Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2018

Open Access 01-12-2018 | Research

Trainer in a pocket - proof-of-concept of mobile, real-time, foot kinematics feedback for gait pattern normalization in individuals after stroke, incomplete spinal cord injury and elderly patients

Authors: Daniel Schließmann, Maria Nisser, Christian Schuld, Till Gladow, Steffen Derlien, Laura Heutehaus, Norbert Weidner, Ulrich Smolenski, Rüdiger Rupp

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2018

Login to get access

Abstract

Background

Walking disabilities negatively affect inclusion in society and quality of life and increase the risk for secondary complications. It has been shown that external feedback applied by therapists and/or robotic training devices enables individuals with gait abnormalities to consciously normalize their gait pattern. However, little is known about the effects of a technically-assisted over ground feedback therapy. The aim of this study was to assess whether automatic real-time feedback provided by a shoe-mounted inertial-sensor-based gait therapy system is feasible in individuals with gait impairments after incomplete spinal cord injury (iSCI), stroke and in the elderly.

Methods

In a non-controlled proof-of-concept study, feedback by tablet computer-generated verbalized instructions was given to individuals with iSCI, stroke and old age for normalization of an individually selected gait parameter (stride length, stance or swing duration, or foot-to-ground angle). The training phase consisted of 3 consecutive visits. Four weeks post training a follow-up visit was performed. Visits started with an initial gait analysis (iGA) without feedback, followed by 5 feedback training sessions of 2–3 min and a gait analysis at the end. A universal evaluation and FB scheme based on equidistant levels of deviations from the mean normal value (1 level = 1 standard deviation (SD) of the physiological reference for the feedback parameter) was used for assessment of gait quality as well as for automated adaptation of training difficulty. Overall changes in level over iGAs were detected using a Friedman’s Test. Post-hoc testing was achieved with paired Wilcoxon Tests. The users’ satisfaction was assessed by a customized questionnaire.

Results

Fifteen individuals with iSCI, 11 after stroke and 15 elderly completed the training. The average level at iGA significantly decreased over the visits in all groups (Friedman’s test, p < 0.0001), with the biggest decrease between the first and second training visit (4.78 ± 2.84 to 3.02 ± 2.43, p < 0.0001, paired Wilcoxon test). Overall, users rated the system’s usability and its therapeutic effect as positive.

Conclusions

Mobile, real-time, verbalized feedback is feasible and results in a normalization of the feedback gait parameter. The results form a first basis for using real-time feedback in task-specific motor rehabilitation programs.

Trial registration

DRKS00011853, retrospectively registered on 2017/03/23.
Appendix
Available only for authorised users
Literature
1.
go back to reference Flansbjer U-B, Downham D, Lexell J. Knee muscle strength, gait performance, and perceived participation after stroke. Arch Phys Med Rehabil. 2006;87:974–80.CrossRefPubMed Flansbjer U-B, Downham D, Lexell J. Knee muscle strength, gait performance, and perceived participation after stroke. Arch Phys Med Rehabil. 2006;87:974–80.CrossRefPubMed
2.
go back to reference Wee J, Lysaght R. Factors affecting measures of activities and participation in persons with mobility impairment. Disabil Rehabil. 2009;31:1633–42.CrossRefPubMed Wee J, Lysaght R. Factors affecting measures of activities and participation in persons with mobility impairment. Disabil Rehabil. 2009;31:1633–42.CrossRefPubMed
3.
go back to reference Mahlknecht P, Kiechl S, Bloem BR, Willeit J, Scherfler C, Gasperi A, Rungger G, Poewe W, Seppi K. Prevalence and burden of gait disorders in elderly men and women aged 60–97 years: a population-based study. PLoS One. 2013;8:e69627.CrossRefPubMedPubMedCentral Mahlknecht P, Kiechl S, Bloem BR, Willeit J, Scherfler C, Gasperi A, Rungger G, Poewe W, Seppi K. Prevalence and burden of gait disorders in elderly men and women aged 60–97 years: a population-based study. PLoS One. 2013;8:e69627.CrossRefPubMedPubMedCentral
4.
5.
go back to reference Michael J, Schlüter-Brust KU, Eysel P. The epidemiology, etiology, diagnosis, and treatment of osteoarthritis of the knee. Dtsch Arztebl Int. 2010;107:152–62.PubMedPubMedCentral Michael J, Schlüter-Brust KU, Eysel P. The epidemiology, etiology, diagnosis, and treatment of osteoarthritis of the knee. Dtsch Arztebl Int. 2010;107:152–62.PubMedPubMedCentral
7.
go back to reference Mendis S. Stroke disability and rehabilitation of stroke: World Health Organization perspective. Int J Stroke. 2013;8:3–4.CrossRefPubMed Mendis S. Stroke disability and rehabilitation of stroke: World Health Organization perspective. Int J Stroke. 2013;8:3–4.CrossRefPubMed
8.
go back to reference White N-H, Black N-H: Spinal cord injury (SCI) facts and figures at a glance. 2016. White N-H, Black N-H: Spinal cord injury (SCI) facts and figures at a glance. 2016.
10.
go back to reference Bridenbaugh SA, Kressig RW. Laboratory review: the role of gait analysis in seniors’ mobility and fall prevention. Gerontology. 2010;57:256–64.CrossRefPubMed Bridenbaugh SA, Kressig RW. Laboratory review: the role of gait analysis in seniors’ mobility and fall prevention. Gerontology. 2010;57:256–64.CrossRefPubMed
12.
go back to reference Lord SR, Rogers MW, Howland A, Fitzpatrick R. Lateral stability, sensorimotor function and falls in older people. J Am Geriatr Soc. 1999;47:1077–81.CrossRefPubMed Lord SR, Rogers MW, Howland A, Fitzpatrick R. Lateral stability, sensorimotor function and falls in older people. J Am Geriatr Soc. 1999;47:1077–81.CrossRefPubMed
13.
go back to reference Goble DJ, Coxon JP, Wenderoth N, Van Impe A, Swinnen SP. Proprioceptive sensibility in the elderly: degeneration, functional consequences and plastic-adaptive processes. Neurosci Biobehav Rev. 2009;33:271–8.CrossRefPubMed Goble DJ, Coxon JP, Wenderoth N, Van Impe A, Swinnen SP. Proprioceptive sensibility in the elderly: degeneration, functional consequences and plastic-adaptive processes. Neurosci Biobehav Rev. 2009;33:271–8.CrossRefPubMed
14.
go back to reference Riemann BL, Lephart SM. The sensorimotor system, part II: the role of proprioception in motor control and functional joint stability. J Athl Train. 2002;37:80–4.PubMedPubMedCentral Riemann BL, Lephart SM. The sensorimotor system, part II: the role of proprioception in motor control and functional joint stability. J Athl Train. 2002;37:80–4.PubMedPubMedCentral
15.
go back to reference Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19:84–90.CrossRefPubMed Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19:84–90.CrossRefPubMed
16.
go back to reference Sigrist R, Rauter G, Riener R, Wolf P. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon Bull Rev. 2013;20:21–53.CrossRefPubMed Sigrist R, Rauter G, Riener R, Wolf P. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon Bull Rev. 2013;20:21–53.CrossRefPubMed
17.
go back to reference Colombo R, Pisano F, Mazzone A, Delconte C, Micera S, Carrozza MC, Dario P, Minuco G. Design strategies to improve patient motivation during robot-aided rehabilitation. Journal of neuroengineering and rehabilitation. 2007;4:3.CrossRefPubMedPubMedCentral Colombo R, Pisano F, Mazzone A, Delconte C, Micera S, Carrozza MC, Dario P, Minuco G. Design strategies to improve patient motivation during robot-aided rehabilitation. Journal of neuroengineering and rehabilitation. 2007;4:3.CrossRefPubMedPubMedCentral
18.
go back to reference Wolf S, Loose T, Schablowski M, Doderlein L, Rupp R, Gerner HJ, Bretthauer G, Mikut R. Automated feature assessment in instrumented gait analysis. Gait Posture. 2006;23:331–8.CrossRefPubMed Wolf S, Loose T, Schablowski M, Doderlein L, Rupp R, Gerner HJ, Bretthauer G, Mikut R. Automated feature assessment in instrumented gait analysis. Gait Posture. 2006;23:331–8.CrossRefPubMed
19.
go back to reference Schlieβmann D, Schuld C, Schneiders M, Derlien S, Glöckner M, Gladow T, Weidner N, Rupp R. Feasibility of visual instrumented movement feedback therapy in individuals with motor incomplete spinal cord injury walking on a treadmill. Front Hum Neurosci. 2014;8:416. https://doi.org/10.3389/fnhum.2014.00416. Schlieβmann D, Schuld C, Schneiders M, Derlien S, Glöckner M, Gladow T, Weidner N, Rupp R. Feasibility of visual instrumented movement feedback therapy in individuals with motor incomplete spinal cord injury walking on a treadmill. Front Hum Neurosci. 2014;8:416. https://​doi.​org/​10.​3389/​fnhum.​2014.​00416.
20.
go back to reference Noehren B, Scholz J, Davis I. The effect of real-time gait retraining on hip kinematics, pain and function in subjects with patellofemoral pain syndrome. Br J Sports Med. 2010;45(9):691–6.CrossRefPubMed Noehren B, Scholz J, Davis I. The effect of real-time gait retraining on hip kinematics, pain and function in subjects with patellofemoral pain syndrome. Br J Sports Med. 2010;45(9):691–6.CrossRefPubMed
21.
go back to reference Carse B, Meadows B, Bowers R, Rowe P. Affordable clinical gait analysis: an assessment of the marker tracking accuracy of a new low-cost optical 3D motion analysis system. Physiotherapy. 2013;99:347–51.CrossRefPubMed Carse B, Meadows B, Bowers R, Rowe P. Affordable clinical gait analysis: an assessment of the marker tracking accuracy of a new low-cost optical 3D motion analysis system. Physiotherapy. 2013;99:347–51.CrossRefPubMed
23.
go back to reference Watt JR, Franz JR, Jackson K, Dicharry J, Riley PO, Kerrigan DC. A three-dimensional kinematic and kinetic comparison of overground and treadmill walking in healthy elderly subjects. Clin Biomech. 2010;25:444–9.CrossRef Watt JR, Franz JR, Jackson K, Dicharry J, Riley PO, Kerrigan DC. A three-dimensional kinematic and kinetic comparison of overground and treadmill walking in healthy elderly subjects. Clin Biomech. 2010;25:444–9.CrossRef
24.
go back to reference Mayagoitia RE, Nene AV, Veltink PH. Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems. J Biomech. 2002;35:537–42.CrossRefPubMed Mayagoitia RE, Nene AV, Veltink PH. Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems. J Biomech. 2002;35:537–42.CrossRefPubMed
25.
go back to reference Saber-Sheikh K, Bryant EC, Glazzard C, Hamel A, Lee RY. Feasibility of using inertial sensors to assess human movement. Man Ther. 2010;15:122–5.CrossRefPubMed Saber-Sheikh K, Bryant EC, Glazzard C, Hamel A, Lee RY. Feasibility of using inertial sensors to assess human movement. Man Ther. 2010;15:122–5.CrossRefPubMed
26.
go back to reference Barbour N, Schmidt G. Inertial sensor technology trends. IEEE Sensors J. 2001;1:332–9.CrossRef Barbour N, Schmidt G. Inertial sensor technology trends. IEEE Sensors J. 2001;1:332–9.CrossRef
27.
go back to reference Huddleston J, Alaiti A, Goldvasser D, Scarborough D, Freiberg A, Rubash H, Malchau H, Harris W, Krebs D. Ambulatory measurement of knee motion and physical activity: preliminary evaluation of a smart activity monitor. Journal of neuroengineering and rehabilitation. 2006;3:21.CrossRefPubMedPubMedCentral Huddleston J, Alaiti A, Goldvasser D, Scarborough D, Freiberg A, Rubash H, Malchau H, Harris W, Krebs D. Ambulatory measurement of knee motion and physical activity: preliminary evaluation of a smart activity monitor. Journal of neuroengineering and rehabilitation. 2006;3:21.CrossRefPubMedPubMedCentral
28.
go back to reference Motoi K, Tanaka S, Kuwae Y, Yuji T, Higashi Y, Fujimoto T, Yamakoshi K-i. Evaluation of a wearable sensor system monitoring posture changes and activities for use in rehabilitation. Journal of Robotics and Mechatronics. 2007;19:656–66.CrossRef Motoi K, Tanaka S, Kuwae Y, Yuji T, Higashi Y, Fujimoto T, Yamakoshi K-i. Evaluation of a wearable sensor system monitoring posture changes and activities for use in rehabilitation. Journal of Robotics and Mechatronics. 2007;19:656–66.CrossRef
29.
go back to reference Grewal GS, Schwenk M, Lee-Eng J, Parvaneh S, Bharara M, Menzies RA, Talal TK, Armstrong DG, Najafi B. Sensor-based interactive balance training with visual joint movement feedback for improving postural stability in diabetics with peripheral neuropathy: a randomized controlled trial. Gerontology. 2015;61:567–74.CrossRefPubMed Grewal GS, Schwenk M, Lee-Eng J, Parvaneh S, Bharara M, Menzies RA, Talal TK, Armstrong DG, Najafi B. Sensor-based interactive balance training with visual joint movement feedback for improving postural stability in diabetics with peripheral neuropathy: a randomized controlled trial. Gerontology. 2015;61:567–74.CrossRefPubMed
30.
go back to reference Carpinella I, Cattaneo D, Bonora G, Bowman T, Martina L, Montesano A, Ferrarin M. Wearable sensor-based biofeedback training for balance and gait in Parkinson disease: a pilot randomized controlled trial. Arch Phys Med Rehabil. 2017;98:622–30. e623CrossRefPubMed Carpinella I, Cattaneo D, Bonora G, Bowman T, Martina L, Montesano A, Ferrarin M. Wearable sensor-based biofeedback training for balance and gait in Parkinson disease: a pilot randomized controlled trial. Arch Phys Med Rehabil. 2017;98:622–30. e623CrossRefPubMed
31.
go back to reference Xu J, Bao T, Lee UH, Kinnaird C, Carender W, Huang Y, Sienko KH, Shull PB. Configurable, wearable sensing and vibrotactile feedback system for real-time postural balance and gait training: proof-of-concept. Journal of neuroengineering and rehabilitation. 2017;14:102.CrossRefPubMedPubMedCentral Xu J, Bao T, Lee UH, Kinnaird C, Carender W, Huang Y, Sienko KH, Shull PB. Configurable, wearable sensing and vibrotactile feedback system for real-time postural balance and gait training: proof-of-concept. Journal of neuroengineering and rehabilitation. 2017;14:102.CrossRefPubMedPubMedCentral
33.
go back to reference Shull PB, Jirattigalachote W, Hunt MA, Cutkosky MR, Delp SL. Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait & posture. 2014;40:11–9.CrossRef Shull PB, Jirattigalachote W, Hunt MA, Cutkosky MR, Delp SL. Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait & posture. 2014;40:11–9.CrossRef
34.
go back to reference Ginis P, Heremans E, Ferrari A, Dockx K, Canning CG, Nieuwboer A. Prolonged walking with a wearable system providing intelligent auditory input in people with Parkinson’s disease. Front Neurol. 2017;8:128.CrossRefPubMedPubMedCentral Ginis P, Heremans E, Ferrari A, Dockx K, Canning CG, Nieuwboer A. Prolonged walking with a wearable system providing intelligent auditory input in people with Parkinson’s disease. Front Neurol. 2017;8:128.CrossRefPubMedPubMedCentral
35.
go back to reference Dowling AV, Fisher DS, Andriacchi TP. Gait modification via verbal instruction and an active feedback system to reduce peak knee adduction moment. J Biomech Eng. 2010;132:071007.CrossRefPubMed Dowling AV, Fisher DS, Andriacchi TP. Gait modification via verbal instruction and an active feedback system to reduce peak knee adduction moment. J Biomech Eng. 2010;132:071007.CrossRefPubMed
36.
go back to reference He Z, Shen Y, Liu T, Yi J, Ferreira JP. A gait retraining feedback system based on wearable sensors. In: Advanced Intelligent Mechatronics (AIM), 2017 IEEE International Conference on IEEE; 2017. p. 1029–34. He Z, Shen Y, Liu T, Yi J, Ferreira JP. A gait retraining feedback system based on wearable sensors. In: Advanced Intelligent Mechatronics (AIM), 2017 IEEE International Conference on IEEE; 2017. p. 1029–34.
37.
go back to reference Vadnerkar A, Figueiredo S, Mayo N, Kearney R. Design and validation of a biofeedback device to improve heel-to-toe gait in seniors. IEEE J Biomed Health Inf. 2018;22(1):140–6.CrossRef Vadnerkar A, Figueiredo S, Mayo N, Kearney R. Design and validation of a biofeedback device to improve heel-to-toe gait in seniors. IEEE J Biomed Health Inf. 2018;22(1):140–6.CrossRef
38.
go back to reference Donath L, Faude O, Lichtenstein E, Nüesch C, Mündermann A. Validity and reliability of a portable gait analysis system for measuring spatiotemporal gait characteristics: comparison to an instrumented treadmill. Journal of neuroengineering and rehabilitation. 2016;13:6.CrossRefPubMedPubMedCentral Donath L, Faude O, Lichtenstein E, Nüesch C, Mündermann A. Validity and reliability of a portable gait analysis system for measuring spatiotemporal gait characteristics: comparison to an instrumented treadmill. Journal of neuroengineering and rehabilitation. 2016;13:6.CrossRefPubMedPubMedCentral
39.
go back to reference Schwesig R, Leuchte S, Fischer D, Ullmann R, Kluttig A. Inertial sensor based reference gait data for healthy subjects. Gait & posture. 2011;33:673–8.CrossRef Schwesig R, Leuchte S, Fischer D, Ullmann R, Kluttig A. Inertial sensor based reference gait data for healthy subjects. Gait & posture. 2011;33:673–8.CrossRef
40.
go back to reference Bellotti F, Kapralos B, Lee K, Moreno-Ger P, Berta R. Assessment in and of serious games: an overview. Advances in Human-Computer Interaction. 2013;2013:1. Bellotti F, Kapralos B, Lee K, Moreno-Ger P, Berta R. Assessment in and of serious games: an overview. Advances in Human-Computer Interaction. 2013;2013:1.
41.
go back to reference Moreno-Ger P, Burgos D, Torrente J. Digital games in eLearning environments: current uses and emerging trends. Simulation & Gaming. 2009;40:669–87.CrossRef Moreno-Ger P, Burgos D, Torrente J. Digital games in eLearning environments: current uses and emerging trends. Simulation & Gaming. 2009;40:669–87.CrossRef
42.
43.
go back to reference Barrios JA, Crossley KM, Davis IS. Gait retraining to reduce the knee adduction moment through real-time visual feedback of dynamic knee alignment. J Biomech. 2010;43:2208–13.CrossRefPubMedPubMedCentral Barrios JA, Crossley KM, Davis IS. Gait retraining to reduce the knee adduction moment through real-time visual feedback of dynamic knee alignment. J Biomech. 2010;43:2208–13.CrossRefPubMedPubMedCentral
44.
go back to reference van Hedel HJ, Wirz M, Dietz V. Assessing walking ability in subjects with spinal cord injury: validity and reliability of 3 walking tests. Arch Phys Med Rehabil. 2005;86:190–6.CrossRefPubMed van Hedel HJ, Wirz M, Dietz V. Assessing walking ability in subjects with spinal cord injury: validity and reliability of 3 walking tests. Arch Phys Med Rehabil. 2005;86:190–6.CrossRefPubMed
45.
go back to reference Kirshblum SC, Waring W, Biering-Sorensen F, Burns SP, Johansen M, Schmidt-Read M, Donovan W, Graves D, Jha A, Jones L, et al. Reference for the 2011 revision of the international standards for neurological classification of spinal cord injury. J Spinal Cord Med. 2011;34:547–54.CrossRefPubMedPubMedCentral Kirshblum SC, Waring W, Biering-Sorensen F, Burns SP, Johansen M, Schmidt-Read M, Donovan W, Graves D, Jha A, Jones L, et al. Reference for the 2011 revision of the international standards for neurological classification of spinal cord injury. J Spinal Cord Med. 2011;34:547–54.CrossRefPubMedPubMedCentral
46.
go back to reference Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.CrossRefPubMed Folstein MF, Folstein SE, McHugh PR. Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.CrossRefPubMed
47.
go back to reference Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67:206–7.CrossRefPubMed Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67:206–7.CrossRefPubMed
48.
go back to reference Mariani B, Rouhani H, Crevoisier X, Aminian K. Quantitative estimation of foot-flat and stance phase of gait using foot-worn inertial sensors. Gait & posture. 2013;37:229–34.CrossRef Mariani B, Rouhani H, Crevoisier X, Aminian K. Quantitative estimation of foot-flat and stance phase of gait using foot-worn inertial sensors. Gait & posture. 2013;37:229–34.CrossRef
49.
go back to reference Marino RJ, Scivoletto G, Patrick M, Tamburella F, Read MS, Burns AS, Hauck W, Ditunno J Jr. Walking index for spinal cord injury version 2 (WISCI-II) with repeatability of the 10-m walk time: inter- and intrarater reliabilities. Am J Phys Med Rehabil. 2010;89:7–15.CrossRefPubMed Marino RJ, Scivoletto G, Patrick M, Tamburella F, Read MS, Burns AS, Hauck W, Ditunno J Jr. Walking index for spinal cord injury version 2 (WISCI-II) with repeatability of the 10-m walk time: inter- and intrarater reliabilities. Am J Phys Med Rehabil. 2010;89:7–15.CrossRefPubMed
50.
go back to reference Podsiadlo D, Richardson S. The timed “up & go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39:142–8.CrossRefPubMed Podsiadlo D, Richardson S. The timed “up & go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39:142–8.CrossRefPubMed
51.
go back to reference Demers L, Weiss-Lambrou R, Ska B. The Quebec User Evaluation of Satisfaction with Assist Technol (QUEST 2.0): an overview and recent progress. Technology and Disability. 2002;14:101–5. Demers L, Weiss-Lambrou R, Ska B. The Quebec User Evaluation of Satisfaction with Assist Technol (QUEST 2.0): an overview and recent progress. Technology and Disability. 2002;14:101–5.
52.
go back to reference Graham JE, Karmarkar AM, Ottenbacher KJ. Small sample research designs for evidence-based rehabilitation: issues and methods. Arch Phys Med Rehabil. 2012;93:S111–6.CrossRefPubMedPubMedCentral Graham JE, Karmarkar AM, Ottenbacher KJ. Small sample research designs for evidence-based rehabilitation: issues and methods. Arch Phys Med Rehabil. 2012;93:S111–6.CrossRefPubMedPubMedCentral
53.
go back to reference RC Team. R: a language and environment for statistical computing. Vienna; 2015. RC Team. R: a language and environment for statistical computing. Vienna; 2015.
54.
go back to reference Wickham H. ggplot2: elegant graphics for data analysis: New York: Springer; 2016. Wickham H. ggplot2: elegant graphics for data analysis: New York: Springer; 2016.
55.
go back to reference Saichi K, Yasuda K, Kitaji Y, Kaibuki N, Iwata H. Development and pilot clinical evaluation of a haptic-based perception-empathy biofeedback device for gait rehabilitation. In: Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the. IEEE; 2016. p. 6158–61. Saichi K, Yasuda K, Kitaji Y, Kaibuki N, Iwata H. Development and pilot clinical evaluation of a haptic-based perception-empathy biofeedback device for gait rehabilitation. In: Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the. IEEE; 2016. p. 6158–61.
56.
go back to reference Vienne A, Barrois RP, Buffat S, Ricard D, Vidal P-P. Inertial sensors to assess gait quality in patients with neurological disorders: a systematic review of technical and analytical challenges. Front Psychol. 2017;8:817.CrossRefPubMedPubMedCentral Vienne A, Barrois RP, Buffat S, Ricard D, Vidal P-P. Inertial sensors to assess gait quality in patients with neurological disorders: a systematic review of technical and analytical challenges. Front Psychol. 2017;8:817.CrossRefPubMedPubMedCentral
57.
go back to reference Cole J, Sedgwick E. The perceptions of force and of movement in a man without large myelinated sensory afferents below the neck. J Physiol. 1992;449:503–15.CrossRefPubMedPubMedCentral Cole J, Sedgwick E. The perceptions of force and of movement in a man without large myelinated sensory afferents below the neck. J Physiol. 1992;449:503–15.CrossRefPubMedPubMedCentral
58.
go back to reference Yogev-Seligmann G, Rotem-Galili Y, Mirelman A, Dickstein R, Giladi N, Hausdorff JM. How does explicit prioritization alter walking during dual-task performance? Effects of age and sex on gait speed and variability. Phys Ther. 2010;90:177–86.CrossRefPubMedPubMedCentral Yogev-Seligmann G, Rotem-Galili Y, Mirelman A, Dickstein R, Giladi N, Hausdorff JM. How does explicit prioritization alter walking during dual-task performance? Effects of age and sex on gait speed and variability. Phys Ther. 2010;90:177–86.CrossRefPubMedPubMedCentral
59.
go back to reference Heuninckx S, Wenderoth N, Swinnen SP. Systems neuroplasticity in the aging brain: recruiting additional neural resources for successful motor performance in elderly persons. J Neurosci. 2008;28:91–9.CrossRefPubMed Heuninckx S, Wenderoth N, Swinnen SP. Systems neuroplasticity in the aging brain: recruiting additional neural resources for successful motor performance in elderly persons. J Neurosci. 2008;28:91–9.CrossRefPubMed
60.
go back to reference Bohannon RW. Comfortable and maximum walking speed of adults aged 20—79 years: reference values and determinants. Age Ageing. 1997;26:15–9.CrossRefPubMed Bohannon RW. Comfortable and maximum walking speed of adults aged 20—79 years: reference values and determinants. Age Ageing. 1997;26:15–9.CrossRefPubMed
61.
62.
go back to reference Pedersen PM, Vinter K, Olsen TS. Aphasia after stroke: type, severity and prognosis. Cerebrovasc Dis. 2004;17:35–43.CrossRefPubMed Pedersen PM, Vinter K, Olsen TS. Aphasia after stroke: type, severity and prognosis. Cerebrovasc Dis. 2004;17:35–43.CrossRefPubMed
63.
go back to reference Field-Fote EC, Fluet GG, Schafer SD, Schneider EM, Smith R, Downey PA, Ruhl CD. The spinal cord injury functional ambulation inventory (SCI-FAI). J Rehabil Med. 2001;33:177–81.CrossRefPubMed Field-Fote EC, Fluet GG, Schafer SD, Schneider EM, Smith R, Downey PA, Ruhl CD. The spinal cord injury functional ambulation inventory (SCI-FAI). J Rehabil Med. 2001;33:177–81.CrossRefPubMed
64.
go back to reference Lin J-H, Hsu M-J, Hsu H-W, Wu H-C, Hsieh C-L. Psychometric comparisons of 3 functional ambulation measures for patients with stroke. Stroke. 2010;41:2021–5.CrossRefPubMed Lin J-H, Hsu M-J, Hsu H-W, Wu H-C, Hsieh C-L. Psychometric comparisons of 3 functional ambulation measures for patients with stroke. Stroke. 2010;41:2021–5.CrossRefPubMed
65.
go back to reference Lord S, Galna B, Rochester L. Moving forward on gait measurement: toward a more refined approach. Mov Disord. 2013;28:1534–43.CrossRefPubMed Lord S, Galna B, Rochester L. Moving forward on gait measurement: toward a more refined approach. Mov Disord. 2013;28:1534–43.CrossRefPubMed
Metadata
Title
Trainer in a pocket - proof-of-concept of mobile, real-time, foot kinematics feedback for gait pattern normalization in individuals after stroke, incomplete spinal cord injury and elderly patients
Authors
Daniel Schließmann
Maria Nisser
Christian Schuld
Till Gladow
Steffen Derlien
Laura Heutehaus
Norbert Weidner
Ulrich Smolenski
Rüdiger Rupp
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2018
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-018-0389-4

Other articles of this Issue 1/2018

Journal of NeuroEngineering and Rehabilitation 1/2018 Go to the issue