Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2018

Open Access 01-12-2018 | Review

An investigation into closed-loop treatment of neurological disorders based on sensing mitochondrial dysfunction

Authors: Scott D. Adams, Abbas Z. Kouzani, Susannah J. Tye, Kevin E. Bennet, Michael Berk

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2018

Login to get access

Abstract

Dynamic feedback based closed-loop medical devices offer a number of advantages for treatment of heterogeneous neurological conditions. Closed-loop devices integrate a level of neurobiological feedback, which allows for real-time adjustments to be made with the overarching aim of improving treatment efficacy and minimizing risks for adverse events. One target which has not been extensively explored as a potential feedback component in closed-loop therapies is mitochondrial function. Several neurodegenerative and psychiatric disorders including Parkinson’s disease, Major Depressive disorder and Bipolar disorder have been linked to perturbations in the mitochondrial respiratory chain. This paper investigates the potential to monitor this mitochondrial function as a method of feedback for closed-loop neuromodulation treatments. A generic model of the closed-loop treatment is developed to describe the high-level functions of any system designed to control neural function based on mitochondrial response to stimulation, simplifying comparison and future meta-analysis. This model has four key functional components including: a sensor, signal manipulator, controller and effector. Each of these components are described and several potential technologies for each are investigated. While some of these candidate technologies are quite mature, there are still technological gaps remaining. The field of closed-loop medical devices is rapidly evolving, and whilst there is a lot of interest in this area, widespread adoption has not yet been achieved due to several remaining technological hurdles. However, the significant therapeutic benefits offered by this technology mean that this will be an active area for research for years to come.
Literature
1.
go back to reference World Health Organization. Neurological disorders: public health challenges. Geneva, Switzerland: WHO Press; 2006. World Health Organization. Neurological disorders: public health challenges. Geneva, Switzerland: WHO Press; 2006.
2.
go back to reference World Health Organization. Depression and other common mental disorders: global health estimates. Geneva, Switzerland: WHO Press; 2017. World Health Organization. Depression and other common mental disorders: global health estimates. Geneva, Switzerland: WHO Press; 2017.
3.
go back to reference Schmidt HD, Shelton RC, Duman RS. Functional biomarkers of depression: diagnosis, treatment, and pathophysiology. Neuropsychopharmacology. 2011;36:2375–94.PubMedPubMedCentralCrossRef Schmidt HD, Shelton RC, Duman RS. Functional biomarkers of depression: diagnosis, treatment, and pathophysiology. Neuropsychopharmacology. 2011;36:2375–94.PubMedPubMedCentralCrossRef
4.
go back to reference Komarova NL, Thalhauser CJ. High degree of heterogeneity in Alzheimer's disease progression patterns. PLoS Comput Biol. 2011;7:1–6.CrossRef Komarova NL, Thalhauser CJ. High degree of heterogeneity in Alzheimer's disease progression patterns. PLoS Comput Biol. 2011;7:1–6.CrossRef
5.
go back to reference Werremeyer A. Treatment-resistant depression. Mental Health Clinician. 2014;4:211.CrossRef Werremeyer A. Treatment-resistant depression. Mental Health Clinician. 2014;4:211.CrossRef
6.
7.
go back to reference Ward MP, Irazoqui PP. Evolving refractory major depressive disorder diagnostic and treatment paradigms: toward closed-loop therapeutics. Front Neuroeng. 2010;3:7.PubMedPubMedCentral Ward MP, Irazoqui PP. Evolving refractory major depressive disorder diagnostic and treatment paradigms: toward closed-loop therapeutics. Front Neuroeng. 2010;3:7.PubMedPubMedCentral
8.
go back to reference Clay H, Sillivan S, Konradi C. Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci. 2011;29:311–24.PubMedCrossRef Clay H, Sillivan S, Konradi C. Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci. 2011;29:311–24.PubMedCrossRef
10.
go back to reference Gardner A, Johansson A, Wibom R, Nennesmo I, von Döbeln U, Hagenfeldt L, Hällström T. Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J Affect Disord. 2003;76:55–68.PubMedCrossRef Gardner A, Johansson A, Wibom R, Nennesmo I, von Döbeln U, Hagenfeldt L, Hällström T. Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J Affect Disord. 2003;76:55–68.PubMedCrossRef
11.
go back to reference Naviaux RK, McGowan KA. Organismal effects of mitochondrial dysfunction. Hum Reprod. 2000;15:44–56.PubMedCrossRef Naviaux RK, McGowan KA. Organismal effects of mitochondrial dysfunction. Hum Reprod. 2000;15:44–56.PubMedCrossRef
12.
go back to reference McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16:551–60.CrossRef McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16:551–60.CrossRef
13.
go back to reference Lemieux H, Semsroth S, Antretter H, Höfer D, Gnaiger E. Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol. 2011;43:1729–38.PubMedCrossRef Lemieux H, Semsroth S, Antretter H, Höfer D, Gnaiger E. Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol. 2011;43:1729–38.PubMedCrossRef
15.
go back to reference Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961;191:144–8.PubMedCrossRef Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961;191:144–8.PubMedCrossRef
16.
go back to reference Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H. Purinergic signalling in the nervous system: an overview. Trends Neurosci. 2009;32:19–29.PubMedCrossRef Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H. Purinergic signalling in the nervous system: an overview. Trends Neurosci. 2009;32:19–29.PubMedCrossRef
17.
go back to reference Burnstock G. Physiology and pathophysiology of Purinergic neurotransmission. Physiol Rev. 2007;87:659–797.PubMedCrossRef Burnstock G. Physiology and pathophysiology of Purinergic neurotransmission. Physiol Rev. 2007;87:659–797.PubMedCrossRef
19.
go back to reference Giorgi C, Agnoletto C, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A, et al. Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion. 2012;12:77–85.PubMedPubMedCentralCrossRef Giorgi C, Agnoletto C, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A, et al. Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion. 2012;12:77–85.PubMedPubMedCentralCrossRef
20.
go back to reference Duchen MR. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Asp Med. 2004;25:365–451.CrossRef Duchen MR. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Asp Med. 2004;25:365–451.CrossRef
23.
go back to reference Sinha K, Das J, Pal PB, Sil PC. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. 2013;87:1157–80.PubMedCrossRef Sinha K, Das J, Pal PB, Sil PC. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. 2013;87:1157–80.PubMedCrossRef
24.
go back to reference Waterhouse NJ, Ricci J-E, Green DR. And all of a sudden it’s over: mitochondrial outer-membrane permeabilization in apoptosis. Biochimie. 2002;84:113–21.PubMedCrossRef Waterhouse NJ, Ricci J-E, Green DR. And all of a sudden it’s over: mitochondrial outer-membrane permeabilization in apoptosis. Biochimie. 2002;84:113–21.PubMedCrossRef
26.
go back to reference Contreras L, Drago I, Zampese E, Pozzan T. Mitochondria: the calcium connection. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2010;1797:607–18.CrossRef Contreras L, Drago I, Zampese E, Pozzan T. Mitochondria: the calcium connection. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2010;1797:607–18.CrossRef
27.
go back to reference Finkel T, Menazza S, Holmström KM, Parks RJ, Liu J, Sun J, Liu J, Pan X, Murphy E. The ins and outs of mitochondrial calcium. Circ Res. 2015;116:1810–9.PubMedCrossRef Finkel T, Menazza S, Holmström KM, Parks RJ, Liu J, Sun J, Liu J, Pan X, Murphy E. The ins and outs of mitochondrial calcium. Circ Res. 2015;116:1810–9.PubMedCrossRef
28.
go back to reference MacAskill AF, Atkin TA, Kittler JT. Mitochondrial trafficking and the provision of energy and calcium buffering at excitatory synapses. Eur J Neurosci. 2010;32:231–40.PubMedCrossRef MacAskill AF, Atkin TA, Kittler JT. Mitochondrial trafficking and the provision of energy and calcium buffering at excitatory synapses. Eur J Neurosci. 2010;32:231–40.PubMedCrossRef
30.
go back to reference Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL. Mitochondrial dysfunction and psychiatric disorders. Neurochem Res. 2008;34:1021.PubMedCrossRef Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL. Mitochondrial dysfunction and psychiatric disorders. Neurochem Res. 2008;34:1021.PubMedCrossRef
31.
go back to reference Manji H, Kato T, Di Prospero NA, Ness S, Beal MF, Krams M, Chen G. Impaired mitochondrial function in psychiatric disorders. Nat Rev Neurosci. 2012;13:293–307.PubMedCrossRef Manji H, Kato T, Di Prospero NA, Ness S, Beal MF, Krams M, Chen G. Impaired mitochondrial function in psychiatric disorders. Nat Rev Neurosci. 2012;13:293–307.PubMedCrossRef
35.
go back to reference Tagarelli A, Piro A, Tagarelli G, Lagonia P, Quattrone A. Alois Alzheimer: a hundred years after the discovery of the eponymous disorder. Int J Biomed Sci. 2006;2:196–204.PubMedPubMedCentral Tagarelli A, Piro A, Tagarelli G, Lagonia P, Quattrone A. Alois Alzheimer: a hundred years after the discovery of the eponymous disorder. Int J Biomed Sci. 2006;2:196–204.PubMedPubMedCentral
36.
37.
go back to reference Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci. 2009;11:111–28.PubMedPubMedCentral Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci. 2009;11:111–28.PubMedPubMedCentral
38.
go back to reference Mayeux R, Stern Y. Epidemiology of Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2:1–18.CrossRef Mayeux R, Stern Y. Epidemiology of Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2:1–18.CrossRef
39.
go back to reference Reddy PH, McWeeney S. Mapping cellular transcriptosomes in autopsied Alzheimer's disease subjects and relevant animal models. Neurobiol Aging. 2006;27:1060–77.PubMedCrossRef Reddy PH, McWeeney S. Mapping cellular transcriptosomes in autopsied Alzheimer's disease subjects and relevant animal models. Neurobiol Aging. 2006;27:1060–77.PubMedCrossRef
40.
go back to reference Glenner GG, Wong CW. Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun. 1984;122:1131–5.PubMedCrossRef Glenner GG, Wong CW. Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun. 1984;122:1131–5.PubMedCrossRef
41.
go back to reference Demetrius LA, Magistretti PJ, Pellerin L. Alzheimer's disease: the amyloid hypothesis and the inverse Warburg effect. Front Physiol. 2014;5:522.PubMed Demetrius LA, Magistretti PJ, Pellerin L. Alzheimer's disease: the amyloid hypothesis and the inverse Warburg effect. Front Physiol. 2014;5:522.PubMed
42.
go back to reference Swerdlow RH, Khan SM. A 1mitochondrial cascade hypothesis for sporadic Alzheimer's disease. Med Hypotheses. 2004;63:8–20.PubMedCrossRef Swerdlow RH, Khan SM. A 1mitochondrial cascade hypothesis for sporadic Alzheimer's disease. Med Hypotheses. 2004;63:8–20.PubMedCrossRef
43.
go back to reference Swerdlow RH, Burns JM, Khan SM. The Alzheimer's disease mitochondrial Cascade hypothesis. J Alzheimer’s Dis. 2010;20:265–79.CrossRef Swerdlow RH, Burns JM, Khan SM. The Alzheimer's disease mitochondrial Cascade hypothesis. J Alzheimer’s Dis. 2010;20:265–79.CrossRef
44.
go back to reference Swerdlow RH, Burns JM, Khan SM. The Alzheimer's disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2014;1842:1219–31.CrossRef Swerdlow RH, Burns JM, Khan SM. The Alzheimer's disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2014;1842:1219–31.CrossRef
45.
go back to reference Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–95.PubMedCrossRef Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–95.PubMedCrossRef
46.
go back to reference Bratic I, Trifunovic A. Mitochondrial energy metabolism and ageing. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2010;1797:961–7.CrossRef Bratic I, Trifunovic A. Mitochondrial energy metabolism and ageing. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2010;1797:961–7.CrossRef
48.
go back to reference Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV. Mitochondrial aging and age-related dysfunction of mitochondria. Bio Med Research International. 2014;2014:7. Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV. Mitochondrial aging and age-related dysfunction of mitochondria. Bio Med Research International. 2014;2014:7.
50.
go back to reference Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M, Nunomura A, Szweda LI, Aliev G, Smith MA. Increased autophagic degradation of mitochondria in Alzheimer disease. Autophagy. 2007;3:614–5.PubMedCrossRef Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M, Nunomura A, Szweda LI, Aliev G, Smith MA. Increased autophagic degradation of mitochondria in Alzheimer disease. Autophagy. 2007;3:614–5.PubMedCrossRef
51.
go back to reference Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH. Mitochondria are a direct site of a beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet. 2006;15:1437–49.PubMedCrossRef Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH. Mitochondria are a direct site of a beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet. 2006;15:1437–49.PubMedCrossRef
53.
go back to reference Calkins MJ, Manczak M, Reddy PH. Mitochondria-targeted antioxidant SS31 prevents amyloid Beta-induced mitochondrial abnormalities and synaptic degeneration in Alzheimer’s disease. Pharmaceuticals. 2012;5:1103–19.PubMedPubMedCentralCrossRef Calkins MJ, Manczak M, Reddy PH. Mitochondria-targeted antioxidant SS31 prevents amyloid Beta-induced mitochondrial abnormalities and synaptic degeneration in Alzheimer’s disease. Pharmaceuticals. 2012;5:1103–19.PubMedPubMedCentralCrossRef
54.
go back to reference Hauptmann S, Scherping I, Dröse S, Brandt U, Schulz KL, Jendrach M, Leuner K, Eckert A, Müller WE. Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging. 2009;30:1574–86.PubMedCrossRef Hauptmann S, Scherping I, Dröse S, Brandt U, Schulz KL, Jendrach M, Leuner K, Eckert A, Müller WE. Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging. 2009;30:1574–86.PubMedCrossRef
55.
go back to reference Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79:368–76.PubMedCrossRef Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79:368–76.PubMedCrossRef
57.
go back to reference Hague SM, Klaffke S, Bandmann O. Neurodegenerative disorders: Parkinson’s disease and Huntington’s disease. J Neurol Neurosurg Psychiatry. 2005;76:1058–63.PubMedPubMedCentralCrossRef Hague SM, Klaffke S, Bandmann O. Neurodegenerative disorders: Parkinson’s disease and Huntington’s disease. J Neurol Neurosurg Psychiatry. 2005;76:1058–63.PubMedPubMedCentralCrossRef
58.
go back to reference Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ. Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res. 1979;1:249–54.PubMedCrossRef Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ. Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res. 1979;1:249–54.PubMedCrossRef
59.
go back to reference Winklhofer KF, Haass C. Mitochondrial dysfunction in Parkinson's disease. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2010;1802:29–44.CrossRef Winklhofer KF, Haass C. Mitochondrial dysfunction in Parkinson's disease. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2010;1802:29–44.CrossRef
60.
go back to reference Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science. 2004;304:1158–60.PubMedCrossRef Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science. 2004;304:1158–60.PubMedCrossRef
61.
go back to reference Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392:605–8.PubMedCrossRef Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392:605–8.PubMedCrossRef
62.
go back to reference Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 2006;38:515–7.PubMedCrossRef Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 2006;38:515–7.PubMedCrossRef
63.
go back to reference Bogaerts V, Theuns J, Van Broeckhoven C. Genetic findings in Parkinson’s disease and translation into treatment: a leading role for mitochondria? Genes Brain Behav. 2008;7:129–51.PubMedPubMedCentralCrossRef Bogaerts V, Theuns J, Van Broeckhoven C. Genetic findings in Parkinson’s disease and translation into treatment: a leading role for mitochondria? Genes Brain Behav. 2008;7:129–51.PubMedPubMedCentralCrossRef
64.
go back to reference Henchcliffe C, Beal MF. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neuro. 2008;4:600–9.CrossRef Henchcliffe C, Beal MF. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neuro. 2008;4:600–9.CrossRef
65.
go back to reference Abou-Sleiman PM, Muqit MMK, Wood NW. Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nat Rev Neurosci. 2006;7:207–19.PubMedCrossRef Abou-Sleiman PM, Muqit MMK, Wood NW. Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nat Rev Neurosci. 2006;7:207–19.PubMedCrossRef
66.
go back to reference Vila M, Ramonet D, Perier C. Mitochondrial alterations in Parkinson’s disease: new clues. J Neurochem. 2008;107:317–28.PubMedCrossRef Vila M, Ramonet D, Perier C. Mitochondrial alterations in Parkinson’s disease: new clues. J Neurochem. 2008;107:317–28.PubMedCrossRef
67.
68.
go back to reference Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD. Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem. 1990;54:823–7.PubMedCrossRef Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD. Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem. 1990;54:823–7.PubMedCrossRef
69.
go back to reference Davey GP, Clark JB. Threshold effects and control of oxidative phosphorylation in nonsynaptic rat brain mitochondria. J Neurochem. 1996;66:1617–24.PubMedCrossRef Davey GP, Clark JB. Threshold effects and control of oxidative phosphorylation in nonsynaptic rat brain mitochondria. J Neurochem. 1996;66:1617–24.PubMedCrossRef
70.
go back to reference Davey GP, Peuchen S, Clark JB. Energy thresholds in brain mitochondria potential involvement in neurodegeneration. J Biol Chem. 1998;273:12753–7.PubMedCrossRef Davey GP, Peuchen S, Clark JB. Energy thresholds in brain mitochondria potential involvement in neurodegeneration. J Biol Chem. 1998;273:12753–7.PubMedCrossRef
72.
73.
go back to reference Barber SC, Mead RJ, Shaw PJ. Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2006;1762:1051–67.CrossRef Barber SC, Mead RJ, Shaw PJ. Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2006;1762:1051–67.CrossRef
74.
go back to reference Tafuri F, Ronchi D, Magri F, Comi GP, Corti S. SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis. Front Cell Neurosci. 2015;9:336.PubMedPubMedCentralCrossRef Tafuri F, Ronchi D, Magri F, Comi GP, Corti S. SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis. Front Cell Neurosci. 2015;9:336.PubMedPubMedCentralCrossRef
75.
go back to reference Pollari E, Goldsteins G, Bart G, Koistinaho J, Giniatullin R. The role of oxidative stress in degeneration of the neuromuscular junction in amyotrophic lateral sclerosis. Front Cell Neurosci. 2014;8:131.PubMedPubMedCentralCrossRef Pollari E, Goldsteins G, Bart G, Koistinaho J, Giniatullin R. The role of oxidative stress in degeneration of the neuromuscular junction in amyotrophic lateral sclerosis. Front Cell Neurosci. 2014;8:131.PubMedPubMedCentralCrossRef
76.
go back to reference Lautenschlaeger J, Prell T, Grosskreutz J. Endoplasmic reticulum stress and the ER mitochondria calcium cycle in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2012;13:166–77.PubMedCrossRef Lautenschlaeger J, Prell T, Grosskreutz J. Endoplasmic reticulum stress and the ER mitochondria calcium cycle in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2012;13:166–77.PubMedCrossRef
77.
go back to reference Manfredi G, Kawamata H. Mitochondria and endoplasmic reticulum crosstalk in amyotrophic lateral sclerosis. Neurobiol Dis. 2016;90:35–42.PubMedCrossRef Manfredi G, Kawamata H. Mitochondria and endoplasmic reticulum crosstalk in amyotrophic lateral sclerosis. Neurobiol Dis. 2016;90:35–42.PubMedCrossRef
78.
go back to reference Ghiasi P, Hosseinkhani S, Noori A, Nafissi S, Khajeh K. Mitochondrial complex I deficiency and ATP/ADP ratio in lymphocytes of amyotrophic lateral sclerosis patients. Neurol Res. 2012;34:297–303.PubMedCrossRef Ghiasi P, Hosseinkhani S, Noori A, Nafissi S, Khajeh K. Mitochondrial complex I deficiency and ATP/ADP ratio in lymphocytes of amyotrophic lateral sclerosis patients. Neurol Res. 2012;34:297–303.PubMedCrossRef
79.
go back to reference Beretta S, Sala G, Mattavelli L, Ceresa C, Casciati A, Ferri A, Carrì MT, Ferrarese C. Mitochondrial dysfunction due to mutant copper/zinc superoxide dismutase associated with amyotrophic lateral sclerosis is reversed by N-acetylcysteine. Neurobiol Dis. 2003;13:213–21.PubMedCrossRef Beretta S, Sala G, Mattavelli L, Ceresa C, Casciati A, Ferri A, Carrì MT, Ferrarese C. Mitochondrial dysfunction due to mutant copper/zinc superoxide dismutase associated with amyotrophic lateral sclerosis is reversed by N-acetylcysteine. Neurobiol Dis. 2003;13:213–21.PubMedCrossRef
80.
go back to reference Gurney ME, Cutting FB, Zhai P, Doble A, Taylor CP, Andrus PK, Hall ED. Benefit of vitamin E, riluzole, and gababapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann Neurol. 1996;39:147–57.PubMedCrossRef Gurney ME, Cutting FB, Zhai P, Doble A, Taylor CP, Andrus PK, Hall ED. Benefit of vitamin E, riluzole, and gababapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann Neurol. 1996;39:147–57.PubMedCrossRef
81.
go back to reference Andreassen OA, Jenkins BG, Dedeoglu A, Ferrante KL, Bogdanov MB, Kaddurah-Daouk R, Beal MF. Increases in cortical glutamate concentrations in transgenic amyotrophic lateral sclerosis mice are attenuated by creatine supplementation. J Neurochem. 2001;77:383–90.PubMedCrossRef Andreassen OA, Jenkins BG, Dedeoglu A, Ferrante KL, Bogdanov MB, Kaddurah-Daouk R, Beal MF. Increases in cortical glutamate concentrations in transgenic amyotrophic lateral sclerosis mice are attenuated by creatine supplementation. J Neurochem. 2001;77:383–90.PubMedCrossRef
82.
go back to reference Benatar M. Lost in translation: treatment trials in the SOD1 mouse and in human ALS. Neurobiol Dis. 2007;26:1–13.PubMedCrossRef Benatar M. Lost in translation: treatment trials in the SOD1 mouse and in human ALS. Neurobiol Dis. 2007;26:1–13.PubMedCrossRef
83.
go back to reference Ferrari AJ, Charlson FJ, Norman RE, Patten SB, Freedman G, Murray CJL, Vos T, Whiteford HA. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med. 2013;10:1–12.CrossRef Ferrari AJ, Charlson FJ, Norman RE, Patten SB, Freedman G, Murray CJL, Vos T, Whiteford HA. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med. 2013;10:1–12.CrossRef
84.
go back to reference Ferrari AJ, Stockings E, Khoo J-P, Erskine HE, Degenhardt L, Vos T, Whiteford HA. The prevalence and burden of bipolar disorder: findings from the global burden of disease study 2013. Bipolar Disord. 2016;18:440–50.PubMedCrossRef Ferrari AJ, Stockings E, Khoo J-P, Erskine HE, Degenhardt L, Vos T, Whiteford HA. The prevalence and burden of bipolar disorder: findings from the global burden of disease study 2013. Bipolar Disord. 2016;18:440–50.PubMedCrossRef
87.
go back to reference Kambe Y, Miyata A. Potential involvement of mitochondrial dysfunction in major depressive disorder: recent evidence. Arch Depress Anxiety. 2015;5460:19–28. Kambe Y, Miyata A. Potential involvement of mitochondrial dysfunction in major depressive disorder: recent evidence. Arch Depress Anxiety. 2015;5460:19–28.
88.
go back to reference CONVERGE consortium. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature. 2015;523:588–91.PubMedCentralCrossRef CONVERGE consortium. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature. 2015;523:588–91.PubMedCentralCrossRef
89.
go back to reference Fattal O, Link J, Quinn K, Cohen BH, Franco K. Psychiatric comorbidity in 36 adults with mitochondrial cytopathies. CNS Spectr. 2007;12:429–38.PubMedCrossRef Fattal O, Link J, Quinn K, Cohen BH, Franco K. Psychiatric comorbidity in 36 adults with mitochondrial cytopathies. CNS Spectr. 2007;12:429–38.PubMedCrossRef
90.
go back to reference Morava E, Gardeitchik T, Kozicz T, de Boer L, Koene S, de Vries MC, McFarland R, Roobol T, Rodenburg RJT, Verhaak CM. Depressive behaviour in children diagnosed with a mitochondrial disorder. Mitochondrion. 2010;10:528–33.PubMedCrossRef Morava E, Gardeitchik T, Kozicz T, de Boer L, Koene S, de Vries MC, McFarland R, Roobol T, Rodenburg RJT, Verhaak CM. Depressive behaviour in children diagnosed with a mitochondrial disorder. Mitochondrion. 2010;10:528–33.PubMedCrossRef
91.
go back to reference Fattal O, Budur K, Vaughan AJ, Franco K. Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics. 2006;47:1–7.PubMedCrossRef Fattal O, Budur K, Vaughan AJ, Franco K. Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics. 2006;47:1–7.PubMedCrossRef
92.
go back to reference Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S. Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry. 2004;61:300–8.PubMedCrossRef Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S. Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry. 2004;61:300–8.PubMedCrossRef
93.
go back to reference Kato T. Neurobiological basis of bipolar disorder: mitochondrial dysfunction hypothesis and beyond. Schizophr Res. 2016;187:62–6.PubMedCrossRef Kato T. Neurobiological basis of bipolar disorder: mitochondrial dysfunction hypothesis and beyond. Schizophr Res. 2016;187:62–6.PubMedCrossRef
94.
go back to reference Edward C, Ken W, Gerwyn M, Michael M, Monojit D, Michael B. Mitochondrial dysfunction in the pathophysiology of bipolar disorder: effects of pharmacotherapy. Mini-Rev Med Chem. 2015;15:355–65.CrossRef Edward C, Ken W, Gerwyn M, Michael M, Monojit D, Michael B. Mitochondrial dysfunction in the pathophysiology of bipolar disorder: effects of pharmacotherapy. Mini-Rev Med Chem. 2015;15:355–65.CrossRef
95.
go back to reference Scaini G, Rezin GT, Carvalho AF, Streck EL, Berk M, Quevedo J. Mitochondrial dysfunction in bipolar disorder: evidence, pathophysiology and translational implications. Neurosci Biobehav Rev. 2016;68:694–713.PubMedCrossRef Scaini G, Rezin GT, Carvalho AF, Streck EL, Berk M, Quevedo J. Mitochondrial dysfunction in bipolar disorder: evidence, pathophysiology and translational implications. Neurosci Biobehav Rev. 2016;68:694–713.PubMedCrossRef
96.
go back to reference Baxter LR Jr, Phelps ME, Mazziotta JC, et al. Cerebral metabolic rates for glucose in mood disorders: studies with positron emission tomography and fluorodeoxyglucose f 18. Arch Gen Psychiatry. 1985;42:441–7.PubMedCrossRef Baxter LR Jr, Phelps ME, Mazziotta JC, et al. Cerebral metabolic rates for glucose in mood disorders: studies with positron emission tomography and fluorodeoxyglucose f 18. Arch Gen Psychiatry. 1985;42:441–7.PubMedCrossRef
97.
go back to reference Morris G, Walder K, McGee SL, Dean OM, Tye SJ, Maes M, Berk M. A model of the mitochondrial basis of bipolar disorder. Neurosci Biobehav Rev. 2017;74:1–20.PubMedCrossRef Morris G, Walder K, McGee SL, Dean OM, Tye SJ, Maes M, Berk M. A model of the mitochondrial basis of bipolar disorder. Neurosci Biobehav Rev. 2017;74:1–20.PubMedCrossRef
98.
go back to reference Caliyurt O, Altiay G. Resting energy expenditure in manic episode. Bipolar Disord. 2009;11:102–6.PubMedCrossRef Caliyurt O, Altiay G. Resting energy expenditure in manic episode. Bipolar Disord. 2009;11:102–6.PubMedCrossRef
99.
go back to reference Kesebir S, Tatlıdil Yaylacı E, Süner Ö, Gültekin BK. Uric acid levels may be a biological marker for the differentiation of unipolar and bipolar disorder: the role of affective temperament. J Affect Disord. 2014;165:131–4.PubMedCrossRef Kesebir S, Tatlıdil Yaylacı E, Süner Ö, Gültekin BK. Uric acid levels may be a biological marker for the differentiation of unipolar and bipolar disorder: the role of affective temperament. J Affect Disord. 2014;165:131–4.PubMedCrossRef
100.
go back to reference Albert U, De Cori D, Aguglia A, Barbaro F, Bogetto F, Maina G. Increased uric acid levels in bipolar disorder subjects during different phases of illness. J Affect Disord. 2015;173:170–5.PubMedCrossRef Albert U, De Cori D, Aguglia A, Barbaro F, Bogetto F, Maina G. Increased uric acid levels in bipolar disorder subjects during different phases of illness. J Affect Disord. 2015;173:170–5.PubMedCrossRef
101.
go back to reference Berk M, Bodemer W, Van Oudenhove T, Butkow N. The platelet intracellular calcium response to serotonin is augmented in bipolar manic and depressed patients. Hum Psychopharmacol Clin Exp. 1995;10:189–93.CrossRef Berk M, Bodemer W, Van Oudenhove T, Butkow N. The platelet intracellular calcium response to serotonin is augmented in bipolar manic and depressed patients. Hum Psychopharmacol Clin Exp. 1995;10:189–93.CrossRef
102.
go back to reference Cui J, Shao L, Young LT, Wang JF. Role of glutathione in neuroprotective effects of mood stabilizing drugs lithium and valproate. Neuroscience. 2007;144:1447–53.PubMedCrossRef Cui J, Shao L, Young LT, Wang JF. Role of glutathione in neuroprotective effects of mood stabilizing drugs lithium and valproate. Neuroscience. 2007;144:1447–53.PubMedCrossRef
103.
go back to reference Goldberg JF, Brooks J 3rd, Kurita K, Hoblyn JC, Ghaemi SN, Perlis RH, Miklowitz DJ, Ketter TA, Sachs GS, Thase ME. Depressive illness burden associated with complex polypharmacy in patients with bipolar disorder: findings from the STEP-BD. J Clin Psychiatry. 2009;70:155–62.PubMedCrossRef Goldberg JF, Brooks J 3rd, Kurita K, Hoblyn JC, Ghaemi SN, Perlis RH, Miklowitz DJ, Ketter TA, Sachs GS, Thase ME. Depressive illness burden associated with complex polypharmacy in patients with bipolar disorder: findings from the STEP-BD. J Clin Psychiatry. 2009;70:155–62.PubMedCrossRef
105.
go back to reference Adinolfi E, Callegari MG, Ferrari D, Bolognesi C, Minelli M, Wieckowski MR, Pinton P, Rizzuto R, Di Virgilio F. Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and potential, increases cellular ATP levels, and promotes serum-independent growth. Mol Biol Cell. 2005;16:3260–72.PubMedPubMedCentralCrossRef Adinolfi E, Callegari MG, Ferrari D, Bolognesi C, Minelli M, Wieckowski MR, Pinton P, Rizzuto R, Di Virgilio F. Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and potential, increases cellular ATP levels, and promotes serum-independent growth. Mol Biol Cell. 2005;16:3260–72.PubMedPubMedCentralCrossRef
106.
go back to reference Salminen A, Ojala J, Kaarniranta K, Kauppinen A. Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age-related diseases. Cell Mol Life Sci. 2012;69:2999–3013.PubMedCrossRef Salminen A, Ojala J, Kaarniranta K, Kauppinen A. Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age-related diseases. Cell Mol Life Sci. 2012;69:2999–3013.PubMedCrossRef
107.
go back to reference Nishida K, Nakatani T, Ohishi A, Okuda H, Higashi Y, Matsuo T, Fujimoto S, Nagasawa K. Mitochondrial dysfunction is involved in P2X7 receptor-mediated neuronal cell death. J Neurochem. 2012;122:1118–28.PubMedCrossRef Nishida K, Nakatani T, Ohishi A, Okuda H, Higashi Y, Matsuo T, Fujimoto S, Nagasawa K. Mitochondrial dysfunction is involved in P2X7 receptor-mediated neuronal cell death. J Neurochem. 2012;122:1118–28.PubMedCrossRef
108.
go back to reference Burkeen JF, Womac AD, Earnest DJ, Zoran MJ. Mitochondrial calcium signaling mediates rhythmic extracellular ATP accumulation in Suprachiasmatic nucleus astrocytes. J Neurosci. 2011;31:8432–40.PubMedPubMedCentralCrossRef Burkeen JF, Womac AD, Earnest DJ, Zoran MJ. Mitochondrial calcium signaling mediates rhythmic extracellular ATP accumulation in Suprachiasmatic nucleus astrocytes. J Neurosci. 2011;31:8432–40.PubMedPubMedCentralCrossRef
109.
go back to reference Chen HB, Chan YT, Hung AC, Tsai YC, Sun SH. Elucidation of ATP-stimulated stress protein expression of RBA-2 type-2 astrocytes: ATP potentiate HSP60 and cu/Zn SOD expression and stimulates pI shift of peroxiredoxin II. J Cell Biochem. 2006;97:314–26.PubMedCrossRef Chen HB, Chan YT, Hung AC, Tsai YC, Sun SH. Elucidation of ATP-stimulated stress protein expression of RBA-2 type-2 astrocytes: ATP potentiate HSP60 and cu/Zn SOD expression and stimulates pI shift of peroxiredoxin II. J Cell Biochem. 2006;97:314–26.PubMedCrossRef
110.
go back to reference Gubert C, Fries GR, Pfaffenseller B, Ferrari P, Coutinho-Silva R, Morrone FB, Kapczinski F, Battastini AMO. Role of P2X7 receptor in an animal model of mania induced by D-amphetamine. Mol Neurobiol. 2016;53:611–20.PubMedCrossRef Gubert C, Fries GR, Pfaffenseller B, Ferrari P, Coutinho-Silva R, Morrone FB, Kapczinski F, Battastini AMO. Role of P2X7 receptor in an animal model of mania induced by D-amphetamine. Mol Neurobiol. 2016;53:611–20.PubMedCrossRef
111.
go back to reference Trautmann A. Extracellular ATP in the immune system: more than just a “danger signal”. Sci Signal. 2009;2:pe6.PubMedCrossRef Trautmann A. Extracellular ATP in the immune system: more than just a “danger signal”. Sci Signal. 2009;2:pe6.PubMedCrossRef
112.
go back to reference Zarow C, Lyness SA, Mortimer JA, Chui HC. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in alzheimer and parkinson diseases. Arch Neurol. 2003;60:337–41.PubMedCrossRef Zarow C, Lyness SA, Mortimer JA, Chui HC. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in alzheimer and parkinson diseases. Arch Neurol. 2003;60:337–41.PubMedCrossRef
113.
go back to reference Kerr SE, Daoud L. A study of the organic acid-soluble phosphorus of the erythrocytes of various vertebrates. J Biol Chem. 1935;109:301–15. Kerr SE, Daoud L. A study of the organic acid-soluble phosphorus of the erythrocytes of various vertebrates. J Biol Chem. 1935;109:301–15.
115.
go back to reference Ishida A, Yoshikawa T, Nakazawa T, Kamidate T. Enhanced firefly bioluminescence assay of ATP in the presence of ATP extractants by using diethylaminoethyl-dextran. Anal Biochem. 2002;305:236–41.PubMedCrossRef Ishida A, Yoshikawa T, Nakazawa T, Kamidate T. Enhanced firefly bioluminescence assay of ATP in the presence of ATP extractants by using diethylaminoethyl-dextran. Anal Biochem. 2002;305:236–41.PubMedCrossRef
116.
go back to reference Adams S, Kouzani AZ, Bennet K, Tye SJ. Towards in-vivo ATP sensing, In 2016 IEEE region 10 conference (TENCON). Singapore: IEEE; 2016. p. 2459–62. Adams S, Kouzani AZ, Bennet K, Tye SJ. Towards in-vivo ATP sensing, In 2016 IEEE region 10 conference (TENCON). Singapore: IEEE; 2016. p. 2459–62.
117.
go back to reference Furuya K, Tan JJ, Boudreault F, Sokabe M, Berthiaume Y, Grygorczyk R. Real-time imaging of inflation-induced ATP release in the ex vivo rat lung. Am J Physiol Lung Cell Mol Physiol. 2016;311:956–69.CrossRef Furuya K, Tan JJ, Boudreault F, Sokabe M, Berthiaume Y, Grygorczyk R. Real-time imaging of inflation-induced ATP release in the ex vivo rat lung. Am J Physiol Lung Cell Mol Physiol. 2016;311:956–69.CrossRef
118.
go back to reference Furuya K, Sokabe M, Grygorczyk R. Real-time luminescence imaging of cellular ATP release. Methods. 2014;66:330–44.PubMedCrossRef Furuya K, Sokabe M, Grygorczyk R. Real-time luminescence imaging of cellular ATP release. Methods. 2014;66:330–44.PubMedCrossRef
119.
go back to reference Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan W-B. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8:752–8.PubMedCrossRef Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan W-B. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8:752–8.PubMedCrossRef
120.
go back to reference Yamamoto K, Furuya K, Nakamura M, Kobatake E, Sokabe M, Ando J. Visualization of flow-induced ATP release and triggering of Ca2+ waves at caveolae in vascular endothelial cells. J Cell Sci. 2011;124:3477–83.PubMedCrossRef Yamamoto K, Furuya K, Nakamura M, Kobatake E, Sokabe M, Ando J. Visualization of flow-induced ATP release and triggering of Ca2+ waves at caveolae in vascular endothelial cells. J Cell Sci. 2011;124:3477–83.PubMedCrossRef
121.
go back to reference Wang Z, Haydon PG, Yeung ES. Direct observation of calcium-independent intercellular ATP signaling in astrocytes. Anal Chem. 2000;72:2001–7.PubMedCrossRef Wang Z, Haydon PG, Yeung ES. Direct observation of calcium-independent intercellular ATP signaling in astrocytes. Anal Chem. 2000;72:2001–7.PubMedCrossRef
122.
go back to reference Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F. Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One. 2008;3:1–9.CrossRef Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F. Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One. 2008;3:1–9.CrossRef
123.
go back to reference Manfredi G, Yang L, Gajewski CD, Mattiazzi M. Measurements of ATP in mammalian cells. Methods. 2002;26:317–26.PubMedCrossRef Manfredi G, Yang L, Gajewski CD, Mattiazzi M. Measurements of ATP in mammalian cells. Methods. 2002;26:317–26.PubMedCrossRef
124.
go back to reference Iinuma M, Ushio Y, Kuroda A, Kadoya Y. High-sensitivity detection of ATP using bioluminescence at an optical fiber end. Electron Commun Japan. 2009;92:53–9.CrossRef Iinuma M, Ushio Y, Kuroda A, Kadoya Y. High-sensitivity detection of ATP using bioluminescence at an optical fiber end. Electron Commun Japan. 2009;92:53–9.CrossRef
125.
go back to reference Sato M, Paschen W, Pawlik G, Heiss W-D. Neurologic deficit and cerebral ATP depletion after temporary focal ischemia in cats. J Cereb Blood Flow Metab. 1984;4:173–7.PubMedCrossRef Sato M, Paschen W, Pawlik G, Heiss W-D. Neurologic deficit and cerebral ATP depletion after temporary focal ischemia in cats. J Cereb Blood Flow Metab. 1984;4:173–7.PubMedCrossRef
126.
go back to reference Sun L, Strelow H, Mies G, Veltkamp R. Oxygen therapy improves energy metabolism in focal cerebral ischemia. Brain Res. 2011;1415:103–8.PubMedCrossRef Sun L, Strelow H, Mies G, Veltkamp R. Oxygen therapy improves energy metabolism in focal cerebral ischemia. Brain Res. 2011;1415:103–8.PubMedCrossRef
127.
go back to reference Marpegan L, Swanstrom AE, Chung K, Simon T, Haydon PG, Khan SK, Liu AC, Herzog ED, Beaulé C. Circadian regulation of ATP release in astrocytes. J Neurosci. 2011;31:8342–50.PubMedPubMedCentralCrossRef Marpegan L, Swanstrom AE, Chung K, Simon T, Haydon PG, Khan SK, Liu AC, Herzog ED, Beaulé C. Circadian regulation of ATP release in astrocytes. J Neurosci. 2011;31:8342–50.PubMedPubMedCentralCrossRef
128.
go back to reference Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chem Soc Rev. 2010;39:1747–63.PubMedCrossRef Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chem Soc Rev. 2010;39:1747–63.PubMedCrossRef
129.
go back to reference Angleson JK, Betz WJ. Monitoring secretion in real time: capacitance, amperometry and fluorescence compared. Trends Neurosci. 1997;20:281–7.PubMedCrossRef Angleson JK, Betz WJ. Monitoring secretion in real time: capacitance, amperometry and fluorescence compared. Trends Neurosci. 1997;20:281–7.PubMedCrossRef
130.
go back to reference Wilson GS, Gifford R. Biosensors for real-time in vivo measurements. Biosens Bioelectron. 2005;20:2388–403.PubMedCrossRef Wilson GS, Gifford R. Biosensors for real-time in vivo measurements. Biosens Bioelectron. 2005;20:2388–403.PubMedCrossRef
132.
go back to reference Lowry JP, Miele M, O’Neill RD, Boutelle MG, Fillenz M. An amperometric glucose-oxidase/poly(o-phenylenediamine) biosensor for monitoring brain extracellular glucose: in vivo characterisation in the striatum of freely-moving rats. J Neurosci Methods. 1998;79:65–74.PubMedCrossRef Lowry JP, Miele M, O’Neill RD, Boutelle MG, Fillenz M. An amperometric glucose-oxidase/poly(o-phenylenediamine) biosensor for monitoring brain extracellular glucose: in vivo characterisation in the striatum of freely-moving rats. J Neurosci Methods. 1998;79:65–74.PubMedCrossRef
133.
go back to reference Kueng A, Kranz C, Mizaikoff B. Amperometric ATP biosensor based on polymer entrapped enzymes. Biosens Bioelectron. 2004;19:1301–7.PubMedCrossRef Kueng A, Kranz C, Mizaikoff B. Amperometric ATP biosensor based on polymer entrapped enzymes. Biosens Bioelectron. 2004;19:1301–7.PubMedCrossRef
134.
go back to reference Janik B, Elving PJ. Correlation of electrochemical reduction of adenine nucleosides and nucleotides with structure and orientation in solution. J Am Chem Soc. 1970;92:235–43.CrossRef Janik B, Elving PJ. Correlation of electrochemical reduction of adenine nucleosides and nucleotides with structure and orientation in solution. J Am Chem Soc. 1970;92:235–43.CrossRef
135.
go back to reference Palygin O, Levchenko V, Ilatovskaya DV, Pavlov TS, Ryan RP, Cowley AW, Staruschenko A. Real-time electrochemical detection of ATP and H2O2 release in freshly isolated kidneys. Am J Physiol Ren Physiol. 2013;305:134–41.CrossRef Palygin O, Levchenko V, Ilatovskaya DV, Pavlov TS, Ryan RP, Cowley AW, Staruschenko A. Real-time electrochemical detection of ATP and H2O2 release in freshly isolated kidneys. Am J Physiol Ren Physiol. 2013;305:134–41.CrossRef
136.
137.
go back to reference Robinson DL, Venton BJ, Heien ML, Wightman RM. Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin Chem. 2003;49:1763–73.PubMedCrossRef Robinson DL, Venton BJ, Heien ML, Wightman RM. Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin Chem. 2003;49:1763–73.PubMedCrossRef
138.
go back to reference Mirčeski V, Gulaboski R. The surface catalytic mechanism: a comparative study with square-wave and staircase cyclic voltammetry. J Solid State Electrochem. 2003;7:157–65.CrossRef Mirčeski V, Gulaboski R. The surface catalytic mechanism: a comparative study with square-wave and staircase cyclic voltammetry. J Solid State Electrochem. 2003;7:157–65.CrossRef
139.
go back to reference Wickham RJ, Park J, Nunes EJ, Addy NA. Examination of rapid dopamine dynamics with fast scan cyclic voltammetry during intra-oral tastant administration in awake rats. 2015;102:1–8. Wickham RJ, Park J, Nunes EJ, Addy NA. Examination of rapid dopamine dynamics with fast scan cyclic voltammetry during intra-oral tastant administration in awake rats. 2015;102:1–8.
140.
go back to reference Kile BM, Walsh PL, McElligott ZA, Bucher ES, Guillot TS, Salahpour A, Caron MG, Wightman RM. Optimizing the temporal resolution of fast-scan cyclic voltammetry. ACS Chem Neurosci. 2012;3:285–92.PubMedPubMedCentralCrossRef Kile BM, Walsh PL, McElligott ZA, Bucher ES, Guillot TS, Salahpour A, Caron MG, Wightman RM. Optimizing the temporal resolution of fast-scan cyclic voltammetry. ACS Chem Neurosci. 2012;3:285–92.PubMedPubMedCentralCrossRef
141.
go back to reference Swamy BK, Venton BJ. Subsecond detection of physiological adenosine concentrations using fast-scan cyclic voltammetry. Anal Chem. 2007;79:744–50.PubMedCrossRef Swamy BK, Venton BJ. Subsecond detection of physiological adenosine concentrations using fast-scan cyclic voltammetry. Anal Chem. 2007;79:744–50.PubMedCrossRef
142.
go back to reference Nguyen MD, Venton BJ. Fast-scan cyclic voltammetry for the characterization of rapid adenosine release. Comput Struct Biotechnol J. 2015;13:47–54.PubMedCrossRef Nguyen MD, Venton BJ. Fast-scan cyclic voltammetry for the characterization of rapid adenosine release. Comput Struct Biotechnol J. 2015;13:47–54.PubMedCrossRef
143.
go back to reference Swamy BEK, Venton BJ. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotoninin vivo. Analyst. 2007;132:876–84.PubMedCrossRef Swamy BEK, Venton BJ. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotoninin vivo. Analyst. 2007;132:876–84.PubMedCrossRef
144.
go back to reference Xu Y, Venton BJ. Microelectrode sensing of adenosine/Adenosine-5′-triphosphate with fast-scan cyclic voltammetry. Electroanalysis. 2010;22:1167–74.CrossRef Xu Y, Venton BJ. Microelectrode sensing of adenosine/Adenosine-5′-triphosphate with fast-scan cyclic voltammetry. Electroanalysis. 2010;22:1167–74.CrossRef
145.
146.
go back to reference Nesbitt KM, Jaquins-Gerstl A, Skoda EM, Wipf P, Michael AC. Pharmacological mitigation of tissue damage during brain microdialysis. Anal Chem. 2013;85:8173–9.PubMedPubMedCentralCrossRef Nesbitt KM, Jaquins-Gerstl A, Skoda EM, Wipf P, Michael AC. Pharmacological mitigation of tissue damage during brain microdialysis. Anal Chem. 2013;85:8173–9.PubMedPubMedCentralCrossRef
147.
go back to reference de Araujo CE, Abatti PJ, Da Cunha C, Gómez A, Dombrowski PA. In vitro evaluation of a closed-loop feedback system for dopamine concentration control. Res Biomed Eng. 2015;31:26–32.CrossRef de Araujo CE, Abatti PJ, Da Cunha C, Gómez A, Dombrowski PA. In vitro evaluation of a closed-loop feedback system for dopamine concentration control. Res Biomed Eng. 2015;31:26–32.CrossRef
148.
go back to reference Chang S-Y, Kimble CJ, Kim I, Paek SB, Kressin KR, Boesche JB, Whitlock SV, Eaker DR, Kasasbeh A, Horne AE, et al. Development of the Mayo investigational Neuromodulation control system: toward a closed-loop electrochemical feedback system for deep brain stimulation. J Neurosurg. 2013;119:1556–65.PubMedPubMedCentralCrossRef Chang S-Y, Kimble CJ, Kim I, Paek SB, Kressin KR, Boesche JB, Whitlock SV, Eaker DR, Kasasbeh A, Horne AE, et al. Development of the Mayo investigational Neuromodulation control system: toward a closed-loop electrochemical feedback system for deep brain stimulation. J Neurosurg. 2013;119:1556–65.PubMedPubMedCentralCrossRef
149.
go back to reference Bozorgzadeh B, Schuweiler DR, Bobak MJ, Garris PA, Mohseni P. Neurochemostat: a neural Interface SoC with integrated Chemometrics for closed-loop regulation of brain dopamine. IEEE Trans Biomed Circuits Syst. 2016;10:654–67.PubMedCrossRef Bozorgzadeh B, Schuweiler DR, Bobak MJ, Garris PA, Mohseni P. Neurochemostat: a neural Interface SoC with integrated Chemometrics for closed-loop regulation of brain dopamine. IEEE Trans Biomed Circuits Syst. 2016;10:654–67.PubMedCrossRef
150.
go back to reference Close DM, Xu T, Sayler GS, Ripp S. In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals. Sensors (Basel). 2011;11:180–206.CrossRef Close DM, Xu T, Sayler GS, Ripp S. In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals. Sensors (Basel). 2011;11:180–206.CrossRef
151.
go back to reference Liu JT, Luo J, Liu X, Cai X. Development of a rapid optic bacteria detecting system based on ATP bioluminescence. In International Symposium on Optoelectronic Technology and Application 2014. SPIE; 2014. Liu JT, Luo J, Liu X, Cai X. Development of a rapid optic bacteria detecting system based on ATP bioluminescence. In International Symposium on Optoelectronic Technology and Application 2014. SPIE; 2014.
152.
go back to reference Rodeberg NT, Sandberg SG, Johnson JA, Phillips PE, Wightman RM. Hitchhiker's guide to voltammetry: acute and chronic electrodes for in vivo fast-scan cyclic voltammetry. ACS Chem Neurosci. 2017;8:221–34.PubMedPubMedCentralCrossRef Rodeberg NT, Sandberg SG, Johnson JA, Phillips PE, Wightman RM. Hitchhiker's guide to voltammetry: acute and chronic electrodes for in vivo fast-scan cyclic voltammetry. ACS Chem Neurosci. 2017;8:221–34.PubMedPubMedCentralCrossRef
153.
go back to reference Llaudet E, Hatz S, Droniou M, Dale N. Microelectrode biosensor for real-time measurement of ATP in biological tissue. Anal Chem. 2005;77:3267–73.PubMedCrossRef Llaudet E, Hatz S, Droniou M, Dale N. Microelectrode biosensor for real-time measurement of ATP in biological tissue. Anal Chem. 2005;77:3267–73.PubMedCrossRef
154.
155.
go back to reference Takmakov P, McKinney CJ, Carelli RM, Wightman RM. Instrumentation for fast-scan cyclic voltammetry combined with electrophysiology for behavioral experiments in freely moving animals. Rev Sci Instrum. 2011;82:074302.PubMedPubMedCentralCrossRef Takmakov P, McKinney CJ, Carelli RM, Wightman RM. Instrumentation for fast-scan cyclic voltammetry combined with electrophysiology for behavioral experiments in freely moving animals. Rev Sci Instrum. 2011;82:074302.PubMedPubMedCentralCrossRef
156.
go back to reference Palygin O, Levchenko V, Evans LC, Blass G, Cowley Jr AW, Staruschenko A. Use of enzymatic biosensors to quantify endogenous ATP or H2O2 in the kidney. J Vis Exp. 2015;104:1–12. Palygin O, Levchenko V, Evans LC, Blass G, Cowley Jr AW, Staruschenko A. Use of enzymatic biosensors to quantify endogenous ATP or H2O2 in the kidney. J Vis Exp. 2015;104:1–12.
157.
go back to reference Grahn PJ, Mallory GW, Khurram OU, Berry BM, Hachmann JT, Bieber AJ, Bennet KE, Min H-K, Chang S-Y, Lee KH, Lujan JL. A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies. Front Neurosci. 2014;8:169.PubMedPubMedCentral Grahn PJ, Mallory GW, Khurram OU, Berry BM, Hachmann JT, Bieber AJ, Bennet KE, Min H-K, Chang S-Y, Lee KH, Lujan JL. A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies. Front Neurosci. 2014;8:169.PubMedPubMedCentral
158.
go back to reference Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schäfer H, Bötzel K, Daniels C, Deutschländer A, Dillmann U, Eisner W, et al. A randomized trial of deep-brain stimulation for Parkinson's disease. N Engl J Med. 2006;355:896–908.PubMedCrossRef Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schäfer H, Bötzel K, Daniels C, Deutschländer A, Dillmann U, Eisner W, et al. A randomized trial of deep-brain stimulation for Parkinson's disease. N Engl J Med. 2006;355:896–908.PubMedCrossRef
159.
go back to reference Weaver FM, Follett K, Stern M, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced parkinson disease: a randomized controlled trial. JAMA. 2009;301:63–73.PubMedPubMedCentralCrossRef Weaver FM, Follett K, Stern M, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced parkinson disease: a randomized controlled trial. JAMA. 2009;301:63–73.PubMedPubMedCentralCrossRef
160.
go back to reference Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, Koudsie A, Limousin PD, Benazzouz A, LeBas JF, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease. N Engl J Med. 2003;349:1925–34.PubMedCrossRef Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, Koudsie A, Limousin PD, Benazzouz A, LeBas JF, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease. N Engl J Med. 2003;349:1925–34.PubMedCrossRef
161.
go back to reference Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (Thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Stereotact Funct Neurosurg. 1987;50:344–6.CrossRef Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (Thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Stereotact Funct Neurosurg. 1987;50:344–6.CrossRef
162.
go back to reference Udupa K, Chen R. The mechanisms of action of deep brain stimulation and ideas for the future development. Prog Neurobiol. 2015;133:27–49.PubMedCrossRef Udupa K, Chen R. The mechanisms of action of deep brain stimulation and ideas for the future development. Prog Neurobiol. 2015;133:27–49.PubMedCrossRef
163.
go back to reference Zibly Z, Shaw A, Harnof S, Sharma M, Graves C, Deogaonkar M, Rezai A. Modulation of mind: therapeutic neuromodulation for cognitive disability. J Clin Neurosci. 2014;21:1473–7.PubMedCrossRef Zibly Z, Shaw A, Harnof S, Sharma M, Graves C, Deogaonkar M, Rezai A. Modulation of mind: therapeutic neuromodulation for cognitive disability. J Clin Neurosci. 2014;21:1473–7.PubMedCrossRef
164.
go back to reference Hardenacke K, Shubina E, Bührle C, Zapf A, Lenartz D, Klosterkötter J, Visser-Vandewalle V, Kuhn J. Deep brain stimulation as a tool for improving cognitive functioning in Alzheimer’s dementia: a systematic review. Front Psychiatry. 2013;4:1–11.CrossRef Hardenacke K, Shubina E, Bührle C, Zapf A, Lenartz D, Klosterkötter J, Visser-Vandewalle V, Kuhn J. Deep brain stimulation as a tool for improving cognitive functioning in Alzheimer’s dementia: a systematic review. Front Psychiatry. 2013;4:1–11.CrossRef
165.
go back to reference Sharma M, Deogaonkar M, Rezai A. Assessment of potential targets for deep brain stimulation in patients with Alzheimer’s disease. J Clin Med Res. 2015;7:501–5.PubMedPubMedCentralCrossRef Sharma M, Deogaonkar M, Rezai A. Assessment of potential targets for deep brain stimulation in patients with Alzheimer’s disease. J Clin Med Res. 2015;7:501–5.PubMedPubMedCentralCrossRef
166.
go back to reference Malone DA, Dougherty DD, Rezai AR, Carpenter LL, Friehs GM, Eskandar EN, Rauch SL, Rasmussen SA, Machado AG, Kubu CS, et al. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry. 2009;65:267–75.PubMedCrossRef Malone DA, Dougherty DD, Rezai AR, Carpenter LL, Friehs GM, Eskandar EN, Rauch SL, Rasmussen SA, Machado AG, Kubu CS, et al. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry. 2009;65:267–75.PubMedCrossRef
167.
go back to reference Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45:651–60.PubMedCrossRef Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45:651–60.PubMedCrossRef
168.
go back to reference Kennedy SH, Giacobbe P, Rizvi SJ, Placenza FM, Nishikawa Y, Mayberg HS, Lozano AM. Deep brain stimulation for treatment-resistant depression: follow-up after 3 to 6 years. Am J Psychiatry. 2011;168:502–10.PubMedCrossRef Kennedy SH, Giacobbe P, Rizvi SJ, Placenza FM, Nishikawa Y, Mayberg HS, Lozano AM. Deep brain stimulation for treatment-resistant depression: follow-up after 3 to 6 years. Am J Psychiatry. 2011;168:502–10.PubMedCrossRef
169.
go back to reference Búrigo M, Roza CA, Bassani C, Fagundes DA, Rezin GT, Feier G, Dal-Pizzol F, Quevedo J, Streck EL. Effect of electroconvulsive shock on mitochondrial respiratory chain in rat brain. Neurochem Res. 2006;31:1375–9.PubMedCrossRef Búrigo M, Roza CA, Bassani C, Fagundes DA, Rezin GT, Feier G, Dal-Pizzol F, Quevedo J, Streck EL. Effect of electroconvulsive shock on mitochondrial respiratory chain in rat brain. Neurochem Res. 2006;31:1375–9.PubMedCrossRef
170.
go back to reference Tanaka K, Tanaka M, Takegaki J, Fujino H. Preventive effects of electrical stimulation on cachexia-induced muscle mitochondrial dysfunction. FASEB J. 2015;29:464–70.CrossRef Tanaka K, Tanaka M, Takegaki J, Fujino H. Preventive effects of electrical stimulation on cachexia-induced muscle mitochondrial dysfunction. FASEB J. 2015;29:464–70.CrossRef
171.
go back to reference MacAskill AF, Rinholm JE, Twelvetrees AE, Arancibia-Carcamo IL, Muir J, Fransson A, Aspenstrom P, Attwell D, Kittler JT. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron. 2009;61:541–55.PubMedPubMedCentralCrossRef MacAskill AF, Rinholm JE, Twelvetrees AE, Arancibia-Carcamo IL, Muir J, Fransson A, Aspenstrom P, Attwell D, Kittler JT. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron. 2009;61:541–55.PubMedPubMedCentralCrossRef
172.
go back to reference Bekar L, Libionka W, Tian G-F, Xu Q, Torres A, Wang X, Lovatt D, Williams E, Takano T, Schnermann J, et al. Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat Med. 2008;14:75–80.PubMedCrossRef Bekar L, Libionka W, Tian G-F, Xu Q, Torres A, Wang X, Lovatt D, Williams E, Takano T, Schnermann J, et al. Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat Med. 2008;14:75–80.PubMedCrossRef
173.
go back to reference Kuncel AM, Cooper SE, Wolgamuth BR, Grill WM. Amplitude- and frequency-dependent changes in neuronal regularity parallel changes in tremor with thalamic deep brain stimulation. IEEE Trans Neural Syst Rehabil Eng. 2007;15:190–7.PubMedCrossRef Kuncel AM, Cooper SE, Wolgamuth BR, Grill WM. Amplitude- and frequency-dependent changes in neuronal regularity parallel changes in tremor with thalamic deep brain stimulation. IEEE Trans Neural Syst Rehabil Eng. 2007;15:190–7.PubMedCrossRef
174.
go back to reference de Haas R, Struikmans R, van der Plasse G, van Kerkhof L, Brakkee JH, Kas MJH, Westenberg HGM. Wireless implantable micro-stimulation device for high frequency bilateral deep brain stimulation in freely moving mice. J Neurosci Methods. 2012;209:113–9.PubMedCrossRef de Haas R, Struikmans R, van der Plasse G, van Kerkhof L, Brakkee JH, Kas MJH, Westenberg HGM. Wireless implantable micro-stimulation device for high frequency bilateral deep brain stimulation in freely moving mice. J Neurosci Methods. 2012;209:113–9.PubMedCrossRef
175.
go back to reference The Deep-Brain Stimulation for Parkinson’s Disease Study Group. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. N Engl J Med. 2001;345:956–63.CrossRef The Deep-Brain Stimulation for Parkinson’s Disease Study Group. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. N Engl J Med. 2001;345:956–63.CrossRef
176.
go back to reference Rodriguez-Oroz MC, Obeso JA, Lang AE, Houeto JL, Pollak P, Rehncrona S, Kulisevsky J, Albanese A, Volkmann J, Hariz MI, et al. Bilateral deep brain stimulation in Parkinson's disease: a multicentre study with 4 years follow-up. Brain. 2005;128:2240–9.PubMedCrossRef Rodriguez-Oroz MC, Obeso JA, Lang AE, Houeto JL, Pollak P, Rehncrona S, Kulisevsky J, Albanese A, Volkmann J, Hariz MI, et al. Bilateral deep brain stimulation in Parkinson's disease: a multicentre study with 4 years follow-up. Brain. 2005;128:2240–9.PubMedCrossRef
177.
go back to reference Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease. Brain. 2007;130:1596–607.PubMedCrossRef Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease. Brain. 2007;130:1596–607.PubMedCrossRef
178.
go back to reference Ewing SG, Porr B, Riddell J, Winter C, Grace AA. SaBer DBS: a fully programmable, rechargeable, bilateral, charge-balanced preclinical microstimulator for long-term neural stimulation. J Neurosci Methods. 2013;213:228–35.PubMedPubMedCentralCrossRef Ewing SG, Porr B, Riddell J, Winter C, Grace AA. SaBer DBS: a fully programmable, rechargeable, bilateral, charge-balanced preclinical microstimulator for long-term neural stimulation. J Neurosci Methods. 2013;213:228–35.PubMedPubMedCentralCrossRef
179.
go back to reference Tauschmann M, Allen JM, Wilinska ME, Thabit H, Acerini CL, Dunger DB, Hovorka R. Home use of day-and-night hybrid closed-loop insulin delivery in suboptimally controlled adolescents with type 1 diabetes: a 3-week, free-living, randomized crossover trial. Diabetes Care. 2016;39:1168–74.PubMedCrossRef Tauschmann M, Allen JM, Wilinska ME, Thabit H, Acerini CL, Dunger DB, Hovorka R. Home use of day-and-night hybrid closed-loop insulin delivery in suboptimally controlled adolescents with type 1 diabetes: a 3-week, free-living, randomized crossover trial. Diabetes Care. 2016;39:1168–74.PubMedCrossRef
180.
go back to reference Struys MM, De Smet T, Versichelen LF, Van De Velde S, Van den Broecke R, Mortier EP. Comparison of closed-loop controlled administration of propofol using Bispectral index as the controlled variable versus “standard practice” controlled administration. Anesthesiology. 2001;95:6–17.PubMedCrossRef Struys MM, De Smet T, Versichelen LF, Van De Velde S, Van den Broecke R, Mortier EP. Comparison of closed-loop controlled administration of propofol using Bispectral index as the controlled variable versus “standard practice” controlled administration. Anesthesiology. 2001;95:6–17.PubMedCrossRef
181.
go back to reference Caetano MA, Yoneyama T. A comparative evaluation of open loop and closed loop drug administration strategies in the treatment of AIDS. An Acad Bras Cienc. 1999;71:589–97.PubMed Caetano MA, Yoneyama T. A comparative evaluation of open loop and closed loop drug administration strategies in the treatment of AIDS. An Acad Bras Cienc. 1999;71:589–97.PubMed
182.
go back to reference de Oliveira MR, Nabavi SM, Braidy N, Setzer WN, Ahmed T, Nabavi SF. Quercetin and the mitochondria: a mechanistic view. Biotechnol Adv. 2016;34:532–49.PubMedCrossRef de Oliveira MR, Nabavi SM, Braidy N, Setzer WN, Ahmed T, Nabavi SF. Quercetin and the mitochondria: a mechanistic view. Biotechnol Adv. 2016;34:532–49.PubMedCrossRef
183.
go back to reference Matthews RT, Yang L, Browne S, Baik M, Beal MF. Coenzyme Q(10) administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci U S A. 1998;95:8892–7.PubMedPubMedCentralCrossRef Matthews RT, Yang L, Browne S, Baik M, Beal MF. Coenzyme Q(10) administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci U S A. 1998;95:8892–7.PubMedPubMedCentralCrossRef
184.
go back to reference Karuppagounder S, Madathil S, Pandey M, Haobam R, Rajamma U, Mohanakumar K. Quercetin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinson’s disease in rats. Neuroscience. 2013;236:136–48.PubMedCrossRef Karuppagounder S, Madathil S, Pandey M, Haobam R, Rajamma U, Mohanakumar K. Quercetin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinson’s disease in rats. Neuroscience. 2013;236:136–48.PubMedCrossRef
185.
go back to reference Kim HK, Park SK, Zhou J-L, Taglialatela G, Chung K, Coggeshall RE, Chung JM. Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain. 2004;111:116–24.PubMedCrossRef Kim HK, Park SK, Zhou J-L, Taglialatela G, Chung K, Coggeshall RE, Chung JM. Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain. 2004;111:116–24.PubMedCrossRef
186.
go back to reference Liang Q, Smith AD, Pan S, Tyurin VA, Kagan VE, Hastings TG, Schor NF. Neuroprotective effects of TEMPOL in central and peripheral nervous system models of Parkinson's disease. Biochem Pharmacol. 2005;70:1371–81.PubMedCrossRef Liang Q, Smith AD, Pan S, Tyurin VA, Kagan VE, Hastings TG, Schor NF. Neuroprotective effects of TEMPOL in central and peripheral nervous system models of Parkinson's disease. Biochem Pharmacol. 2005;70:1371–81.PubMedCrossRef
187.
go back to reference Kaariainen TM, Piltonen M, Ossola B, Kekki H, Lehtonen S, Nenonen T, Lecklin A, Raasmaja A, Mannisto PT. Lack of robust protective effect of quercetin in two types of 6-hydroxydopamine-induced parkinsonian models in rats and dopaminergic cell cultures. Brain Res. 2008;1203:149–59.PubMedCrossRef Kaariainen TM, Piltonen M, Ossola B, Kekki H, Lehtonen S, Nenonen T, Lecklin A, Raasmaja A, Mannisto PT. Lack of robust protective effect of quercetin in two types of 6-hydroxydopamine-induced parkinsonian models in rats and dopaminergic cell cultures. Brain Res. 2008;1203:149–59.PubMedCrossRef
188.
go back to reference Dean OM, Turner A, Malhi GS, Ng C, Cotton SM, Dodd S, Sarris J, Samuni Y, Tanious M, Dowling N, et al. Design and rationale of a 16-week adjunctive randomized placebo-controlled trial of mitochondrial agents for the treatment of bipolar depression. Rev Bras Psiquiatr. 2015;37:3–12.PubMedCrossRef Dean OM, Turner A, Malhi GS, Ng C, Cotton SM, Dodd S, Sarris J, Samuni Y, Tanious M, Dowling N, et al. Design and rationale of a 16-week adjunctive randomized placebo-controlled trial of mitochondrial agents for the treatment of bipolar depression. Rev Bras Psiquiatr. 2015;37:3–12.PubMedCrossRef
189.
go back to reference Meng E, Hoang T. MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications. Adv Drug Deliv Rev. 2012;64:1628–38.PubMedPubMedCentralCrossRef Meng E, Hoang T. MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications. Adv Drug Deliv Rev. 2012;64:1628–38.PubMedPubMedCentralCrossRef
190.
go back to reference Staples M, Daniel K, Cima MJ, Langer R. Application of micro-and nano-electromechanical devices to drug delivery. Pharm Res. 2006;23:847–63.PubMedCrossRef Staples M, Daniel K, Cima MJ, Langer R. Application of micro-and nano-electromechanical devices to drug delivery. Pharm Res. 2006;23:847–63.PubMedCrossRef
191.
go back to reference Cazorla P-H, Fuchs O, Cochet M, Maubert S, Le Rhun G, Fouillet Y, Defay E. A low voltage silicon micro-pump based on piezoelectric thin films. Sensors Actuators A Phys. 2016;250:35–9.CrossRef Cazorla P-H, Fuchs O, Cochet M, Maubert S, Le Rhun G, Fouillet Y, Defay E. A low voltage silicon micro-pump based on piezoelectric thin films. Sensors Actuators A Phys. 2016;250:35–9.CrossRef
192.
go back to reference Zengerle R, Ulrich J, Kluge S, Richter M, Richter A. A bidirectional silicon micropump. Sensors Actuators A Phys. 1995;50:81–6.CrossRef Zengerle R, Ulrich J, Kluge S, Richter M, Richter A. A bidirectional silicon micropump. Sensors Actuators A Phys. 1995;50:81–6.CrossRef
193.
go back to reference Teymoori MM, Abbaspour-Sani E. Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications. Sensors Actuators A Phys. 2005;117:222–9.CrossRef Teymoori MM, Abbaspour-Sani E. Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications. Sensors Actuators A Phys. 2005;117:222–9.CrossRef
194.
go back to reference Cobo A, Sheybani R, Tu H, Meng E. A wireless implantable micropump for chronic drug infusion against cancer. Sensors Actuators A Phys. 2016;239:18–25.CrossRef Cobo A, Sheybani R, Tu H, Meng E. A wireless implantable micropump for chronic drug infusion against cancer. Sensors Actuators A Phys. 2016;239:18–25.CrossRef
195.
go back to reference Gensler H, Sheybani R, Li P-Y, Lo R, Meng E. An implantable MEMS micropump system for drug delivery in small animals. Biomed Microdevices. 2012;14:483–96.PubMedPubMedCentralCrossRef Gensler H, Sheybani R, Li P-Y, Lo R, Meng E. An implantable MEMS micropump system for drug delivery in small animals. Biomed Microdevices. 2012;14:483–96.PubMedPubMedCentralCrossRef
196.
go back to reference Malekmohammadi M, Herron J, Velisar A, Blumenfeld Z, Trager MH, Chizeck HJ, Brontë-Stewart H. Kinematic adaptive deep brain stimulation for resting tremor in Parkinson's disease. Mov Disord. 2016;31:426–8.PubMedCrossRef Malekmohammadi M, Herron J, Velisar A, Blumenfeld Z, Trager MH, Chizeck HJ, Brontë-Stewart H. Kinematic adaptive deep brain stimulation for resting tremor in Parkinson's disease. Mov Disord. 2016;31:426–8.PubMedCrossRef
197.
go back to reference Herreras O. Local field potentials: myths and misunderstandings. Frontiers Neural Circuits. 2016;10:101.CrossRef Herreras O. Local field potentials: myths and misunderstandings. Frontiers Neural Circuits. 2016;10:101.CrossRef
198.
go back to reference Parastarfeizabadi M, Kouzani AZ, Gibson I, Tye SJ. A miniature closed-loop deep brain stimulation device. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2016. p. 1786–9. Parastarfeizabadi M, Kouzani AZ, Gibson I, Tye SJ. A miniature closed-loop deep brain stimulation device. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2016. p. 1786–9.
199.
go back to reference Patel BA, Rogers M, Wieder T, O’Hare D, Boutelle MG. ATP microelectrode biosensor for stable long-term in vitro monitoring from gastrointestinal tissue. Biosens Bioelectron. 2011;26:2890–6.PubMedCrossRef Patel BA, Rogers M, Wieder T, O’Hare D, Boutelle MG. ATP microelectrode biosensor for stable long-term in vitro monitoring from gastrointestinal tissue. Biosens Bioelectron. 2011;26:2890–6.PubMedCrossRef
200.
go back to reference Weber C, Gauda E, Mizaikoff B, Kranz C. Developmental aspects of amperometric ATP biosensors based on entrapped enzymes. Anal Bioanal Chem. 2009;395:1729–35.PubMedCrossRef Weber C, Gauda E, Mizaikoff B, Kranz C. Developmental aspects of amperometric ATP biosensors based on entrapped enzymes. Anal Bioanal Chem. 2009;395:1729–35.PubMedCrossRef
201.
go back to reference Liu S, Sun Y. Co-immobilization of glucose oxidase and hexokinase on silicate hybrid sol–gel membrane for glucose and ATP detections. Biosens Bioelectron. 2007;22:905–11.PubMedCrossRef Liu S, Sun Y. Co-immobilization of glucose oxidase and hexokinase on silicate hybrid sol–gel membrane for glucose and ATP detections. Biosens Bioelectron. 2007;22:905–11.PubMedCrossRef
202.
go back to reference Ziller C, Lin J, Knittel P, Friedrich L, Andronescu C, Pöller S, Schuhamnn W, Kranz C. Poly(benzoxazine) as immobilization matrix for miniaturized ATP and glucose biosensors. ChemElectroChem 2017;4:864–71.CrossRef Ziller C, Lin J, Knittel P, Friedrich L, Andronescu C, Pöller S, Schuhamnn W, Kranz C. Poly(benzoxazine) as immobilization matrix for miniaturized ATP and glucose biosensors. ChemElectroChem 2017;4:864–71.CrossRef
203.
go back to reference Kouzani AZ, Abulseoud OA, Tye SJ, Hosain MK, Berk M. A low power micro deep brain stimulation device for murine preclinical research. IEEE J Transl Eng Health Med. 2013;1:1–9.CrossRef Kouzani AZ, Abulseoud OA, Tye SJ, Hosain MK, Berk M. A low power micro deep brain stimulation device for murine preclinical research. IEEE J Transl Eng Health Med. 2013;1:1–9.CrossRef
204.
go back to reference Ewing SG, Lipski WJ, Grace AA, Winter C. An inexpensive, charge-balanced rodent deep brain stimulation device: a step-by-step guide to its procurement and construction. J Neurosci Methods. 2013;219:324–30.PubMedCrossRef Ewing SG, Lipski WJ, Grace AA, Winter C. An inexpensive, charge-balanced rodent deep brain stimulation device: a step-by-step guide to its procurement and construction. J Neurosci Methods. 2013;219:324–30.PubMedCrossRef
206.
go back to reference Harnack D, Meissner W, Paulat R, Hilgenfeld H, Müller W-D, Winter C, Morgenstern R, Kupsch A. Continuous high-frequency stimulation in freely moving rats: development of an implantable microstimulation system. J Neurosci Methods. 2008;167:278–91.PubMedCrossRef Harnack D, Meissner W, Paulat R, Hilgenfeld H, Müller W-D, Winter C, Morgenstern R, Kupsch A. Continuous high-frequency stimulation in freely moving rats: development of an implantable microstimulation system. J Neurosci Methods. 2008;167:278–91.PubMedCrossRef
207.
go back to reference Junwu K, Zhigang Y, Taijiang P, Guangming C, Boda W. Design and test of a high-performance piezoelectric micropump for drug delivery. Sensors Actuators A Phys. 2005;121:156–61.CrossRef Junwu K, Zhigang Y, Taijiang P, Guangming C, Boda W. Design and test of a high-performance piezoelectric micropump for drug delivery. Sensors Actuators A Phys. 2005;121:156–61.CrossRef
208.
go back to reference Zhou Y, Amirouche F. An electromagnetically-actuated all-PDMS Valveless micropump for drug delivery. Micromachines. 2011;2:345.CrossRef Zhou Y, Amirouche F. An electromagnetically-actuated all-PDMS Valveless micropump for drug delivery. Micromachines. 2011;2:345.CrossRef
209.
go back to reference Shkolnikov V, Ramunas J, Santiago JG. A self-priming, roller-free, miniature, peristaltic pump operable with a single, reciprocating actuator. Sensors Actuators A Phys. 2010;160:141–6.CrossRef Shkolnikov V, Ramunas J, Santiago JG. A self-priming, roller-free, miniature, peristaltic pump operable with a single, reciprocating actuator. Sensors Actuators A Phys. 2010;160:141–6.CrossRef
210.
go back to reference Liu G, Yang Z, Liu J, Li X, Wang H, Zhao T, Yang X. A low cost, high performance insulin delivery system based on PZT actuation. Microsyst Technol. 2014;20:2287–94.CrossRef Liu G, Yang Z, Liu J, Li X, Wang H, Zhao T, Yang X. A low cost, high performance insulin delivery system based on PZT actuation. Microsyst Technol. 2014;20:2287–94.CrossRef
211.
go back to reference Zhou J, Kim A, Ochoa M, Jiang H, Ziaie B. An ultrasonically powered micropump for on-demand in-situ drug delivery. In 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE; 2016. p. 349–52. Zhou J, Kim A, Ochoa M, Jiang H, Ziaie B. An ultrasonically powered micropump for on-demand in-situ drug delivery. In 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE; 2016. p. 349–52.
212.
go back to reference Cheng C-H, Tseng Y-P. Characteristic studies of the piezoelectrically actuated micropump with check valve. Microsyst Technol. 2013;19:1707–15.CrossRef Cheng C-H, Tseng Y-P. Characteristic studies of the piezoelectrically actuated micropump with check valve. Microsyst Technol. 2013;19:1707–15.CrossRef
213.
go back to reference Cazorla PH, Fuchs O, Cochet M, Maubert S, Le Rhun G, Robert P, Fouillet Y, Defay E. Piezoelectric micro-pump with PZT thin film for low consumption microfluidic devices. Procedia Engineering. 2014;87:488–91.CrossRef Cazorla PH, Fuchs O, Cochet M, Maubert S, Le Rhun G, Robert P, Fouillet Y, Defay E. Piezoelectric micro-pump with PZT thin film for low consumption microfluidic devices. Procedia Engineering. 2014;87:488–91.CrossRef
214.
go back to reference Johari J, Yunas J, Hamzah AA, Majlis BY. Piezoelectric micropump with nanoliter per minute flow for drug delivery systems. Sains Malaysiana. 2011;40:275–81. Johari J, Yunas J, Hamzah AA, Majlis BY. Piezoelectric micropump with nanoliter per minute flow for drug delivery systems. Sains Malaysiana. 2011;40:275–81.
215.
go back to reference Cao L, Mantell S, Polla D. Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology. Sensors Actuators A Phys. 2001;94:117–25.CrossRef Cao L, Mantell S, Polla D. Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology. Sensors Actuators A Phys. 2001;94:117–25.CrossRef
216.
go back to reference Yamahata C, Lotto C, Al-Assaf E, Gijs MAM. A PMMA valveless micropump using electromagnetic actuation. Microfluid Nanofluid. 2005;1:197–207.CrossRef Yamahata C, Lotto C, Al-Assaf E, Gijs MAM. A PMMA valveless micropump using electromagnetic actuation. Microfluid Nanofluid. 2005;1:197–207.CrossRef
217.
go back to reference Cui Q, Liu C, Zha XF. Study on a piezoelectric micropump for the controlled drug delivery system. Microfluid Nanofluid. 2007;3:377–90.CrossRef Cui Q, Liu C, Zha XF. Study on a piezoelectric micropump for the controlled drug delivery system. Microfluid Nanofluid. 2007;3:377–90.CrossRef
Metadata
Title
An investigation into closed-loop treatment of neurological disorders based on sensing mitochondrial dysfunction
Authors
Scott D. Adams
Abbas Z. Kouzani
Susannah J. Tye
Kevin E. Bennet
Michael Berk
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2018
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-018-0349-z

Other articles of this Issue 1/2018

Journal of NeuroEngineering and Rehabilitation 1/2018 Go to the issue