Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2018

Open Access 01-12-2018 | Research

Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control

Authors: Linda Resnik, He (Helen) Huang, Anna Winslow, Dustin L. Crouch, Fan Zhang, Nancy Wolk

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2018

Login to get access

Abstract

Background

Although electromyogram (EMG) pattern recognition (PR) for multifunctional upper limb prosthesis control has been reported for decades, the clinical benefits have rarely been examined. The study purposes were to: 1) compare self-report and performance outcomes of a transradial amputee immediately after training and one week after training of direct myoelectric control and EMG pattern recognition (PR) for a two-degree-of-freedom (DOF) prosthesis, and 2) examine the change in outcomes one week after pattern recognition training and the rate of skill acquisition in two subjects with transradial amputations.

Methods

In this cross-over study, participants were randomized to receive either PR control or direct control (DC) training of a 2 DOF myoelectric prosthesis first. Participants were 2 persons with traumatic transradial (TR) amputations who were 1 DOF myoelectric users. Outcomes, including measures of dexterity with and without cognitive load, activity performance, self-reported function, and prosthetic satisfaction were administered immediately and 1 week after training. Speed of skill acquisition was assessed hourly. One subject completed training under both PR control and DC conditions. Both subjects completed PR training and testing. Outcomes of test metrics were analyzed descriptively.

Results

Comparison of the two control strategies in one subject who completed training in both conditions showed better scores in 2 (18%) dexterity measures, 1 (50%) dexterity measure with cognitive load, and 1 (50%) self-report functional measure using DC, as compared to PR. Scores of all other metrics were comparable. Both subjects showed decline in dexterity after training. Findings related to rate of skill acquisition varied considerably by subject.

Conclusions

Outcomes of PR and DC for operating a 2-DOF prosthesis in a single subject cross-over study were similar for 74% of metrics, and favored DC in 26% of metrics. The two subjects who completed PR training showed decline in dexterity one week after training ended. Findings related to rate of skill acquisition varied considerably by subject. This study, despite its small sample size, highlights a need for additional research quantifying the functional and clinical benefits of PR control for upper limb prostheses.
Appendix
Available only for authorised users
Footnotes
1
This procedure is usually called “training procedure for establishing EMG PR-based control”. In order to avoid confusion with the training procedure for healthy human subjects, we refer to this procedure as the “calibration procedure”.
 
Literature
1.
go back to reference Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008;89(3):422–9.CrossRefPubMed Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008;89(3):422–9.CrossRefPubMed
2.
go back to reference Lusardi MM, Nielsen CC. Orthotics and prosthetics in rehabilitation. Boston: Butterworth-Heinemann Publications; 2000. Lusardi MM, Nielsen CC. Orthotics and prosthetics in rehabilitation. Boston: Butterworth-Heinemann Publications; 2000.
3.
go back to reference Cordella F, Ciancio AL, Sacchetti R, Davalli A, Cutti AG, Guglielmelli E, Zollo L. Literature review on needs of upper limb prosthesis users. Front Neurosci. 2016;10:209.CrossRefPubMedPubMedCentral Cordella F, Ciancio AL, Sacchetti R, Davalli A, Cutti AG, Guglielmelli E, Zollo L. Literature review on needs of upper limb prosthesis users. Front Neurosci. 2016;10:209.CrossRefPubMedPubMedCentral
4.
go back to reference Pinzur MS, Angelats J, Light TR, Izuierdo R, Pluth T. Functional outcome following traumatic upper limb amputation and prosthetic limb fitting. J Hand Surg [Am]. 1994;19:836–9.CrossRef Pinzur MS, Angelats J, Light TR, Izuierdo R, Pluth T. Functional outcome following traumatic upper limb amputation and prosthetic limb fitting. J Hand Surg [Am]. 1994;19:836–9.CrossRef
5.
go back to reference Berke GM, Fergason J, Milani JR, Hattingh J, McDowell M, Nguyen V, Reiber GE. Comparison of satisfaction with current prosthetic care in veterans and servicemembers from Vietnam and OIF/OEF conflicts with major traumatic limb loss. J Rehabil Res Dev. 2010;47(4):361–71.CrossRefPubMed Berke GM, Fergason J, Milani JR, Hattingh J, McDowell M, Nguyen V, Reiber GE. Comparison of satisfaction with current prosthetic care in veterans and servicemembers from Vietnam and OIF/OEF conflicts with major traumatic limb loss. J Rehabil Res Dev. 2010;47(4):361–71.CrossRefPubMed
6.
go back to reference Biddiss EA, Chau TT. Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthetics Orthot Int. 2007;31(3):236–57.CrossRef Biddiss EA, Chau TT. Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthetics Orthot Int. 2007;31(3):236–57.CrossRef
7.
go back to reference Raichle KA, Hanley MA, Molton I, Kadel NJ, Campbell K, Phelps E, Ehde D, Smith DG. Prosthesis use in persons with lower- and upper-limb amputation. J Rehabil Res Dev. 2008;45(7):961–72.CrossRefPubMedPubMedCentral Raichle KA, Hanley MA, Molton I, Kadel NJ, Campbell K, Phelps E, Ehde D, Smith DG. Prosthesis use in persons with lower- and upper-limb amputation. J Rehabil Res Dev. 2008;45(7):961–72.CrossRefPubMedPubMedCentral
8.
go back to reference Whiteside SR, Alaimo J, Barringer WJ, Beiswenger WD, Bulgarelli T, Hentges CJ, Lin RS, Miller TE, Parr RG, Reynolds JH, et al. Practice analysis task force. Alexandria: American Board for Certification in Orthotics and Prosthetics, Inc.; 2000. Whiteside SR, Alaimo J, Barringer WJ, Beiswenger WD, Bulgarelli T, Hentges CJ, Lin RS, Miller TE, Parr RG, Reynolds JH, et al. Practice analysis task force. Alexandria: American Board for Certification in Orthotics and Prosthetics, Inc.; 2000.
9.
go back to reference Carrozza MC, Cappiello G, Micera S, Edin BB, Beccai L, Cipriani C. Design of a cybernetic hand for perception and action. Biol Cybern. 2006;95(6):629–44.CrossRefPubMedPubMedCentral Carrozza MC, Cappiello G, Micera S, Edin BB, Beccai L, Cipriani C. Design of a cybernetic hand for perception and action. Biol Cybern. 2006;95(6):629–44.CrossRefPubMedPubMedCentral
10.
go back to reference Kyberd PJ, Light C, Chappell PH, Nightingale JM, Whatley D, Evans M. The design of anthropomorphic prosthetic hands: a study of the Southampton hand. Robotica. 2001;19:593–600.CrossRef Kyberd PJ, Light C, Chappell PH, Nightingale JM, Whatley D, Evans M. The design of anthropomorphic prosthetic hands: a study of the Southampton hand. Robotica. 2001;19:593–600.CrossRef
12.
go back to reference Resnik L. Development and testing of new upper-limb prosthetic devices: research designs for usability testing. J Rehabil Res Dev. 2011;48(6):697–706.CrossRefPubMed Resnik L. Development and testing of new upper-limb prosthetic devices: research designs for usability testing. J Rehabil Res Dev. 2011;48(6):697–706.CrossRefPubMed
13.
go back to reference Ison M, Artemiadis P. The role of muscle synergies in myoelectric control: trends and challenges for simultaneous multifunction control. J Neural Eng. 2014;11(5):051001.CrossRefPubMed Ison M, Artemiadis P. The role of muscle synergies in myoelectric control: trends and challenges for simultaneous multifunction control. J Neural Eng. 2014;11(5):051001.CrossRefPubMed
14.
go back to reference Parker PA, Scott RN. Myoelectric control of prostheses. Crit Rev Biomed Eng. 1986;13(4):283–310.PubMed Parker PA, Scott RN. Myoelectric control of prostheses. Crit Rev Biomed Eng. 1986;13(4):283–310.PubMed
15.
go back to reference Williams TW 3rd. Practical methods for controlling powered upper-extremity prostheses. Assist Technol. 1990;2(1):3–18.CrossRefPubMed Williams TW 3rd. Practical methods for controlling powered upper-extremity prostheses. Assist Technol. 1990;2(1):3–18.CrossRefPubMed
16.
go back to reference Muzumdar A. Powered upper limb prostheses: control, implementation, and clinical application. Berlin: Springer; 2004.CrossRef Muzumdar A. Powered upper limb prostheses: control, implementation, and clinical application. Berlin: Springer; 2004.CrossRef
17.
go back to reference Graupe D, Beex AA, Monlux WJ, Magnussen I. A multifunctional prosthesis control system based on time series identification of EMG signals using microprocessors. Bull Prosthet Res. 1977;10(27):4–16.PubMed Graupe D, Beex AA, Monlux WJ, Magnussen I. A multifunctional prosthesis control system based on time series identification of EMG signals using microprocessors. Bull Prosthet Res. 1977;10(27):4–16.PubMed
18.
go back to reference Englehart K, Hudgins B. A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans Biomed Eng. 2003;50(7):848–54.CrossRefPubMed Englehart K, Hudgins B. A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans Biomed Eng. 2003;50(7):848–54.CrossRefPubMed
19.
go back to reference Merletti R, Parker P. Electromyography: physiology, engineering, and non-invasive applications. vol. 11. Hoboken: Wiley; 2004. Merletti R, Parker P. Electromyography: physiology, engineering, and non-invasive applications. vol. 11. Hoboken: Wiley; 2004.
20.
go back to reference Kuiken TA, Dumanian GA, Lipschutz RD, Miller LA, Stubblefield KA. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthetics Orthot Int. 2004;28(3):245–53. Kuiken TA, Dumanian GA, Lipschutz RD, Miller LA, Stubblefield KA. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthetics Orthot Int. 2004;28(3):245–53.
21.
go back to reference Kuiken TA, Miller LA, Lipschutz RD, Lock B, Stubblefield KA, Marasco P, Zhou P, Dumanian GA. Targeted reinnervation for enhanced prosthetic arm function in woman with a proximal amputation. Lancet. 2007;369:371–80.CrossRefPubMed Kuiken TA, Miller LA, Lipschutz RD, Lock B, Stubblefield KA, Marasco P, Zhou P, Dumanian GA. Targeted reinnervation for enhanced prosthetic arm function in woman with a proximal amputation. Lancet. 2007;369:371–80.CrossRefPubMed
22.
go back to reference Scheme E, Englehart K. Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J Rehabil Res Dev. 2011;48(6):643–59.CrossRefPubMed Scheme E, Englehart K. Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J Rehabil Res Dev. 2011;48(6):643–59.CrossRefPubMed
23.
go back to reference Young AJ, Smith LH, Rouse EJ, Hargrove LJ. Classification of simultaneous movements using surface EMG pattern recognition. IEEE Trans Biomed Eng. 2013;60(5):1250–8.CrossRefPubMed Young AJ, Smith LH, Rouse EJ, Hargrove LJ. Classification of simultaneous movements using surface EMG pattern recognition. IEEE Trans Biomed Eng. 2013;60(5):1250–8.CrossRefPubMed
26.
go back to reference Adewuyi AA, Hargrove LJ, Kuiken TA. Resolving the effect of wrist position on myoelectric pattern recognition control. J Neuroeng Rehabil. 2017;14(1):39.CrossRefPubMedPubMedCentral Adewuyi AA, Hargrove LJ, Kuiken TA. Resolving the effect of wrist position on myoelectric pattern recognition control. J Neuroeng Rehabil. 2017;14(1):39.CrossRefPubMedPubMedCentral
27.
go back to reference Khushaba RN, Al-Timemy AH, Al-Ani A, Al-Jumaily A. A framework of temporal-spatial descriptors-based feature extraction for improved myoelectric pattern recognition. IEEE Trans Neural Syst Rehabil Eng. 2017;25(10):1821–31. Khushaba RN, Al-Timemy AH, Al-Ani A, Al-Jumaily A. A framework of temporal-spatial descriptors-based feature extraction for improved myoelectric pattern recognition. IEEE Trans Neural Syst Rehabil Eng. 2017;25(10):1821–31.
28.
go back to reference Huang Q, Yang D, Jiang L, Zhang H, Liu H, Kotani K. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition. Sensors. 2017;17(6):1370. Huang Q, Yang D, Jiang L, Zhang H, Liu H, Kotani K. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition. Sensors. 2017;17(6):1370.
29.
go back to reference Zhai X, Jelfs B, Chan RHM, Tin C. Self-recalibrating surface EMG pattern recognition for Neuroprosthesis control based on convolutional neural network. Front Neurosci. 2017;11:379.CrossRefPubMedPubMedCentral Zhai X, Jelfs B, Chan RHM, Tin C. Self-recalibrating surface EMG pattern recognition for Neuroprosthesis control based on convolutional neural network. Front Neurosci. 2017;11:379.CrossRefPubMedPubMedCentral
30.
go back to reference Kuiken TA, Miller LA, Turner K, Hargrove LJ. A comparison of pattern recognition control and direct control of a multiple degree-of-freedom Transradial prosthesis. IEEE J Transl Eng Health Med. 2016;4:1–8.CrossRef Kuiken TA, Miller LA, Turner K, Hargrove LJ. A comparison of pattern recognition control and direct control of a multiple degree-of-freedom Transradial prosthesis. IEEE J Transl Eng Health Med. 2016;4:1–8.CrossRef
31.
go back to reference Huang H, Kuiken TA, Lipschutz RD. A strategy for identifying locomotion modes using surface electromyography. IEEE Trans Biomed Eng. 2009;56(1):65–73.CrossRefPubMedPubMedCentral Huang H, Kuiken TA, Lipschutz RD. A strategy for identifying locomotion modes using surface electromyography. IEEE Trans Biomed Eng. 2009;56(1):65–73.CrossRefPubMedPubMedCentral
32.
go back to reference Hudgins B, Parker P, Scott RN. A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng. 1993;40(1):82–94.CrossRefPubMed Hudgins B, Parker P, Scott RN. A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng. 1993;40(1):82–94.CrossRefPubMed
33.
34.
go back to reference Geng Y, Zhou P, Li G. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees. J Neuroeng Rehabil. 2012;9(74):2–11. Geng Y, Zhou P, Li G. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees. J Neuroeng Rehabil. 2012;9(74):2–11.
35.
go back to reference Sensinger JW, Lock BA, Kuiken TA. Adaptive pattern recognition of myoelectric signals: exploration of conceptual framework and practical algorithms. IEEE Trans Neural Syst Rehabil Eng. 2009;17(3):270–8.CrossRefPubMedPubMedCentral Sensinger JW, Lock BA, Kuiken TA. Adaptive pattern recognition of myoelectric signals: exploration of conceptual framework and practical algorithms. IEEE Trans Neural Syst Rehabil Eng. 2009;17(3):270–8.CrossRefPubMedPubMedCentral
36.
go back to reference Vidovic MM, Hwang HJ, Amsuss S, Hahne JM, Farina D, Muller KR. Improving the robustness of myoelectric pattern recognition for upper limb prostheses by covariate shift adaptation. IEEE Trans Neural Syst Rehabil Eng. 2016;24(9):961–70.CrossRefPubMed Vidovic MM, Hwang HJ, Amsuss S, Hahne JM, Farina D, Muller KR. Improving the robustness of myoelectric pattern recognition for upper limb prostheses by covariate shift adaptation. IEEE Trans Neural Syst Rehabil Eng. 2016;24(9):961–70.CrossRefPubMed
37.
go back to reference Huang H, Zhou P, Li G, Kuiken TA. An analysis of EMG electrode configuration for targeted muscle reinnervation based neural machine interface. IEEE Trans Neural Syst Rehabil Eng. 2008;16(1):37–45.CrossRefPubMedPubMedCentral Huang H, Zhou P, Li G, Kuiken TA. An analysis of EMG electrode configuration for targeted muscle reinnervation based neural machine interface. IEEE Trans Neural Syst Rehabil Eng. 2008;16(1):37–45.CrossRefPubMedPubMedCentral
38.
go back to reference Fougner A, Scheme E, Chan AD, Englehart K, Stavdahl O. Resolving the limb position effect in myoelectric pattern recognition. IEEE Trans Neural Syst Rehabil Eng. 2011;19(6):644–51.CrossRefPubMed Fougner A, Scheme E, Chan AD, Englehart K, Stavdahl O. Resolving the limb position effect in myoelectric pattern recognition. IEEE Trans Neural Syst Rehabil Eng. 2011;19(6):644–51.CrossRefPubMed
39.
go back to reference Resnik L, Borgia M. Reliability and validity of outcome measures for upper limb amputation. JPO. 2012;24(4):192–212. Resnik L, Borgia M. Reliability and validity of outcome measures for upper limb amputation. JPO. 2012;24(4):192–212.
40.
go back to reference Magill RA. Chapter 11: defining and assessing learning. In: Magill RA, editor. Motor learning and control : concepts and applications, vol. xiii. 8th ed. Boston: McGraw-Hill; 2007. p. 482. Magill RA. Chapter 11: defining and assessing learning. In: Magill RA, editor. Motor learning and control : concepts and applications, vol. xiii. 8th ed. Boston: McGraw-Hill; 2007. p. 482.
41.
go back to reference Schmidt RA, Lee TD. Retention and transfer. In: Schmidt RA, Lee TD, editors. Motor control and learning : a behavioral emphasis, vol. ix. 5th ed. Champaign: Human Kinetics; 2001. p. 581. Schmidt RA, Lee TD. Retention and transfer. In: Schmidt RA, Lee TD, editors. Motor control and learning : a behavioral emphasis, vol. ix. 5th ed. Champaign: Human Kinetics; 2001. p. 581.
42.
go back to reference Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the box and block test of manual dexterity. Am J Occup Ther. 1985;39(6):386–91.CrossRefPubMed Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the box and block test of manual dexterity. Am J Occup Ther. 1985;39(6):386–91.CrossRefPubMed
43.
go back to reference Resnik L, Borgia M. Reliability, validity, and responsiveness of the QuickDASH in patients with upper limb amputation. Arch Phys Med Rehabil. 2015;96(9):1676–83.CrossRefPubMed Resnik L, Borgia M. Reliability, validity, and responsiveness of the QuickDASH in patients with upper limb amputation. Arch Phys Med Rehabil. 2015;96(9):1676–83.CrossRefPubMed
44.
go back to reference Resnik L, Adams L, Borgia M, Delikat J, Disla R, Ebner C, Walters LS. Development and evaluation of the activities measure for upper limb amputees. Arch Phys Med Rehabil. 2013;94(3):488–94. e484CrossRefPubMed Resnik L, Adams L, Borgia M, Delikat J, Disla R, Ebner C, Walters LS. Development and evaluation of the activities measure for upper limb amputees. Arch Phys Med Rehabil. 2013;94(3):488–94. e484CrossRefPubMed
45.
go back to reference Miller LA, Lipschutz RD, Weir RW, Williams TW, Stubblefield KA, Heckathorne CW, Kuiken TA: Shoulder disarticulation fitting with 6 independently controlled motors after targeted hyper-reinnervation nerve transfer surgery. In: MEC’05: Integrating Prosthetics and Medicine: University of New Brunswick's Myoelectric Controls/Powered Prosthetics Symposium. Fredericton: Myoelectric Symposium; 2005. Miller LA, Lipschutz RD, Weir RW, Williams TW, Stubblefield KA, Heckathorne CW, Kuiken TA: Shoulder disarticulation fitting with 6 independently controlled motors after targeted hyper-reinnervation nerve transfer surgery. In: MEC’05: Integrating Prosthetics and Medicine: University of New Brunswick's Myoelectric Controls/Powered Prosthetics Symposium. Fredericton: Myoelectric Symposium; 2005.
46.
go back to reference Heinemann AW, Bode RK, O'Reilly C. Development and measurement properties of the orthotics and prosthetics Users’ survey (OPUS): a comprehensive set of clinical outcome instruments. Prosthetics Orthot Int. 2003;27(3):191–206.CrossRef Heinemann AW, Bode RK, O'Reilly C. Development and measurement properties of the orthotics and prosthetics Users’ survey (OPUS): a comprehensive set of clinical outcome instruments. Prosthetics Orthot Int. 2003;27(3):191–206.CrossRef
47.
go back to reference Burger H, Franchignoni F, Heinemann AW, Kotnik S, Giordano A. Validation of the orthotics and prosthetics user survey upper extremity functional status module in people with unilateral upper limb amputation. J Rehabil Med. 2008;40(5):393–9.CrossRefPubMed Burger H, Franchignoni F, Heinemann AW, Kotnik S, Giordano A. Validation of the orthotics and prosthetics user survey upper extremity functional status module in people with unilateral upper limb amputation. J Rehabil Med. 2008;40(5):393–9.CrossRefPubMed
48.
go back to reference Stratford P, Gill C, Westaway M, Binkley J. Assessing disability and change on individual patients: a report of a patient specific measure. Physiother Can. 1995;47(4):258–63.CrossRef Stratford P, Gill C, Westaway M, Binkley J. Assessing disability and change on individual patients: a report of a patient specific measure. Physiother Can. 1995;47(4):258–63.CrossRef
49.
go back to reference Hefford C, Abbott JH, Arnold R, Baxter GD. The patient-specific functional scale: validity, reliability, and responsiveness in patients with upper extremity musculoskeletal problems. J Orthop Sports Phys Ther. 2012;42(2):56–65. Hefford C, Abbott JH, Arnold R, Baxter GD. The patient-specific functional scale: validity, reliability, and responsiveness in patients with upper extremity musculoskeletal problems. J Orthop Sports Phys Ther. 2012;42(2):56–65.
50.
go back to reference Gallagher P, Franchignoni F, Giordano A, MacLachlan M. Trinity amputation and prosthesis experience scales: a psychometric assessment using classical test theory and rasch analysis. Am J Phys Med Rehabil. 2010;89(6):487–96.CrossRefPubMed Gallagher P, Franchignoni F, Giordano A, MacLachlan M. Trinity amputation and prosthesis experience scales: a psychometric assessment using classical test theory and rasch analysis. Am J Phys Med Rehabil. 2010;89(6):487–96.CrossRefPubMed
51.
go back to reference Weir RF, Troyk PR, DeMichele GA, Kerns DA, Schorsch JF, Maas H. Implantable myoelectric sensors (IMESs) for intramuscular electromyogram recording. IEEE Trans Biomed Eng. 2009;56(1):159–71.CrossRefPubMedPubMedCentral Weir RF, Troyk PR, DeMichele GA, Kerns DA, Schorsch JF, Maas H. Implantable myoelectric sensors (IMESs) for intramuscular electromyogram recording. IEEE Trans Biomed Eng. 2009;56(1):159–71.CrossRefPubMedPubMedCentral
52.
go back to reference Hargrove LJ, Miller LA, Turner K, Kuiken TA. Myoelectric pattern recognition outperforms direct control for Transhumeral amputees with targeted muscle Reinnervation: a randomized clinical trial. Sci Rep. 2017;7(1):13840.CrossRefPubMedPubMedCentral Hargrove LJ, Miller LA, Turner K, Kuiken TA. Myoelectric pattern recognition outperforms direct control for Transhumeral amputees with targeted muscle Reinnervation: a randomized clinical trial. Sci Rep. 2017;7(1):13840.CrossRefPubMedPubMedCentral
Metadata
Title
Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control
Authors
Linda Resnik
He (Helen) Huang
Anna Winslow
Dustin L. Crouch
Fan Zhang
Nancy Wolk
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2018
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-018-0361-3

Other articles of this Issue 1/2018

Journal of NeuroEngineering and Rehabilitation 1/2018 Go to the issue