Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2018

Open Access 01-12-2018 | Research

Speed-adaptive control of functional electrical stimulation for dropfoot correction

Authors: Guangtao Chen, Le Ma, Rong Song, Le Li, Xiaoyun Wang, Kaiyu Tong

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2018

Login to get access

Abstract

Background

Functional electrical stimulation is an important therapy technique for dropfoot correction. In order to achieve natural control, the parameter setting of FES should be associated with the activation of the tibialis anterior.

Methods

This study recruited nine healthy subjects and investigated the relations of walking speed with the onset timing and duration of tibialis anterior activation. Linear models were built for the walking speed with respect to these two parameters. Based on these models, the speed-adaptive onset timing and duration were applied in FES-assisted walking for nine healthy subjects and ten subjects with dropfoot. The kinematic performance of FES-assisted walking triggered by speed-adaptive stimulation were compared with those triggered by the heel-off event, and no-stimulation walking at different walking speeds.

Results

Higher ankle dorsiflexion angle was observed in heel-off stimulation and speed-adaptive stimulation conditions than that in no-stimulation walking condition at all the speeds. For subjects with stroke, the ankle plantarflexion angle in speed-adaptive stimulation condition was similar to that in no-stimulation walking condition, and it was significant larger than that in heel-off stimulation condition at all speeds.

Conclusions

The improvement in ankle dorsiflexion without worsening ankle plantarflexion in speed-adaptive stimulation condition could be attributed to the appropriate stimulation timing and duration. These results provide evidence that the proposed stimulation system with speed-related parameters is more physiologically appropriate in dropfoot correction, and it may have great potential value in future clinical applications.

Trial registration

Medical Ethics Committee of Guangdong Work Injury Rehabilitation Center, AF/​SC-07/​2016.​22. Registered 26 May 2016.
Literature
1.
go back to reference Lawrence ES, Coshall C, Dundas R, Stewart J, Rudd AG, Howard R, et al. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke. 2001;32:1279–84.CrossRef Lawrence ES, Coshall C, Dundas R, Stewart J, Rudd AG, Howard R, et al. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke. 2001;32:1279–84.CrossRef
2.
go back to reference Summers D, Leonard A, Wentworth D, Saver JL, Simpson J, Spilker JA, et al. Comprehensive overview of nursing and interdisciplinary care of the acute ischemic stroke patient: a scientific statement from the American Heart Association. Stroke. 2911;2009:40. Summers D, Leonard A, Wentworth D, Saver JL, Simpson J, Spilker JA, et al. Comprehensive overview of nursing and interdisciplinary care of the acute ischemic stroke patient: a scientific statement from the American Heart Association. Stroke. 2911;2009:40.
3.
go back to reference RW T, SK B, NC F, MR S. Gait retraining post stroke. Top Stroke Rehabil. 2003;10:34–65. RW T, SK B, NC F, MR S. Gait retraining post stroke. Top Stroke Rehabil. 2003;10:34–65.
4.
go back to reference JH B, DE W, PN T, DL M. Indices to describe different muscle activation patterns, identified during treadmill walking, in people with spastic drop-foot. Med Eng Phys. 2001;23:427.CrossRef JH B, DE W, PN T, DL M. Indices to describe different muscle activation patterns, identified during treadmill walking, in people with spastic drop-foot. Med Eng Phys. 2001;23:427.CrossRef
5.
go back to reference Olney SJ, Richards C. Hemiparetic gait following stroke. Part I: characteristics. Gait Posture. 1996;4:136–48.CrossRef Olney SJ, Richards C. Hemiparetic gait following stroke. Part I: characteristics. Gait Posture. 1996;4:136–48.CrossRef
6.
go back to reference Kesar TM, Perumal R, Jancosko A, Reisman DS, Rudolph KS, Higginson JS, et al. Novel patterns of functional electrical stimulation have an immediate effect on dorsiflexor muscle function during gait for people poststroke. Phys Ther. 2010;90:55–66.CrossRef Kesar TM, Perumal R, Jancosko A, Reisman DS, Rudolph KS, Higginson JS, et al. Novel patterns of functional electrical stimulation have an immediate effect on dorsiflexor muscle function during gait for people poststroke. Phys Ther. 2010;90:55–66.CrossRef
7.
go back to reference Liberson WT, Holmquest HJ, Scot D, Dow M. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabilit. 1961;42:101. Liberson WT, Holmquest HJ, Scot D, Dow M. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabilit. 1961;42:101.
8.
go back to reference Yan T, HuiChan CWY, Li LSW. Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke a randomized placebo-controlled trial. Stroke. 2005;36:80–5.CrossRef Yan T, HuiChan CWY, Li LSW. Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke a randomized placebo-controlled trial. Stroke. 2005;36:80–5.CrossRef
9.
go back to reference Perry J, ST K, Davids JR. Gait analysis: normal and pathological function. JAMA J Am Med Assoc. 1992;304:907. Perry J, ST K, Davids JR. Gait analysis: normal and pathological function. JAMA J Am Med Assoc. 1992;304:907.
10.
go back to reference Perry J, Garrett M, Gronley JK, Mulroy SJ. Classification of walking handicap in the stroke population. Stroke. 1995;26:982.CrossRef Perry J, Garrett M, Gronley JK, Mulroy SJ. Classification of walking handicap in the stroke population. Stroke. 1995;26:982.CrossRef
11.
go back to reference Aminian K, Rezakhanlou K, De AE, Fritsch C, Leyvraz PF, Robert P. Temporal feature estimation during walking using miniature accelerometers: an analysis of gait improvement after hip arthroplasty. Med Biol Eng Comput. 1999;37:686–91.CrossRef Aminian K, Rezakhanlou K, De AE, Fritsch C, Leyvraz PF, Robert P. Temporal feature estimation during walking using miniature accelerometers: an analysis of gait improvement after hip arthroplasty. Med Biol Eng Comput. 1999;37:686–91.CrossRef
12.
go back to reference Bhadra N, Kilgore KL, Peckham PH. Implanted stimulators for restoration of function in spinal cord injury. Med Eng Phys. 2001;23:19–28.CrossRef Bhadra N, Kilgore KL, Peckham PH. Implanted stimulators for restoration of function in spinal cord injury. Med Eng Phys. 2001;23:19–28.CrossRef
14.
go back to reference Lundin-Olsson L, Nyberg L, Gustafson Y. "Stops walking when talking" as a predictor of falls in elderly people. Lancet. 1997;349:617.CrossRef Lundin-Olsson L, Nyberg L, Gustafson Y. "Stops walking when talking" as a predictor of falls in elderly people. Lancet. 1997;349:617.CrossRef
15.
go back to reference Willemsen AT, Bloemhof F, Boom HB. Automatic stance-swing phase detection from accelerometer data for peroneal nerve stimulation. Biomed Eng IEEE Trans. 1990;37:1201–8.CrossRef Willemsen AT, Bloemhof F, Boom HB. Automatic stance-swing phase detection from accelerometer data for peroneal nerve stimulation. Biomed Eng IEEE Trans. 1990;37:1201–8.CrossRef
16.
go back to reference Mansfield A, Lyons GM. The use of accelerometry to detect heel contact events for use as a sensor in FES assisted walking. Med Eng Phys. 2003;25:879–85.CrossRef Mansfield A, Lyons GM. The use of accelerometry to detect heel contact events for use as a sensor in FES assisted walking. Med Eng Phys. 2003;25:879–85.CrossRef
17.
go back to reference Monaghan CC, WJBMv R, Veltink PH. Control of triceps surae stimulation based on shank orientation using a uniaxial gyroscope during gait. Med Biol Eng Comput. 2009;47:1181–8.CrossRef Monaghan CC, WJBMv R, Veltink PH. Control of triceps surae stimulation based on shank orientation using a uniaxial gyroscope during gait. Med Biol Eng Comput. 2009;47:1181–8.CrossRef
18.
go back to reference Weber DJ, Stein RB, Chan KM, Loeb G, Richmond F, Rolf R, et al. BIONic WalkAide for correcting foot drop. IEEE Trans Neural Syst Rehabil Eng. 2005;13:242–6.CrossRef Weber DJ, Stein RB, Chan KM, Loeb G, Richmond F, Rolf R, et al. BIONic WalkAide for correcting foot drop. IEEE Trans Neural Syst Rehabil Eng. 2005;13:242–6.CrossRef
19.
go back to reference Dutta A, Kobetic R, Triolo RJ. Gait initiation with electromyographically triggered electrical stimulation in people with partial paralysis. J Biomech Eng. 2009;131:081002.CrossRef Dutta A, Kobetic R, Triolo RJ. Gait initiation with electromyographically triggered electrical stimulation in people with partial paralysis. J Biomech Eng. 2009;131:081002.CrossRef
20.
go back to reference Yeom H, Chang YH. Autogenic EMG-controlled functional electrical stimulation for ankle dorsiflexion control. J Neurosci Methods. 2010;193:118–25.CrossRef Yeom H, Chang YH. Autogenic EMG-controlled functional electrical stimulation for ankle dorsiflexion control. J Neurosci Methods. 2010;193:118–25.CrossRef
21.
go back to reference Spaich EG, Bøg MF, Erkocevic E, Smidstrup A, Andersen OK, Nielsen JF. Gait orthosis Lokomat combined with functional electrical stimulation for foot drop correction: a feasibility study. Int Conf NeuroRehabilitation. 2014;7:751–7. Spaich EG, Bøg MF, Erkocevic E, Smidstrup A, Andersen OK, Nielsen JF. Gait orthosis Lokomat combined with functional electrical stimulation for foot drop correction: a feasibility study. Int Conf NeuroRehabilitation. 2014;7:751–7.
22.
go back to reference Shiavi R, Bugle HJ, Limbird T. Electromyographic gait assessment, part 1: adult EMG profiles and walking speed. J Rehabil Res Dev. 1987;24:13.PubMed Shiavi R, Bugle HJ, Limbird T. Electromyographic gait assessment, part 1: adult EMG profiles and walking speed. J Rehabil Res Dev. 1987;24:13.PubMed
23.
go back to reference Yang JF, Winter DA. Surface EMG profiles during different walking cadences in humans. Electroencephalogr Clin Neurophysiol. 1985;60:485–91.CrossRef Yang JF, Winter DA. Surface EMG profiles during different walking cadences in humans. Electroencephalogr Clin Neurophysiol. 1985;60:485–91.CrossRef
24.
go back to reference Byrne CA, O'Keeffe DT, Donnelly AE, Lyons GM. Effect of walking speed changes on tibialis anterior EMG during healthy gait for FES envelope design in drop foot correction. J Electromyogr Kinesiol. 2007;17:605–16.CrossRef Byrne CA, O'Keeffe DT, Donnelly AE, Lyons GM. Effect of walking speed changes on tibialis anterior EMG during healthy gait for FES envelope design in drop foot correction. J Electromyogr Kinesiol. 2007;17:605–16.CrossRef
25.
go back to reference Chen M, Wu B, Lou X, Zhao T, Li J, Xu Z, et al. A self-adaptive foot-drop corrector using functional electrical stimulation (FES) modulated by tibialis anterior electromyography (EMG) dataset. Med Eng Phys. 2013;35:195.CrossRef Chen M, Wu B, Lou X, Zhao T, Li J, Xu Z, et al. A self-adaptive foot-drop corrector using functional electrical stimulation (FES) modulated by tibialis anterior electromyography (EMG) dataset. Med Eng Phys. 2013;35:195.CrossRef
26.
go back to reference Sartori M, Lloyd DG, Reggiani M, Pagello E. A stiff tendon neuromusculoskeletal model of the knee. Advanced Robotics and ITS Social Impacts. 2009. p. 132–8. Sartori M, Lloyd DG, Reggiani M, Pagello E. A stiff tendon neuromusculoskeletal model of the knee. Advanced Robotics and ITS Social Impacts. 2009. p. 132–8.
27.
go back to reference Di FR. Reliability of computerized surface electromyography for determining the onset of muscle activity. Phys Ther. 1987;67:43.CrossRef Di FR. Reliability of computerized surface electromyography for determining the onset of muscle activity. Phys Ther. 1987;67:43.CrossRef
28.
go back to reference Gabel RH, Brand RA. The effects of signal conditioning on the statistical analyses of gait EMG. Electroencephalogr Clin Neurophysiol. 1994;93:188–201.CrossRef Gabel RH, Brand RA. The effects of signal conditioning on the statistical analyses of gait EMG. Electroencephalogr Clin Neurophysiol. 1994;93:188–201.CrossRef
29.
go back to reference Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity kinematics during level walking. J Orthop Res. 1990;8:383–92.CrossRef Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity kinematics during level walking. J Orthop Res. 1990;8:383–92.CrossRef
30.
go back to reference Tyrell CM, Roos MA, Rudolph KS, Reisman DS. Influence of systematic increases in treadmill walking speed on gait kinematics after stroke. Phys Ther. 2011;91:392.CrossRef Tyrell CM, Roos MA, Rudolph KS, Reisman DS. Influence of systematic increases in treadmill walking speed on gait kinematics after stroke. Phys Ther. 2011;91:392.CrossRef
31.
go back to reference Pappas IPI, Keller T, Mangold S, Popovic MR, Dietz V, Morari M. A reliable gyroscope-based gait-phase detection sensor embedded in a shoe insole. IEEE Sensors J. 2004;4:268–74.CrossRef Pappas IPI, Keller T, Mangold S, Popovic MR, Dietz V, Morari M. A reliable gyroscope-based gait-phase detection sensor embedded in a shoe insole. IEEE Sensors J. 2004;4:268–74.CrossRef
32.
go back to reference Kesar TM, Perumal R, Reisman DS, Jancosko A, Rudolph KS, Higginson JS, et al. Functional electrical stimulation of ankle plantarflexor and dorsiflexor muscles: effects on poststroke gait. Stroke. 2009;40:3821.CrossRef Kesar TM, Perumal R, Reisman DS, Jancosko A, Rudolph KS, Higginson JS, et al. Functional electrical stimulation of ankle plantarflexor and dorsiflexor muscles: effects on poststroke gait. Stroke. 2009;40:3821.CrossRef
33.
go back to reference RK T, MF N, LS L, EF S. Gait training of patients after stroke using an electromechanical gait trainer combined with simultaneous functional electrical stimulation. Phys Ther. 2006;86:1282–94.CrossRef RK T, MF N, LS L, EF S. Gait training of patients after stroke using an electromechanical gait trainer combined with simultaneous functional electrical stimulation. Phys Ther. 2006;86:1282–94.CrossRef
34.
go back to reference Bogert AJVD, Koning JJD. On optimal filtering for inverse dynamics analysis. Proceedings of the IXth biennial conference of the Canadian society for Biomechanics. Vancouver: Simon Fraser University; 1996. 214–5. Bogert AJVD, Koning JJD. On optimal filtering for inverse dynamics analysis. Proceedings of the IXth biennial conference of the Canadian society for Biomechanics. Vancouver: Simon Fraser University; 1996. 214–5.
35.
go back to reference Jr ZJ, Richards JG, Higginson JS. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture. 2008;27:710–4.CrossRef Jr ZJ, Richards JG, Higginson JS. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture. 2008;27:710–4.CrossRef
36.
go back to reference Sabut SK, Lenka PK, Kumar R, Mahadevappa M. Effect of functional electrical stimulation on the effort and walking speed, surface electromyography activity, and metabolic responses in stroke subjects. J Electromyogr Kinesiol. 2010;20:1170–7.CrossRef Sabut SK, Lenka PK, Kumar R, Mahadevappa M. Effect of functional electrical stimulation on the effort and walking speed, surface electromyography activity, and metabolic responses in stroke subjects. J Electromyogr Kinesiol. 2010;20:1170–7.CrossRef
37.
go back to reference Springer S, Vatine JJ, Lipson R, Wolf A, Laufer Y. Effects of dual-channel functional electrical stimulation on gait performance in patients with hemiparesis. Sci World J. 2012;2012:530906–13.CrossRef Springer S, Vatine JJ, Lipson R, Wolf A, Laufer Y. Effects of dual-channel functional electrical stimulation on gait performance in patients with hemiparesis. Sci World J. 2012;2012:530906–13.CrossRef
38.
go back to reference Heller BW, Clarke AJ, Good TR, Healey TJ, Nair S, Pratt EJ, et al. Automated setup of functional electrical stimulation for drop foot using a novel 64 channel prototype stimulator and electrode array: results from a gait-lab based study. Med Eng Phys. 2013;35:74–81.CrossRef Heller BW, Clarke AJ, Good TR, Healey TJ, Nair S, Pratt EJ, et al. Automated setup of functional electrical stimulation for drop foot using a novel 64 channel prototype stimulator and electrode array: results from a gait-lab based study. Med Eng Phys. 2013;35:74–81.CrossRef
39.
go back to reference Burridge J, Taylor P, Hagan S, Wood D, Swain I. The effects of common peroneal stimulation on the effort and speed of walking: a randomized controlled trial with chronic hemiplegic patients. Clin Rehabil. 1997;11:201.CrossRef Burridge J, Taylor P, Hagan S, Wood D, Swain I. The effects of common peroneal stimulation on the effort and speed of walking: a randomized controlled trial with chronic hemiplegic patients. Clin Rehabil. 1997;11:201.CrossRef
40.
go back to reference Neptune RR, Kautz SA, Zajac FE. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking [J]. J Biomech. 2001;34(11):1387–98.CrossRef Neptune RR, Kautz SA, Zajac FE. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking [J]. J Biomech. 2001;34(11):1387–98.CrossRef
41.
go back to reference Anderson FC, Goldberg SR, Pandy MG, Delp SL. Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait: an induced position analysis. J Biomech. 2004;37:731–7.CrossRef Anderson FC, Goldberg SR, Pandy MG, Delp SL. Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait: an induced position analysis. J Biomech. 2004;37:731–7.CrossRef
Metadata
Title
Speed-adaptive control of functional electrical stimulation for dropfoot correction
Authors
Guangtao Chen
Le Ma
Rong Song
Le Li
Xiaoyun Wang
Kaiyu Tong
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2018
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-018-0448-x

Other articles of this Issue 1/2018

Journal of NeuroEngineering and Rehabilitation 1/2018 Go to the issue