Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2006

Open Access 01-12-2006 | Research

Ambulatory measurement of knee motion and physical activity: preliminary evaluation of a smart activity monitor

Authors: James Huddleston, Amer Alaiti, Dov Goldvasser, Donna Scarborough, Andrew Freiberg, Harry Rubash, Henrik Malchau, William Harris, David Krebs

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2006

Login to get access

Abstract

Background

There is currently a paucity of devices available for continuous, long-term monitoring of human joint motion. Non-invasive, inexpensive devices capable of recording human activity and joint motion have many applications for medical research. Such a device could be used to quantify range of motion outside the gait laboratory. The purpose of this study was to test the accuracy of the modified Intelligent Device for Energy Expenditure and Activity (IDEEA) in measuring knee flexion angles, to detect different physical activities, and to quantify how often healthy subjects use deep knee flexion in the ambulatory setting.

Methods

We compared Biomotion Laboratory (BML) "gold standard" data to simultaneous IDEEA measures of knee motion and gait, step up/down, and stair descent in 5 healthy subjects. In addition, we used a series of choreographed physical activities outside the BML to confirm the IDEEA's ability to accurately measure 7 commonly-performed physical activities. Subjects then continued data collection during ordinary activities outside the gait laboratory.

Results

Pooled correlations between the BML and IDEEA knee flexion angles were .97 +/- .03 for step up/down, .98 +/- .02 for stair descent, and .98 +/- .01 for gait. In the BML protocol, the IDEEA accurately identified gait, but was less accurate in identifying step up/down and stair descent. During sampling outside the BML, the IDEEA accurately detected walking, running, stair ascent, stair descent, standing, lying, and sitting. On average, subjects flexed their knees >120° for 0.17% of their data collection periods outside the BML.

Conclusion

The modified IDEEA system is a useful clinical tool for evaluating knee motion and multiple physical activities in the ambulatory setting. These five healthy subjects rarely flexed their knees >120°.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wilson PW, Paffenbarger RSJ, Morris JN, Havlik RJ: Assessment methods for physical activity and physical fitness in population studies: report of a NHLBI workshop. Am Heart J. 1986, 111: 1177-1192. 10.1016/0002-8703(86)90022-0.CrossRefPubMed Wilson PW, Paffenbarger RSJ, Morris JN, Havlik RJ: Assessment methods for physical activity and physical fitness in population studies: report of a NHLBI workshop. Am Heart J. 1986, 111: 1177-1192. 10.1016/0002-8703(86)90022-0.CrossRefPubMed
2.
go back to reference Washburn RA, Montoye HJ: The assessment of physical activity by questionnaire. Am J Epidemiol. 1986, 123: 563-576.PubMed Washburn RA, Montoye HJ: The assessment of physical activity by questionnaire. Am J Epidemiol. 1986, 123: 563-576.PubMed
3.
go back to reference Paffenbarger RSJ, Blair SN, Lee IM, Hyde RT: Measurement of physical activity to assess health effects in free-living populations. Med Sci Sports Exerc. 1993, 25: 60-70. 10.1249/00005768-199301000-00010.CrossRefPubMed Paffenbarger RSJ, Blair SN, Lee IM, Hyde RT: Measurement of physical activity to assess health effects in free-living populations. Med Sci Sports Exerc. 1993, 25: 60-70. 10.1249/00005768-199301000-00010.CrossRefPubMed
4.
go back to reference Levine JA, Baukol PA, Westerterp KR: Validation of the Tracmor triaxial accelerometer system for walking. Med Sci Sports Exerc. 2001, 33: 1593-1597. 10.1097/00005768-200109000-00024.CrossRefPubMed Levine JA, Baukol PA, Westerterp KR: Validation of the Tracmor triaxial accelerometer system for walking. Med Sci Sports Exerc. 2001, 33: 1593-1597. 10.1097/00005768-200109000-00024.CrossRefPubMed
5.
go back to reference Bassey EJ, Dallosso HM, Fentem PH, Irving JM, Patrick JM: Validation of a simple mechanical accelerometer (pedometer) for the estimation of walking activity. Eur J Appl Physiol Occup Physiol. 1987, 56: 323-330. 10.1007/BF00690900.CrossRefPubMed Bassey EJ, Dallosso HM, Fentem PH, Irving JM, Patrick JM: Validation of a simple mechanical accelerometer (pedometer) for the estimation of walking activity. Eur J Appl Physiol Occup Physiol. 1987, 56: 323-330. 10.1007/BF00690900.CrossRefPubMed
6.
go back to reference Bouten CV, Westerterp KR, Verduin M, Janssen JD: Assessment of energy expenditure for physical activity using a triaxial accelerometer. Med Sci Sports Exerc. 1994, 26: 1516-1523.CrossRefPubMed Bouten CV, Westerterp KR, Verduin M, Janssen JD: Assessment of energy expenditure for physical activity using a triaxial accelerometer. Med Sci Sports Exerc. 1994, 26: 1516-1523.CrossRefPubMed
7.
go back to reference Janz KF: Validation of the CSA accelerometer for assessing children's physical activity. Med Sci Sports Exerc. 1994, 26: 369-375.CrossRefPubMed Janz KF: Validation of the CSA accelerometer for assessing children's physical activity. Med Sci Sports Exerc. 1994, 26: 369-375.CrossRefPubMed
8.
go back to reference Meijer GA, Westerterp KR, Verhoeven FM, Koper HB, ten Hoor F: Methods to assess physical activity with special reference to motion sensors and accelerometers. IEEE Trans Biomed Eng. 1991, 38: 221-229. 10.1109/10.133202.CrossRefPubMed Meijer GA, Westerterp KR, Verhoeven FM, Koper HB, ten Hoor F: Methods to assess physical activity with special reference to motion sensors and accelerometers. IEEE Trans Biomed Eng. 1991, 38: 221-229. 10.1109/10.133202.CrossRefPubMed
9.
go back to reference Melanson ELJ, Freedson PS: Physical activity assessment: a review of methods. Crit Rev Food Sci Nutr. 1996, 36: 385-396.CrossRefPubMed Melanson ELJ, Freedson PS: Physical activity assessment: a review of methods. Crit Rev Food Sci Nutr. 1996, 36: 385-396.CrossRefPubMed
10.
go back to reference Melanson ELJ, Freedson PS: Validity of the Computer Science and Applications, Inc. (CSA) activity monitor. Med Sci Sports Exerc. 1995, 27: 934-940.CrossRefPubMed Melanson ELJ, Freedson PS: Validity of the Computer Science and Applications, Inc. (CSA) activity monitor. Med Sci Sports Exerc. 1995, 27: 934-940.CrossRefPubMed
11.
go back to reference Nichols JF, Patterson P, Early T: A validation of a physical activity monitor for young and older adults. Can J Sport Sci. 1992, 17: 299-303.PubMed Nichols JF, Patterson P, Early T: A validation of a physical activity monitor for young and older adults. Can J Sport Sci. 1992, 17: 299-303.PubMed
13.
go back to reference Sequeira MM, Rickenbach M, Wietlisbach V, Tullen B, Schutz Y: Physical activity assessment using a pedometer and its comparison with a questionnaire in a large population survey. Am J Epidemiol. 1995, 142: 989-999.PubMed Sequeira MM, Rickenbach M, Wietlisbach V, Tullen B, Schutz Y: Physical activity assessment using a pedometer and its comparison with a questionnaire in a large population survey. Am J Epidemiol. 1995, 142: 989-999.PubMed
14.
go back to reference Wallbridge N, Dowson D: The walking activity of patients with artificial hip joints. Eng Med. 1982, 11: 95-96.CrossRefPubMed Wallbridge N, Dowson D: The walking activity of patients with artificial hip joints. Eng Med. 1982, 11: 95-96.CrossRefPubMed
15.
go back to reference Schmalzried TP, Szuszczewicz ES, Northfield MR, Akizuki KH, Frankel RE, Belcher G, Amstutz HC: Quantitative assessment of walking activity after total hip or knee replacement. J Bone Joint Surg Am. 1998, 80: 54-59. 10.1302/0301-620X.80B1.7739.CrossRefPubMed Schmalzried TP, Szuszczewicz ES, Northfield MR, Akizuki KH, Frankel RE, Belcher G, Amstutz HC: Quantitative assessment of walking activity after total hip or knee replacement. J Bone Joint Surg Am. 1998, 80: 54-59. 10.1302/0301-620X.80B1.7739.CrossRefPubMed
16.
go back to reference Saris WH, Binkhorst RA: The use of pedometer and actometer in studying daily physical activity in man. Part I: reliability of pedometer and actometer. Eur J Appl Physiol Occup Physiol. 1977, 37: 219-228. 10.1007/BF00421777.CrossRefPubMed Saris WH, Binkhorst RA: The use of pedometer and actometer in studying daily physical activity in man. Part I: reliability of pedometer and actometer. Eur J Appl Physiol Occup Physiol. 1977, 37: 219-228. 10.1007/BF00421777.CrossRefPubMed
17.
go back to reference Saris WH, Binkhorst RA: The use of pedometer and actometer in studying daily physical activity in man. Part II: validity of pedometer and actometer measuring the daily physical activity. Eur J Appl Physiol Occup Physiol. 1977, 37: 229-235. 10.1007/BF00421778.CrossRefPubMed Saris WH, Binkhorst RA: The use of pedometer and actometer in studying daily physical activity in man. Part II: validity of pedometer and actometer measuring the daily physical activity. Eur J Appl Physiol Occup Physiol. 1977, 37: 229-235. 10.1007/BF00421778.CrossRefPubMed
18.
go back to reference Zhang K, Pi-Sunyer FX, Boozer CN: Improving energy expenditure estimation for physical activity. Med Sci Sports Exerc. 2004, 36: 883-889. 10.1249/01.MSS.0000126585.40962.22.CrossRefPubMed Zhang K, Pi-Sunyer FX, Boozer CN: Improving energy expenditure estimation for physical activity. Med Sci Sports Exerc. 2004, 36: 883-889. 10.1249/01.MSS.0000126585.40962.22.CrossRefPubMed
19.
go back to reference Zhang K, Werner P, Sun M, Pi-Sunyer FX, Boozer CN: Measurement of human daily physical activity. Obes Res. 2003, 11: 33-40.CrossRefPubMed Zhang K, Werner P, Sun M, Pi-Sunyer FX, Boozer CN: Measurement of human daily physical activity. Obes Res. 2003, 11: 33-40.CrossRefPubMed
20.
go back to reference Li G, Most E, Sultan PG, Schule S, Zayontz S, Park SE, Rubash HE: Knee kinematics with a high-flexion posterior stabilized total knee prosthesis: an in vitro robotic experimental investigation. J Bone Joint Surg Am. 2004, 86-A: 1721-1729.PubMed Li G, Most E, Sultan PG, Schule S, Zayontz S, Park SE, Rubash HE: Knee kinematics with a high-flexion posterior stabilized total knee prosthesis: an in vitro robotic experimental investigation. J Bone Joint Surg Am. 2004, 86-A: 1721-1729.PubMed
21.
go back to reference Yamazaki J, Ishigami S, Nagashima M, Yoshino S: Hy-Flex II total knee system and range of motion. Arch Orthop Trauma Surg. 2002, 122: 156-160. 10.1007/s00402-001-0354-7.CrossRefPubMed Yamazaki J, Ishigami S, Nagashima M, Yoshino S: Hy-Flex II total knee system and range of motion. Arch Orthop Trauma Surg. 2002, 122: 156-160. 10.1007/s00402-001-0354-7.CrossRefPubMed
22.
go back to reference Huang HT, Su JY, Wang GJ: The early results of high-flex total knee arthroplasty: a minimum of 2 years of follow-up. J Arthroplasty. 2005, 20: 674-679. 10.1016/j.arth.2004.09.053.CrossRefPubMed Huang HT, Su JY, Wang GJ: The early results of high-flex total knee arthroplasty: a minimum of 2 years of follow-up. J Arthroplasty. 2005, 20: 674-679. 10.1016/j.arth.2004.09.053.CrossRefPubMed
23.
go back to reference Kaleps I, Clauser CE, Young JW, Chandler RF, Zehner GF, McConville JT: Investigation into the mass distribution properties of the human body and its segments. Ergonomics. 1984, 27: 1225-1237.CrossRefPubMed Kaleps I, Clauser CE, Young JW, Chandler RF, Zehner GF, McConville JT: Investigation into the mass distribution properties of the human body and its segments. Ergonomics. 1984, 27: 1225-1237.CrossRefPubMed
24.
go back to reference Riley PO, Mann RW, Hodge WA: Modelling of the biomechanics of posture and balance. J Biomech. 1990, 23: 503-506. 10.1016/0021-9290(90)90306-N.CrossRefPubMed Riley PO, Mann RW, Hodge WA: Modelling of the biomechanics of posture and balance. J Biomech. 1990, 23: 503-506. 10.1016/0021-9290(90)90306-N.CrossRefPubMed
25.
go back to reference Goldvasser D, McGibbon CA, Krebs DE: Vestibular rehabilitation outcomes: velocity trajectory analysis of repeated bench stepping. Clin Neurophysiol. 2000, 111: 1838-1842. 10.1016/S1388-2457(00)00387-4.CrossRefPubMed Goldvasser D, McGibbon CA, Krebs DE: Vestibular rehabilitation outcomes: velocity trajectory analysis of repeated bench stepping. Clin Neurophysiol. 2000, 111: 1838-1842. 10.1016/S1388-2457(00)00387-4.CrossRefPubMed
Metadata
Title
Ambulatory measurement of knee motion and physical activity: preliminary evaluation of a smart activity monitor
Authors
James Huddleston
Amer Alaiti
Dov Goldvasser
Donna Scarborough
Andrew Freiberg
Harry Rubash
Henrik Malchau
William Harris
David Krebs
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2006
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-3-21

Other articles of this Issue 1/2006

Journal of NeuroEngineering and Rehabilitation 1/2006 Go to the issue