mechatronic design of a sit-to-stance exoskeleton. In: Proceedings of the 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. São Paulo: IEEE: 2014. p. 945–50. https://doi.org/10.1109/BIOROB.2014.6913902. Junius K, Brackx B, Grosu V, Cuypers H, Geeroms J, Moltedo M, Vanderborght B, Lefeber D. Mechatronic design of a sit-to-stance exoskeleton. In: Proceedings of the 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. São Paulo: IEEE: 2014. p. 945–50. https://​doi.​org/​10.​1109/​BIOROB.​2014.​6913902.
48.
go back to reference Brackx B, et al. Design of a modular add-on compliant actuator to convert an orthosis into an assistive exoskeleton. In: Proceedings of the 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. São Paulo: IEEE: 2014. p. 485–90. Brackx B, et al. Design of a modular add-on compliant actuator to convert an orthosis into an assistive exoskeleton. In: Proceedings of the 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. São Paulo: IEEE: 2014. p. 485–90.
58.
go back to reference Holm S. A simple sequentially rejective multiple test procedure. Scandinavian J Stat. 1979; 6(2):65–70. Holm S. A simple sequentially rejective multiple test procedure. Scandinavian J Stat. 1979; 6(2):65–70.
59.
go back to reference Pataky PC, Robinson MA, Vanrenterghem J. Vector field statistical analysis of kinematic and force trajectories. J Biomech. 2013; 46(14):2394–401.CrossRef Pataky PC, Robinson MA, Vanrenterghem J. Vector field statistical analysis of kinematic and force trajectories. J Biomech. 2013; 46(14):2394–401.CrossRef
Metadata
Title
Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements
Authors
Jonas Vantilt
Kevin Tanghe
Maarten Afschrift
Amber K.B.D Bruijnes
Karen Junius
Joost Geeroms
Erwin Aertbeliën
Friedl De Groote
Dirk Lefeber
Ilse Jonkers
Joris De Schutter
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2019
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-019-0526-8

Other articles of this Issue 1/2019

Journal of NeuroEngineering and Rehabilitation 1/2019 Go to the issue