Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2018

Open Access 01-12-2018 | Research

VUB-CYBERLEGs CYBATHLON 2016 Beta-Prosthesis: case study in control of an active two degree of freedom transfemoral prosthesis

Authors: Louis L. Flynn, Joost Geeroms, Tom van der Hoeven, Bram Vanderborght, Dirk Lefeber

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2018

Login to get access

Abstract

Background

Here we present how the CYBERLEGs Beta-Prosthesis was modified with a new control system to participate in the Powered Leg Prosthesis event, and to report on our experience at the CYBATHLON 2016 which was held in Zurich, Switzerland in October 2016. The prosthesis has two active degrees of freedom which assist the user with extra joint power at the knee and ankle to complete tasks. The CYBATHLON is a championship for people with disabilities competing in six disciplines, using advanced assistive devices. Tasks for CYBATHLON 2016 were chosen to reflect everyday normal task such as sitting and standing from a chair, obstacle avoidance, stepping stones, slope walking and descent, and stair climbing and descent.

Methods

The control schemata were presented along with the description of each of the six tasks. The participant of the competition, the pilot, ran through each of the trials under lab conditions and representative behaviors were recorded.

Results

The VUB CYBERLEGs prosthesis was able to accomplish, to some degree, five of the six tasks and here the torque and angle behaviors of the device while accomplishing these tasks are presented. The relatively simple control methods were able to provide assistive torque during many of the events, particularly sit to stand and stair climbing. For example, the prosthesis was able to consistently provide over 30 Nm in arresting knee torque in the sitting task, and over 20 Nm while standing. Peak torque of the device was not sufficient for unassisted stair climbing, but was able to provide around 60 Nm of assistance in both ascent and descent. Use of the passive behaviors of the device were shown to be able to trigger state machine events reliably for certain tasks.

Conclusions

Although the performance of the CYBERLEGs prosthesis during CYBATHLON 2016 did not compare to the other top of the market designs with regards to speed, the device performed all of the tasks that were deemed possible by the start of the competition. Moreover, the Pilot was able to accomplish tasks in ways the Pilot’s personal microcontrolled prosthesis could not, with limited powered prosthesis training. Future studies will focus on decreasing weight, increasing reliability, incorporating better control, and increasing the velocity of the device. This is only a case study and actual benefits to clinical outcomes are not yet understood and need to be further investigated. This competition was a unique experience to illuminate problems that future versions of the device will be able to solve.
Literature
2.
go back to reference Geeroms J, Flynn L, Jimenez-Fabian R, Vanderborght B, Lefeber D. Design and energetic evaluation of a prosthetic knee joint actuator with a lockable parallel spring. Bioinspiration Biomimetics. 2017; 12(2):026002.CrossRefPubMed Geeroms J, Flynn L, Jimenez-Fabian R, Vanderborght B, Lefeber D. Design and energetic evaluation of a prosthetic knee joint actuator with a lockable parallel spring. Bioinspiration Biomimetics. 2017; 12(2):026002.CrossRefPubMed
3.
go back to reference Geeroms J, Flynn L, Jimenez-Fabian R, Vanderborght B, Lefeber D. Energetic analysis and optimization of a maccepa actuator in an ankle prosthesis. Auton Robot. 2017. doi:10.1007/s10514-017-9641-1. Geeroms J, Flynn L, Jimenez-Fabian R, Vanderborght B, Lefeber D. Energetic analysis and optimization of a maccepa actuator in an ankle prosthesis. Auton Robot. 2017. doi:10.​1007/​s10514-017-9641-1.
4.
go back to reference Flynn L, Geeroms J, Jimenez-Fabian R, Vanderborght B, Lefeber D. Cyberlegs beta-prosthesis active knee system. In: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR): 2015. p. 410–5. doi:10.1109/ICORR.2015.7281234. Flynn L, Geeroms J, Jimenez-Fabian R, Vanderborght B, Lefeber D. Cyberlegs beta-prosthesis active knee system. In: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR): 2015. p. 410–5. doi:10.​1109/​ICORR.​2015.​7281234.
5.
go back to reference Ambrozic L, Gorsic M, Geeroms J, Flynn L, Lova RM, Kamnik R, Munih M, Vitiello N. CYBERLEGs: A User-Oriented Robotic Transfemoral Prosthesis with Whole-Body Awareness Control. IEEE Robot Autom Mag. 2014; 21(4):82–93. doi:10.1109/MRA.2014.2360278.CrossRef Ambrozic L, Gorsic M, Geeroms J, Flynn L, Lova RM, Kamnik R, Munih M, Vitiello N. CYBERLEGs: A User-Oriented Robotic Transfemoral Prosthesis with Whole-Body Awareness Control. IEEE Robot Autom Mag. 2014; 21(4):82–93. doi:10.​1109/​MRA.​2014.​2360278.CrossRef
6.
go back to reference Cherelle P, Grosu V, Cestari M, Vanderborght B, Lefeber D. The amp-foot 3, new generation propulsive prosthetic feet with explosive motion characteristics: design and validation. Biomed Eng OnLine. 2016; 15(Suppl 3):145.CrossRefPubMedPubMedCentral Cherelle P, Grosu V, Cestari M, Vanderborght B, Lefeber D. The amp-foot 3, new generation propulsive prosthetic feet with explosive motion characteristics: design and validation. Biomed Eng OnLine. 2016; 15(Suppl 3):145.CrossRefPubMedPubMedCentral
7.
go back to reference Winter DA. Biomechanics and Motor Control of Human Movement, 4th ed.United States of America: Wiley; 2009, p. 384.CrossRef Winter DA. Biomechanics and Motor Control of Human Movement, 4th ed.United States of America: Wiley; 2009, p. 384.CrossRef
8.
go back to reference Jimenez-Fabian R, Flynn L, Geeroms J, Vitiello N, Vanderborght B, Lefeber D. Sliding-Bar MACCEPA for a Powered Ankle Prosthesis. J Mech Robot. 2015; 7(March):1–2. doi:10.1115/1.4029439. Jimenez-Fabian R, Flynn L, Geeroms J, Vitiello N, Vanderborght B, Lefeber D. Sliding-Bar MACCEPA for a Powered Ankle Prosthesis. J Mech Robot. 2015; 7(March):1–2. doi:10.​1115/​1.​4029439.
9.
go back to reference Flynn L, Geeroms J, Jimenez-fabian R, Vanderborght B, Vitiello N, Lefeber D. Ankle - knee prosthesis with active ankle and energy transfer : Development of the CYBERLEGs Alpha-Prosthesis. Robot Auton Syst. 2014; 73:4–15. doi:10.1016/j.robot.2014.12.013.CrossRef Flynn L, Geeroms J, Jimenez-fabian R, Vanderborght B, Vitiello N, Lefeber D. Ankle - knee prosthesis with active ankle and energy transfer : Development of the CYBERLEGs Alpha-Prosthesis. Robot Auton Syst. 2014; 73:4–15. doi:10.​1016/​j.​robot.​2014.​12.​013.CrossRef
10.
go back to reference Holgate MA, Sugar TG, Alexander WB. A Novel Control Algorithm for Wearable Robotics using Phase Plane Invariants. IEEE Int Conf Robot Autom. 2009; May:3845–50. Holgate MA, Sugar TG, Alexander WB. A Novel Control Algorithm for Wearable Robotics using Phase Plane Invariants. IEEE Int Conf Robot Autom. 2009; May:3845–50.
11.
go back to reference Grosu V, Guerrero CR, Brackx B, Grosu S, Vanderborght B, Lefeber D. Instrumenting complex exoskeletons for improved human-robot interaction. IEEE Instrum Meas Mag. 2015; 18(5):5–10. doi:10.1109/MIM.2015.7271219. Grosu V, Guerrero CR, Brackx B, Grosu S, Vanderborght B, Lefeber D. Instrumenting complex exoskeletons for improved human-robot interaction. IEEE Instrum Meas Mag. 2015; 18(5):5–10. doi:10.​1109/​MIM.​2015.​7271219.
12.
go back to reference Sup F, Varol HA, Mitchell J, Withrow TJ, Goldfarb M. Preliminary Evaluations of a Self-Contained Anthropomorphic Transfemoral Prosthesis. IEEE/ASME Trans Mechatron Joint Publ IEEE Ind Electron Soc ASME Dyn Syst Control Div. 2009; 14(6):667–76. doi:10.1109/TMECH.2009.2032688 . Sup F, Varol HA, Mitchell J, Withrow TJ, Goldfarb M. Preliminary Evaluations of a Self-Contained Anthropomorphic Transfemoral Prosthesis. IEEE/ASME Trans Mechatron Joint Publ IEEE Ind Electron Soc ASME Dyn Syst Control Div. 2009; 14(6):667–76. doi:10.​1109/​TMECH.​2009.​2032688 .
15.
go back to reference Ledoux ED, Lawson BE, Shultz AH, Bartlett HL, Goldfarb M. Metabolics of stair ascent with a powered transfemoral prosthesis. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): 2015. p. 07–310. doi:10.1109/EMBC.2015.7319589. Ledoux ED, Lawson BE, Shultz AH, Bartlett HL, Goldfarb M. Metabolics of stair ascent with a powered transfemoral prosthesis. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): 2015. p. 07–310. doi:10.​1109/​EMBC.​2015.​7319589.
19.
go back to reference Varol HA, Sup F, Goldfarb M. Powered Sit-to-Stand and Assistive Stand-to-Sit Framework for a Powered Transfemoral Prosthesis. In: Proceedings of the 2009 IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan: 2009. p. 645–51. doi:10.1109/ICORR.2009.5209582. Varol HA, Sup F, Goldfarb M. Powered Sit-to-Stand and Assistive Stand-to-Sit Framework for a Powered Transfemoral Prosthesis. In: Proceedings of the 2009 IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan: 2009. p. 645–51. doi:10.​1109/​ICORR.​2009.​5209582.
20.
go back to reference Wolf EJ, Everding VQ, Linberg AL, Schnall BL, Czerniecki M, Gambel JM. Assessment of transfemoral amputees using C-Leg and Power Knee for ascending and descending inclines and steps. JRRD. 2012; 49(6):831–42.CrossRef Wolf EJ, Everding VQ, Linberg AL, Schnall BL, Czerniecki M, Gambel JM. Assessment of transfemoral amputees using C-Leg and Power Knee for ascending and descending inclines and steps. JRRD. 2012; 49(6):831–42.CrossRef
22.
go back to reference Sup F, Varol HA, Goldfarb M. Upslope walking with a powered knee and ankle prosthesis: initial results with an amputee subject,. IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med Biol Soc. 2011; 19(1):71–8. doi:10.1109/TNSRE.2010.2087360.CrossRef Sup F, Varol HA, Goldfarb M. Upslope walking with a powered knee and ankle prosthesis: initial results with an amputee subject,. IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med Biol Soc. 2011; 19(1):71–8. doi:10.​1109/​TNSRE.​2010.​2087360.CrossRef
Metadata
Title
VUB-CYBERLEGs CYBATHLON 2016 Beta-Prosthesis: case study in control of an active two degree of freedom transfemoral prosthesis
Authors
Louis L. Flynn
Joost Geeroms
Tom van der Hoeven
Bram Vanderborght
Dirk Lefeber
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2018
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-017-0342-y

Other articles of this Issue 1/2018

Journal of NeuroEngineering and Rehabilitation 1/2018 Go to the issue