Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2018

Open Access 01-12-2018 | Research

Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping

Authors: Marko Markovic, Meike A. Schweisfurth, Leonard F. Engels, Dario Farina, Strahinja Dosen

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2018

Login to get access

Abstract

Background

Sensory feedback is critical for grasping in able-bodied subjects. Consequently, closing the loop in upper-limb prosthetics by providing artificial sensory feedback to the amputee is expected to improve the prosthesis utility. Nevertheless, even though amputees rate the prospect of sensory feedback high, its benefits in daily life are still very much debated. We argue that in order to measure the potential functional benefit of artificial sensory feedback, the baseline open-loop performance needs to be established.

Methods

The myoelectric control of naïve able-bodied subjects was evaluated during modulation of electromyographic signals (EMG task), and grasping with a prosthesis (Prosthesis task). The subjects needed to activate the wrist flexor muscles and close the prosthesis to reach a randomly selected target level (routine grasping). To assess the baseline performance, the tasks were performed with a different extent of implicit feedback (proprioception, prosthesis motion and sound). Finally, the prosthesis task was repeated with explicit visual force feedback. The subjects’ ability to scale the prosthesis command/force was assessed by testing for a statistically significant increase in the median of the generated commands/forces between neighboring levels. The quality of control was evaluated by computing the median absolute error (MAE) with respect to the target.

Results

The subjects could successfully scale their motor commands and generated prosthesis forces across target levels in all tasks, even with the least amount of implicit feedback (only muscle proprioception, EMG task). In addition, the deviation of the generated commands/forces from the target levels decreased with additional feedback. However, the increase in implicit feedback, from proprioception to prosthesis motion and sound, seemed to have a more substantial effect than the final introduction of explicit feedback. Explicit feedback improved the performance mainly at the higher target-force levels.

Conclusions

The study establishes the baseline performance of myoelectric control and prosthesis grasping force. The results demonstrate that even without additional feedback, naïve subjects can effectively modulate force with good accuracy with respect to that achieved when increasing the amount of feedback information.
Literature
1.
go back to reference MacKenzie C, Iberall T. The grasping hand. Amsterdam: Elsevier; 2010. MacKenzie C, Iberall T. The grasping hand. Amsterdam: Elsevier; 2010.
3.
go back to reference Rothwell JC, Traub MM, Day BL, Obeso JA, Thomas PK, Marsden CD. Manual motor performance in a deafferented man. Brain. 1982;105(Pt 3):515–42.CrossRefPubMed Rothwell JC, Traub MM, Day BL, Obeso JA, Thomas PK, Marsden CD. Manual motor performance in a deafferented man. Brain. 1982;105(Pt 3):515–42.CrossRefPubMed
4.
go back to reference Scott RN, Parker PA. Myoelectric prostheses : state of the art. J Med Eng Technol. 1988;12(4):143–51.CrossRefPubMed Scott RN, Parker PA. Myoelectric prostheses : state of the art. J Med Eng Technol. 1988;12(4):143–51.CrossRefPubMed
5.
go back to reference Antfolk C, D’Alonzo M, Rosén B, Lundborg G, Sebelius F, Cipriani C. Sensory feedback in upper limb prosthetics. Expert Rev Med Devices. 2013;10(1):45–54.CrossRefPubMed Antfolk C, D’Alonzo M, Rosén B, Lundborg G, Sebelius F, Cipriani C. Sensory feedback in upper limb prosthetics. Expert Rev Med Devices. 2013;10(1):45–54.CrossRefPubMed
6.
go back to reference Bach-y-Rita P, Kercel SW. Sensory substitution and the human–machine interface. Trends Cogn Sci. 2015;7(12):541–6.CrossRef Bach-y-Rita P, Kercel SW. Sensory substitution and the human–machine interface. Trends Cogn Sci. 2015;7(12):541–6.CrossRef
7.
go back to reference Kaczmarek K, Webster JG, Bach-y-Rita P, Tompkins WJ. Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Trans Biomed Eng. 1991;38(1. Ieee):1–16.CrossRefPubMed Kaczmarek K, Webster JG, Bach-y-Rita P, Tompkins WJ. Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Trans Biomed Eng. 1991;38(1. Ieee):1–16.CrossRefPubMed
8.
go back to reference Szeto AY, Saunders FA. Electrocutaneous stimulation for sensory communication in rehabilitation engineering. IEEE Trans Biomed Eng. 1982;29(4):300–8.CrossRefPubMed Szeto AY, Saunders FA. Electrocutaneous stimulation for sensory communication in rehabilitation engineering. IEEE Trans Biomed Eng. 1982;29(4):300–8.CrossRefPubMed
9.
go back to reference Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, Di Pino G, Carpaneto J, Controzzi M, Boretius T, Fernandez E, Granata G, Oddo CM, Citi L, Ciancio AL, Cipriani C, Carrozza MC, Jensen W, Guglielmelli E, Stieglitz T, Rossini PM, Micera S. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci Transl Med. 2014;6(222):222ra19.CrossRefPubMed Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, Di Pino G, Carpaneto J, Controzzi M, Boretius T, Fernandez E, Granata G, Oddo CM, Citi L, Ciancio AL, Cipriani C, Carrozza MC, Jensen W, Guglielmelli E, Stieglitz T, Rossini PM, Micera S. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci Transl Med. 2014;6(222):222ra19.CrossRefPubMed
10.
go back to reference Tabot GA, Dammann JF, Berg JA, Tenore FV, Boback JL, Vogelstein RJ, Bensmaia SJ. Restoring the sense of touch with a prosthetic hand through a brain interface. Proc Natl Acad Sci U S A. 2013;110(45):18279–84.CrossRefPubMedPubMedCentral Tabot GA, Dammann JF, Berg JA, Tenore FV, Boback JL, Vogelstein RJ, Bensmaia SJ. Restoring the sense of touch with a prosthetic hand through a brain interface. Proc Natl Acad Sci U S A. 2013;110(45):18279–84.CrossRefPubMedPubMedCentral
11.
go back to reference Witteveen HJB, Droog EA, Rietman JS, Veltink PH. Vibro- and electrotactile user feedback on hand opening for myoelectric forearm prostheses. IEEE Trans Biomed Eng. 2012;59(8):2219–26.CrossRefPubMed Witteveen HJB, Droog EA, Rietman JS, Veltink PH. Vibro- and electrotactile user feedback on hand opening for myoelectric forearm prostheses. IEEE Trans Biomed Eng. 2012;59(8):2219–26.CrossRefPubMed
12.
13.
go back to reference Cipriani C, Zaccone F, Micera S, Carrozza MC. On the shared control of an EMG-controlled prosthetic hand: analysis of user-prosthesis interaction. IEEE Trans Robot. 2008;24(1):170–84.CrossRef Cipriani C, Zaccone F, Micera S, Carrozza MC. On the shared control of an EMG-controlled prosthetic hand: analysis of user-prosthesis interaction. IEEE Trans Robot. 2008;24(1):170–84.CrossRef
14.
go back to reference Witteveen HJB, Rietman HS, Veltink PH. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users. Prosthetics Orthot Int. 2015;39(3):204–12.CrossRef Witteveen HJB, Rietman HS, Veltink PH. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users. Prosthetics Orthot Int. 2015;39(3):204–12.CrossRef
15.
go back to reference Ninu A, Dosen S, Muceli S, Rattay F, Dietl H, Farina D. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control? IEEE Trans Neural Syst Rehabil Eng. 2014;22(5):1041–52.CrossRefPubMed Ninu A, Dosen S, Muceli S, Rattay F, Dietl H, Farina D. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control? IEEE Trans Neural Syst Rehabil Eng. 2014;22(5):1041–52.CrossRefPubMed
16.
go back to reference Kawato M, Wolpert DM. Internal models for motor control. Novartis Found Symp. 1998;218:291–304.PubMed Kawato M, Wolpert DM. Internal models for motor control. Novartis Found Symp. 1998;218:291–304.PubMed
18.
go back to reference Dosen S, Markovic M, Wille N, Henkel M, Koppe M, Ninu A, Frömmel C, Farina D. Building an internal model of a myoelectric prosthesis via closed-loop control for consistent and routine grasping. Exp Brain Res. 2015;233(6):1855–65.CrossRefPubMed Dosen S, Markovic M, Wille N, Henkel M, Koppe M, Ninu A, Frömmel C, Farina D. Building an internal model of a myoelectric prosthesis via closed-loop control for consistent and routine grasping. Exp Brain Res. 2015;233(6):1855–65.CrossRefPubMed
19.
go back to reference Lum PS, Black I, Holley RJ, Barth J, Dromerick AW. Internal models of upper limb prosthesis users when grasping and lifting a fragile object with their prosthetic limb. Exp Brain Res. 2014;232(12):3785–95. Lum PS, Black I, Holley RJ, Barth J, Dromerick AW. Internal models of upper limb prosthesis users when grasping and lifting a fragile object with their prosthetic limb. Exp Brain Res. 2014;232(12):3785–95.
20.
go back to reference Zafar M, Van Doren CL. Effectiveness of supplemental grasp-force feedback in the presence of vision. Med Biol Eng Comput. 2000;38(3):267–74.CrossRefPubMed Zafar M, Van Doren CL. Effectiveness of supplemental grasp-force feedback in the presence of vision. Med Biol Eng Comput. 2000;38(3):267–74.CrossRefPubMed
21.
go back to reference Pistohl T, Joshi D, Ganesh G, Jackson A, Nazarpour K. Artificial proprioceptive feedback for myoelectric control. IEEE Trans Neural Syst Rehabil Eng. 2015;23(3):498–507.CrossRefPubMed Pistohl T, Joshi D, Ganesh G, Jackson A, Nazarpour K. Artificial proprioceptive feedback for myoelectric control. IEEE Trans Neural Syst Rehabil Eng. 2015;23(3):498–507.CrossRefPubMed
22.
go back to reference Xu H, Zhang D, Huegel J, Xu W, Zhu X. Effects of different tactile feedback on myoelectric closed-loop control for grasping based on Electrotactile stimulation. IEEE Trans Neural Syst Rehabil Eng. 2015;24(8):827–36.CrossRefPubMed Xu H, Zhang D, Huegel J, Xu W, Zhu X. Effects of different tactile feedback on myoelectric closed-loop control for grasping based on Electrotactile stimulation. IEEE Trans Neural Syst Rehabil Eng. 2015;24(8):827–36.CrossRefPubMed
23.
go back to reference Pylatiuk C, Kargov A, Schulz S. Design and evaluation of a low-cost force feedback system for myoelectric prosthetic hands. JPO J Prosthetics Orthot. 2006;18(2):57–61.CrossRef Pylatiuk C, Kargov A, Schulz S. Design and evaluation of a low-cost force feedback system for myoelectric prosthetic hands. JPO J Prosthetics Orthot. 2006;18(2):57–61.CrossRef
24.
go back to reference Hasson CJ, Manczurowsky J. Effects of kinematic vibrotactile feedback on learning to control a virtual prosthetic arm. J Neuroeng Rehabil. 2015;12(1):1–16.CrossRef Hasson CJ, Manczurowsky J. Effects of kinematic vibrotactile feedback on learning to control a virtual prosthetic arm. J Neuroeng Rehabil. 2015;12(1):1–16.CrossRef
25.
go back to reference Brown JD, Paek A, Syed M, O’Malley MK, Shewokis PA, Contreras-Vidal JL, Davis AJ, Gillespie RB. An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback. J Neuroeng Rehabil. 2015;12(1):104.CrossRefPubMedPubMedCentral Brown JD, Paek A, Syed M, O’Malley MK, Shewokis PA, Contreras-Vidal JL, Davis AJ, Gillespie RB. An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback. J Neuroeng Rehabil. 2015;12(1):104.CrossRefPubMedPubMedCentral
26.
go back to reference Dosen S, Markovic M, Hartmann C, Farina D. Sensory feedback in prosthetics: a standardized test bench for closed-loop control. IEEE Trans Neural Syst Rehabil Eng. 2015;23(2):267–76.CrossRefPubMed Dosen S, Markovic M, Hartmann C, Farina D. Sensory feedback in prosthetics: a standardized test bench for closed-loop control. IEEE Trans Neural Syst Rehabil Eng. 2015;23(2):267–76.CrossRefPubMed
27.
go back to reference Schweisfurth MA, Markovic M, Dosen S, Teich F, Graimann B, Farina D. Electrotactile EMG feedback improves the control of prosthesis grasping force. J Neural Eng. 2016;13(5):056010.CrossRefPubMed Schweisfurth MA, Markovic M, Dosen S, Teich F, Graimann B, Farina D. Electrotactile EMG feedback improves the control of prosthesis grasping force. J Neural Eng. 2016;13(5):056010.CrossRefPubMed
28.
go back to reference Dosen S, Markovic M, Somer K, Graimann B, Farina D. EMG biofeedback for online predictive control of grasping force in a myoelectric prosthesis. J Neuroeng Rehabil. 2015;12(1):55.CrossRefPubMedPubMedCentral Dosen S, Markovic M, Somer K, Graimann B, Farina D. EMG biofeedback for online predictive control of grasping force in a myoelectric prosthesis. J Neuroeng Rehabil. 2015;12(1):55.CrossRefPubMedPubMedCentral
29.
go back to reference Štrbac M, Isaković M, Belić M, Popović I, Simanić I, Farina D, Keller T, Došen S. Short-and long-term learning of feedforward control of a myoelectric prosthesis with sensory feedback by amputees. IEEE Trans. Neural Syst Rehabil Eng. 2017;25(11):2133–45.CrossRefPubMed Štrbac M, Isaković M, Belić M, Popović I, Simanić I, Farina D, Keller T, Došen S. Short-and long-term learning of feedforward control of a myoelectric prosthesis with sensory feedback by amputees. IEEE Trans. Neural Syst Rehabil Eng. 2017;25(11):2133–45.CrossRefPubMed
31.
go back to reference Chatterjee A, Chaubey P, Martin J, Thakor N. Testing a prosthetic haptic feedback simulator with an interactive force matching task. JPO J Prosthetics Orthot. 2008;20(2):27–34.CrossRef Chatterjee A, Chaubey P, Martin J, Thakor N. Testing a prosthetic haptic feedback simulator with an interactive force matching task. JPO J Prosthetics Orthot. 2008;20(2):27–34.CrossRef
32.
go back to reference Vallbo AB, Johansson RS. Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum Neurobiol. 1984;3(1):3–14.PubMed Vallbo AB, Johansson RS. Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum Neurobiol. 1984;3(1):3–14.PubMed
33.
go back to reference Franceschi M, Seminara L, Dosen S, Valle M, Farina D, Member S. A system for electrotactile feedback using electronic skin and flexible matrix electrodes: experimental evaluation. IEEE Trans Haptics. 2016;1412(c):1–14. Franceschi M, Seminara L, Dosen S, Valle M, Farina D, Member S. A system for electrotactile feedback using electronic skin and flexible matrix electrodes: experimental evaluation. IEEE Trans Haptics. 2016;1412(c):1–14.
34.
go back to reference Parker P, Englehart K, Hudgins B. Myoelectric signal processing for control of powered limb prostheses. J Electromyogr Kinesiol. 2006;16(6):541–8.CrossRefPubMed Parker P, Englehart K, Hudgins B. Myoelectric signal processing for control of powered limb prostheses. J Electromyogr Kinesiol. 2006;16(6):541–8.CrossRefPubMed
35.
go back to reference Amsuess S, Gobel P, Graimann B, Farina D. A multi-class proportional Myocontrol algorithm for upper limb prosthesis control: validation in real-life scenarios on amputees. IEEE Trans Neural Syst Rehabil Eng. 2014;23(5):827–36.CrossRefPubMed Amsuess S, Gobel P, Graimann B, Farina D. A multi-class proportional Myocontrol algorithm for upper limb prosthesis control: validation in real-life scenarios on amputees. IEEE Trans Neural Syst Rehabil Eng. 2014;23(5):827–36.CrossRefPubMed
36.
go back to reference Lee NK, Kwon YH, Son SM, Nam SH, Kim JS. The effects of aging on visuomotor coordination and proprioceptive function in the upper limb. J Phys Ther Sci. 2013;25:627–9.CrossRefPubMedPubMedCentral Lee NK, Kwon YH, Son SM, Nam SH, Kim JS. The effects of aging on visuomotor coordination and proprioceptive function in the upper limb. J Phys Ther Sci. 2013;25:627–9.CrossRefPubMedPubMedCentral
37.
go back to reference Ribeiro F, Oliveira J. Aging effects on joint proprioception: the role of physical activity in proprioception preservation. Eur Rev Aging Phys Act. 2007;4(2):71–6.CrossRef Ribeiro F, Oliveira J. Aging effects on joint proprioception: the role of physical activity in proprioception preservation. Eur Rev Aging Phys Act. 2007;4(2):71–6.CrossRef
38.
go back to reference Markovic M, Schweisfurth MA, Engels LF, Bentz T, Wüstefeld D, Farina D, Dosen S. The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis. J Neuroeng Rehabil. 2018;15(1):1–15. Markovic M, Schweisfurth MA, Engels LF, Bentz T, Wüstefeld D, Farina D, Dosen S. The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis. J Neuroeng Rehabil. 2018;15(1):1–15.
Metadata
Title
Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping
Authors
Marko Markovic
Meike A. Schweisfurth
Leonard F. Engels
Dario Farina
Strahinja Dosen
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2018
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-018-0422-7

Other articles of this Issue 1/2018

Journal of NeuroEngineering and Rehabilitation 1/2018 Go to the issue