Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2017

Open Access 01-12-2017 | Research

Pattern of improvement in upper limb pointing task kinematics after a 3-month training program with robotic assistance in stroke

Authors: Ophélie Pila, Christophe Duret, François-Xavier Laborne, Jean-Michel Gracies, Nicolas Bayle, Emilie Hutin

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2017

Login to get access

Abstract

Background

When exploring changes in upper limb kinematics and motor impairment associated with motor recovery in subacute post stroke during intensive therapies involving robot-assisted training, it is not known whether trained joints improve before non-trained joints and whether target reaching capacity improves before movement accuracy.

Methods

Twenty-two subacute stroke patients (mean delay post-stroke at program onset 63 ± 29 days, M2) underwent 50 ± 17 (mean ± SD) 45-min sessions of robot-assisted (InMotion™) shoulder/elbow training over 3 months, in addition to conventional occupational therapy. Monthly evaluations (M2 to M5) included Fugl-Meyer Assessment (FM), with subscores per joint, and four robot-based kinematic measures: mean target distance covered, mean velocity, direction accuracy (inverse of root mean square error from straight line) and movement smoothness (inverse of mean number of zero-crossings in the velocity profile). We assessed delays to reach statistically significant improvement for each outcome measure.

Results

At M5, all clinical and kinematic parameters had markedly improved: Fugl-Meyer, +65% (median); distance covered, +87%; mean velocity, +101%; accuracy, +134%; and smoothness, +96%. Delays to reach statistical significance were M3 for the shoulder/elbow Fugl-Meyer subscore (+43%), M4 for the hand (+80%) and M5 for the wrist (+133%) subscores. For kinematic parameters, delays to significant improvements were M3 for distance (+68%), velocity (+65%) and smoothness (+50%), and M5 for accuracy (+134%).

Conclusions

An intensive rehabilitation program combining robot-assisted shoulder/elbow training and conventional occupational therapy was associated with improvement in shoulder and elbow movements first, which suggests focal behavior-related brain plasticity. Findings also suggested that recovery of movement quantity related parameters (range of motion, velocity and smoothness) might precede that of movement quality (accuracy).

Trial registration

EudraCT 2016–005121-36. Date of Registration: 2016–12-20. Date of enrolment of the first participant to the trial: 2009–11-24 (retrospective data).
Literature
1.
go back to reference Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34:2181–6.CrossRefPubMed Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34:2181–6.CrossRefPubMed
2.
go back to reference Wade DT, Langton Hewer R, Wood VA, Skilbeck CE, Ismail HM. The hemiplegic arm after stroke: measurement and recovery. J Neurol Neurosurg Psychiatry. 1983;46:521–4.CrossRefPubMedPubMedCentral Wade DT, Langton Hewer R, Wood VA, Skilbeck CE, Ismail HM. The hemiplegic arm after stroke: measurement and recovery. J Neurol Neurosurg Psychiatry. 1983;46:521–4.CrossRefPubMedPubMedCentral
3.
go back to reference Parker VM, Wade DT, Langton HR. Loss of arm function after stroke: measurement, frequency and recovery. Int Rehab Med. 1986;8:69–73. Parker VM, Wade DT, Langton HR. Loss of arm function after stroke: measurement, frequency and recovery. Int Rehab Med. 1986;8:69–73.
4.
go back to reference Gowland C. Recovery of motor function following stroke: profile and predictors. Physiother Can. 1982;34(2):77–84.CrossRef Gowland C. Recovery of motor function following stroke: profile and predictors. Physiother Can. 1982;34(2):77–84.CrossRef
5.
go back to reference van Delden AL, Peper CL, Harlaar J, Daffertshofer A, Zijp NI, Nienhuys K, Koppe P, Kwakkel G, Beek PJ. Comparing unilateral and bilateral upper limb training: the ULTRA-stroke program design. BMC Neurol. 2009;9:57.CrossRefPubMed van Delden AL, Peper CL, Harlaar J, Daffertshofer A, Zijp NI, Nienhuys K, Koppe P, Kwakkel G, Beek PJ. Comparing unilateral and bilateral upper limb training: the ULTRA-stroke program design. BMC Neurol. 2009;9:57.CrossRefPubMed
6.
go back to reference Kwakkel G, Wagenaar RC, Kollen BJ, Lankhorst GJ. Predicting disability in stroke: a critical review of the literature. Age Ageing. 1996;25:479–89.CrossRefPubMed Kwakkel G, Wagenaar RC, Kollen BJ, Lankhorst GJ. Predicting disability in stroke: a critical review of the literature. Age Ageing. 1996;25:479–89.CrossRefPubMed
7.
go back to reference Kwakkel G, Wagenaar RC, Twisk JW, Lankhorst GJ, Koetsier JC. Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. Lancet. 1999;354:191–6.CrossRefPubMed Kwakkel G, Wagenaar RC, Twisk JW, Lankhorst GJ, Koetsier JC. Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. Lancet. 1999;354:191–6.CrossRefPubMed
8.
go back to reference Kwakkel G, van Peppen R, Wagenaar RC, Dauphinee SW, Richards C, Ashburn A, Miller K, Lincoln N, Partridge C, Wellwood I, Langhorne P. Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke. 2004;35:2529–39.CrossRefPubMed Kwakkel G, van Peppen R, Wagenaar RC, Dauphinee SW, Richards C, Ashburn A, Miller K, Lincoln N, Partridge C, Wellwood I, Langhorne P. Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke. 2004;35:2529–39.CrossRefPubMed
9.
go back to reference Bütefisch C, Hummelsheim H, Denzler P, Mauritz K-H. Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J Neurol Sci. 1995;130:59–68.CrossRefPubMed Bütefisch C, Hummelsheim H, Denzler P, Mauritz K-H. Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J Neurol Sci. 1995;130:59–68.CrossRefPubMed
10.
go back to reference Feys H, De Weerdt W, Verbeke G, Steck GC, Capiau C, Kiekens C, Dejaeger E, Van Hoydonck G, Vermeersch G, Cras P. Early and repetitive stimulation of the arm can substantially improve the long-term outcome after stroke: a 5-year follow-up study of a randomized trial. Stroke. 2004;35:924–9.CrossRefPubMed Feys H, De Weerdt W, Verbeke G, Steck GC, Capiau C, Kiekens C, Dejaeger E, Van Hoydonck G, Vermeersch G, Cras P. Early and repetitive stimulation of the arm can substantially improve the long-term outcome after stroke: a 5-year follow-up study of a randomized trial. Stroke. 2004;35:924–9.CrossRefPubMed
11.
go back to reference Meimoun M, Bayle N, Baude M, Gracies J-M. Intensity in the neurorehabilitation of spastic paresis. Rev Neurol (Paris). 2015;171:130–40.CrossRef Meimoun M, Bayle N, Baude M, Gracies J-M. Intensity in the neurorehabilitation of spastic paresis. Rev Neurol (Paris). 2015;171:130–40.CrossRef
12.
go back to reference Lum PS, Burgar CG, Loos MV d, Shor PC, Majmundar M, Yap RMIME. Robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. J Rehabil Res Dev. 2006;43:631–42.CrossRefPubMed Lum PS, Burgar CG, Loos MV d, Shor PC, Majmundar M, Yap RMIME. Robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. J Rehabil Res Dev. 2006;43:631–42.CrossRefPubMed
13.
go back to reference Masiero S, Armani M, Ferlini G, Rosati G, Rossi A. Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation. Neurorehabil Neural Repair. 2014;28:377–86.CrossRefPubMed Masiero S, Armani M, Ferlini G, Rosati G, Rossi A. Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation. Neurorehabil Neural Repair. 2014;28:377–86.CrossRefPubMed
14.
go back to reference Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT. The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch Neurol. 1997;54:443–6.CrossRefPubMed Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT. The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch Neurol. 1997;54:443–6.CrossRefPubMed
15.
go back to reference Volpe BT, Krebs HI, Hogan N, Edelstein OTRL, Diels C, Aisen MA. Novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation. Neurology. 2000;54:1938–44.CrossRefPubMed Volpe BT, Krebs HI, Hogan N, Edelstein OTRL, Diels C, Aisen MA. Novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation. Neurology. 2000;54:1938–44.CrossRefPubMed
16.
go back to reference Sale P, Franceschini M, Mazzoleni S, Palma E, Agosti M, Posteraro F. Effects of upper limb robot-assisted therapy on motor recovery in subacute stroke patients. J Neuroeng Rehabil. 2014;11:104.CrossRefPubMedPubMedCentral Sale P, Franceschini M, Mazzoleni S, Palma E, Agosti M, Posteraro F. Effects of upper limb robot-assisted therapy on motor recovery in subacute stroke patients. J Neuroeng Rehabil. 2014;11:104.CrossRefPubMedPubMedCentral
17.
go back to reference Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, Ringer RJ, Wagner TH, Krebs HI, Volpe BT, Bever CT Jr, Bravata DM, Duncan PW, Corn BH, Maffucci AD, Nadeau SE, Conroy SS, Powell JM, Huang GD, Peduzzi P. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362:1772–83.CrossRefPubMedPubMedCentral Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, Ringer RJ, Wagner TH, Krebs HI, Volpe BT, Bever CT Jr, Bravata DM, Duncan PW, Corn BH, Maffucci AD, Nadeau SE, Conroy SS, Powell JM, Huang GD, Peduzzi P. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362:1772–83.CrossRefPubMedPubMedCentral
18.
go back to reference Volpe BT, Lynch D, Rykman-Berland A, Ferraro M, Galgano M, Hogan N, Krebs HI. Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke. Neurorehabil Neural Repair. 2008;22(3):305–10.CrossRefPubMedPubMedCentral Volpe BT, Lynch D, Rykman-Berland A, Ferraro M, Galgano M, Hogan N, Krebs HI. Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke. Neurorehabil Neural Repair. 2008;22(3):305–10.CrossRefPubMedPubMedCentral
19.
go back to reference Waddell KJ, Birkenmeier RL, Moore JL, Hornby TG, Lang CE. Feasibility of high-repetition, task-specific training for individuals with upper-extremity paresis. Am J Occup Ther. 2014 Jul-Aug;68(4):444–53.CrossRefPubMedPubMedCentral Waddell KJ, Birkenmeier RL, Moore JL, Hornby TG, Lang CE. Feasibility of high-repetition, task-specific training for individuals with upper-extremity paresis. Am J Occup Ther. 2014 Jul-Aug;68(4):444–53.CrossRefPubMedPubMedCentral
20.
go back to reference Bosecker C, Dipietro L, Volpe B, Krebs HI. Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke. Neurorehabil Neural Repair. 2010;24:62–9.CrossRefPubMed Bosecker C, Dipietro L, Volpe B, Krebs HI. Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke. Neurorehabil Neural Repair. 2010;24:62–9.CrossRefPubMed
21.
go back to reference Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC, Dario P, Minuco G. Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb. Neurorehabil Neural Repair. 2008;22:50–63.CrossRefPubMed Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC, Dario P, Minuco G. Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb. Neurorehabil Neural Repair. 2008;22:50–63.CrossRefPubMed
22.
go back to reference Duret C, Hutin E. Effects of prolonged robot-assisted training on upper limb motor recovery in subacute stroke. NeuroRehabilitation. 2013; doi:10.3233/NRE-130926. Duret C, Hutin E. Effects of prolonged robot-assisted training on upper limb motor recovery in subacute stroke. NeuroRehabilitation. 2013; doi:10.​3233/​NRE-130926.
23.
go back to reference Duret C, Courtial O, Grosmaire A-G, Hutin E. Use of a robotic device for the rehabilitation of severe upper limb paresis in subacute stroke: exploration of patient/robot interactions and the motor recovery process. Biomed Res Int. 2015; doi:10.1155/2015/482389. Duret C, Courtial O, Grosmaire A-G, Hutin E. Use of a robotic device for the rehabilitation of severe upper limb paresis in subacute stroke: exploration of patient/robot interactions and the motor recovery process. Biomed Res Int. 2015; doi:10.​1155/​2015/​482389.
24.
go back to reference Balasubramanian S, Colombo R, Sterpi I, Sanguineti V, Burdet E. Robotic assessment of upper limb motor function after stroke. Am J Phys Med Rehabil. 2012;91:S255–69.CrossRefPubMed Balasubramanian S, Colombo R, Sterpi I, Sanguineti V, Burdet E. Robotic assessment of upper limb motor function after stroke. Am J Phys Med Rehabil. 2012;91:S255–69.CrossRefPubMed
25.
go back to reference van Dokkum L, Hauret I, Mottet D, Froger J, Métrot J, Laffont I. The contribution of kinematics in the assessment of upper limb motor recovery early after stroke. Neurorehabil Neural Repair. 2014;28:4–12.CrossRefPubMed van Dokkum L, Hauret I, Mottet D, Froger J, Métrot J, Laffont I. The contribution of kinematics in the assessment of upper limb motor recovery early after stroke. Neurorehabil Neural Repair. 2014;28:4–12.CrossRefPubMed
26.
go back to reference Dipietro L, Krebs HI, Volpe BT, Stein J, Bever C, Mernoff ST, Fasoli SE, Hogan N. Learning, not adaptation, characterizes stroke motor recovery: evidence from kinematic changes induced by robot-assisted therapy in trained and untrained task in the same workspace. IEEE Trans Neural Sys and Rehab Eng. 2012;20(1):48–57.CrossRef Dipietro L, Krebs HI, Volpe BT, Stein J, Bever C, Mernoff ST, Fasoli SE, Hogan N. Learning, not adaptation, characterizes stroke motor recovery: evidence from kinematic changes induced by robot-assisted therapy in trained and untrained task in the same workspace. IEEE Trans Neural Sys and Rehab Eng. 2012;20(1):48–57.CrossRef
27.
go back to reference Krebs HI, Krams M, Agrafiotis DK, DiBernardo A, Chavez JC, Littman GS, Yang E, Byttebier G, Dipietro L, Rykman A, McArthur K, Hajjar K, Lees KR, Volpe BT. Robotic measurement of arm movements after stroke establishes biomarkers of motor recovery. Stroke. 2014;45(1):200–4.CrossRefPubMed Krebs HI, Krams M, Agrafiotis DK, DiBernardo A, Chavez JC, Littman GS, Yang E, Byttebier G, Dipietro L, Rykman A, McArthur K, Hajjar K, Lees KR, Volpe BT. Robotic measurement of arm movements after stroke establishes biomarkers of motor recovery. Stroke. 2014;45(1):200–4.CrossRefPubMed
28.
go back to reference Gilliaux M, Lejeune T, Detrembleur C, Sapin J, Dehez B, Selves C, Stoquart G. Using the robotic device REAplan as a valid, reliable, and sensitive tool to quantify upper limb impairments in stroke patients. J Rehabil Med. 2014;46:117–25.CrossRefPubMed Gilliaux M, Lejeune T, Detrembleur C, Sapin J, Dehez B, Selves C, Stoquart G. Using the robotic device REAplan as a valid, reliable, and sensitive tool to quantify upper limb impairments in stroke patients. J Rehabil Med. 2014;46:117–25.CrossRefPubMed
29.
go back to reference Duncan PW, Lai SM, Keighley J. Defining post-stroke recovery: implications for design and interpretation of drugs trials. Neuropharmacology. 2000;39:835–41.CrossRefPubMed Duncan PW, Lai SM, Keighley J. Defining post-stroke recovery: implications for design and interpretation of drugs trials. Neuropharmacology. 2000;39:835–41.CrossRefPubMed
30.
go back to reference Lee KB, Lim SH, Kim KH, Kim KJ, Kim YR, Chang WN, Yeom JW, Kim YD, Hwang BY. Six-month functional recovery of stroke patients: a multi-time-point study. Int J Rehabil Res. 2015;38:173–80.CrossRefPubMedPubMedCentral Lee KB, Lim SH, Kim KH, Kim KJ, Kim YR, Chang WN, Yeom JW, Kim YD, Hwang BY. Six-month functional recovery of stroke patients: a multi-time-point study. Int J Rehabil Res. 2015;38:173–80.CrossRefPubMedPubMedCentral
31.
go back to reference Duncan PW, Goldstein LB, Matchar D, Divine GW, Feussner J. Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke. 1992;23:1084–9.CrossRefPubMed Duncan PW, Goldstein LB, Matchar D, Divine GW, Feussner J. Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke. 1992;23:1084–9.CrossRefPubMed
32.
go back to reference Colebatch JG, Gandevia SC. The distribution of muscular weakness in upper motor neuron lesions affecting the arm. Brain. 1989;112:749–63.CrossRefPubMed Colebatch JG, Gandevia SC. The distribution of muscular weakness in upper motor neuron lesions affecting the arm. Brain. 1989;112:749–63.CrossRefPubMed
33.
go back to reference Beebe JA, Lang CE. Absence of a proximal to distal gradient of motor deficits in the upper extremity early after stroke. Clin Neurophysiol. 2008;119:2074–85.CrossRefPubMedPubMedCentral Beebe JA, Lang CE. Absence of a proximal to distal gradient of motor deficits in the upper extremity early after stroke. Clin Neurophysiol. 2008;119:2074–85.CrossRefPubMedPubMedCentral
34.
go back to reference Masiero S, Celia A, Rosati G, Armani M. Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch Phys Med Rehabil. 2007;88:142–9.CrossRefPubMed Masiero S, Celia A, Rosati G, Armani M. Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch Phys Med Rehabil. 2007;88:142–9.CrossRefPubMed
35.
go back to reference Fasoli SE, Krebs HI, Stein J, Frontera WR, Hogan N. Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch Phys Med Rehabil. 2003;84:477–82.CrossRefPubMed Fasoli SE, Krebs HI, Stein J, Frontera WR, Hogan N. Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch Phys Med Rehabil. 2003;84:477–82.CrossRefPubMed
37.
go back to reference Krebs HI, Palazzolo JJ, Dipietro L, Ferraro M, Krol J, Rannekleiv K, Volpe BT, Hogan N. Rehabilitation robotics: performance-based progressive robot-assisted therapy. Auton Robot. 2003;15(1):7–20.CrossRef Krebs HI, Palazzolo JJ, Dipietro L, Ferraro M, Krol J, Rannekleiv K, Volpe BT, Hogan N. Rehabilitation robotics: performance-based progressive robot-assisted therapy. Auton Robot. 2003;15(1):7–20.CrossRef
38.
go back to reference Sanford J, Moreland J, Swanson LR, Stratford PW, Gowland C. Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys Ther. 1993;73(7):447–54.CrossRefPubMed Sanford J, Moreland J, Swanson LR, Stratford PW, Gowland C. Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys Ther. 1993;73(7):447–54.CrossRefPubMed
39.
go back to reference Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31.PubMed Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31.PubMed
40.
go back to reference Gladstone DJ, Danells CJ, Black SE. The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair. 2002;16:232–40.CrossRefPubMed Gladstone DJ, Danells CJ, Black SE. The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair. 2002;16:232–40.CrossRefPubMed
41.
go back to reference Vergaro E, Casadio M, Squeri V, Giannoni P, Morasso P, Sanguineti V. Self-adaptive robot training of stroke survivors for continuous tracking movements. J Neuroeng Rehabil. 2010; doi:10.1186/1743-0003-7-13. Vergaro E, Casadio M, Squeri V, Giannoni P, Morasso P, Sanguineti V. Self-adaptive robot training of stroke survivors for continuous tracking movements. J Neuroeng Rehabil. 2010; doi:10.​1186/​1743-0003-7-13.
42.
go back to reference Beppu H, Suda M, Tanaka R. Analysis of cerebellar motor disorders by visually guided elbow tracking movement. Brain. 1984;107(Pt 3):787–0.CrossRefPubMed Beppu H, Suda M, Tanaka R. Analysis of cerebellar motor disorders by visually guided elbow tracking movement. Brain. 1984;107(Pt 3):787–0.CrossRefPubMed
43.
go back to reference Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, Stein J, Hogan N. Movement smoothness changes during stroke recovery. J Neurosci. 2002;22:8297–304.PubMed Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, Stein J, Hogan N. Movement smoothness changes during stroke recovery. J Neurosci. 2002;22:8297–304.PubMed
44.
go back to reference Hogan N. An organizing principle for a class of voluntary movements. J Neurosci. 1984;4(11):2745–54.PubMed Hogan N. An organizing principle for a class of voluntary movements. J Neurosci. 1984;4(11):2745–54.PubMed
45.
46.
go back to reference Verheyden G, Nieuwboer A, De Wit L, Thijs V, Dobbelaere J, Devos H, Severijns D, Vanbeveren S, De Weerdt W. Time course of trunk, arm, leg, and functional recovery after ischemic stroke. Neurorehabil Neural Repair. 2008;22:173–9.CrossRefPubMed Verheyden G, Nieuwboer A, De Wit L, Thijs V, Dobbelaere J, Devos H, Severijns D, Vanbeveren S, De Weerdt W. Time course of trunk, arm, leg, and functional recovery after ischemic stroke. Neurorehabil Neural Repair. 2008;22:173–9.CrossRefPubMed
47.
go back to reference Langhorne P, Wagenaar R, Partridge C. Physiotherapy after stroke: more is better? Physiother Res Int. 1996;1:75–88.CrossRefPubMed Langhorne P, Wagenaar R, Partridge C. Physiotherapy after stroke: more is better? Physiother Res Int. 1996;1:75–88.CrossRefPubMed
48.
go back to reference Kwakkel G, Wagenaar RC, Koelman TW, Lankhorst GJ, Koetsier JC. Effects of intensity of rehabilitation after stroke. A research synthesis. Stroke. 1997;28:1550–6.CrossRefPubMed Kwakkel G, Wagenaar RC, Koelman TW, Lankhorst GJ, Koetsier JC. Effects of intensity of rehabilitation after stroke. A research synthesis. Stroke. 1997;28:1550–6.CrossRefPubMed
49.
50.
go back to reference Cooke EV, Mares K, Clark A, Tallis RC, Pomeroy VM. The effects of increased dose of exercise-based therapies to enhance motor recovery after stroke: a systematic review and meta-analysis. BMC Med. 2010;8:60.CrossRefPubMedPubMedCentral Cooke EV, Mares K, Clark A, Tallis RC, Pomeroy VM. The effects of increased dose of exercise-based therapies to enhance motor recovery after stroke: a systematic review and meta-analysis. BMC Med. 2010;8:60.CrossRefPubMedPubMedCentral
51.
go back to reference Fasoli SE, Krebs HI, Stein J, Frontera WR, Hughes R, Hogan N. Robotic therapy for chronic motor impairments after stroke: follow-up results. Arch Phys Med Rehabil. 2004;85:1106–11.CrossRefPubMed Fasoli SE, Krebs HI, Stein J, Frontera WR, Hughes R, Hogan N. Robotic therapy for chronic motor impairments after stroke: follow-up results. Arch Phys Med Rehabil. 2004;85:1106–11.CrossRefPubMed
52.
53.
go back to reference Winstein CJ, Wolf SL, Dromerick AW, Lane CJ, Nelsen MA, Lewthwaite R, Cen SY, Azen SP. Interdisciplinary comprehensive arm rehabilitation evaluation (ICARE) investigative team. Effect of a task-oriented rehabilitation program on upper extremity recovery following motor stroke: the ICARE randomized clinical trial. JAMA. 2016;315(6):571–81.CrossRefPubMedPubMedCentral Winstein CJ, Wolf SL, Dromerick AW, Lane CJ, Nelsen MA, Lewthwaite R, Cen SY, Azen SP. Interdisciplinary comprehensive arm rehabilitation evaluation (ICARE) investigative team. Effect of a task-oriented rehabilitation program on upper extremity recovery following motor stroke: the ICARE randomized clinical trial. JAMA. 2016;315(6):571–81.CrossRefPubMedPubMedCentral
54.
go back to reference Lang CE, Strube MJ, Bland MD, Waddell KJ, Cherry-Allen KM, Nudo RJ, Dromerick AW, Birkenmeier RL. Dose response of task-specific upper limb training in people at least 6 months poststroke: a phase II, single-blind, randomized, controlled trial. Ann Neurol. 2016;80(3):342–54.CrossRefPubMedPubMedCentral Lang CE, Strube MJ, Bland MD, Waddell KJ, Cherry-Allen KM, Nudo RJ, Dromerick AW, Birkenmeier RL. Dose response of task-specific upper limb training in people at least 6 months poststroke: a phase II, single-blind, randomized, controlled trial. Ann Neurol. 2016;80(3):342–54.CrossRefPubMedPubMedCentral
55.
go back to reference Lang CE, Macdonald JR, Reisman DS, Boyd L, Jacobson Kimberley T, Schindler-Ivens SM, Hornby TG, Ross SA, Scheets PL. Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil. 2009;90(10):1692–8.CrossRefPubMedPubMedCentral Lang CE, Macdonald JR, Reisman DS, Boyd L, Jacobson Kimberley T, Schindler-Ivens SM, Hornby TG, Ross SA, Scheets PL. Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil. 2009;90(10):1692–8.CrossRefPubMedPubMedCentral
56.
go back to reference Kimberley TJ, Samargia S, Moore LG, Shakya JK, Lang CE. Comparison of amounts and types of practice during rehabilitation for traumatic brain injury and stroke. J Rehabil Res Dev. 2010;47(9):851–62.CrossRefPubMed Kimberley TJ, Samargia S, Moore LG, Shakya JK, Lang CE. Comparison of amounts and types of practice during rehabilitation for traumatic brain injury and stroke. J Rehabil Res Dev. 2010;47(9):851–62.CrossRefPubMed
57.
go back to reference Winters C, van Wegen EE, Daffertshofer A, Kwakkel G. Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. Neurorehabil Neural Repair. 2015;29(7):614–22.CrossRefPubMed Winters C, van Wegen EE, Daffertshofer A, Kwakkel G. Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. Neurorehabil Neural Repair. 2015;29(7):614–22.CrossRefPubMed
58.
go back to reference Cortes JC, Goldsmith J, Harran MD, Xu J, Kim N, Schambra HM, Luft AR, Celnik P, Krakauer JW, Kitago TA. Short and distinct time window for recovery of arm motor control early after stroke revealed with a global measure of trajectory kinematics. Neurorehabil Neural Repair. 2017;31(6):552–60.CrossRefPubMed Cortes JC, Goldsmith J, Harran MD, Xu J, Kim N, Schambra HM, Luft AR, Celnik P, Krakauer JW, Kitago TA. Short and distinct time window for recovery of arm motor control early after stroke revealed with a global measure of trajectory kinematics. Neurorehabil Neural Repair. 2017;31(6):552–60.CrossRefPubMed
59.
go back to reference Mazzoleni S, Sale P, Tiboni M, Franceschini M, Carrozza MC, Posteraro F. Upper limb robot-assisted therapy in chronic and subacute stroke patients: a kinematic analysis. Am J Phys Med Rehabil. 2013;92(10 Suppl 2):e26–37.CrossRefPubMed Mazzoleni S, Sale P, Tiboni M, Franceschini M, Carrozza MC, Posteraro F. Upper limb robot-assisted therapy in chronic and subacute stroke patients: a kinematic analysis. Am J Phys Med Rehabil. 2013;92(10 Suppl 2):e26–37.CrossRefPubMed
60.
go back to reference Reinkensmeyer DJ, Burdet E, Casadio M, Krakauer JW, Kwakkel G, Lang CE, Swinnen SP, Ward NS, Schweighofer N. Computational neurorehabilitation: modeling plasticity and learning to predict recovery. J Neuroeng Rehabil. 2016;13(1):42.CrossRefPubMedPubMedCentral Reinkensmeyer DJ, Burdet E, Casadio M, Krakauer JW, Kwakkel G, Lang CE, Swinnen SP, Ward NS, Schweighofer N. Computational neurorehabilitation: modeling plasticity and learning to predict recovery. J Neuroeng Rehabil. 2016;13(1):42.CrossRefPubMedPubMedCentral
61.
go back to reference Park H, Schweighofer N. Nonlinear mixed-effects model reveals a distinction between learning and performance in intensive reach training post-stroke. J Neuroeng Rehabil. 2017;14(1):21.CrossRefPubMedPubMedCentral Park H, Schweighofer N. Nonlinear mixed-effects model reveals a distinction between learning and performance in intensive reach training post-stroke. J Neuroeng Rehabil. 2017;14(1):21.CrossRefPubMedPubMedCentral
62.
go back to reference Mottet D, van Dokkum LE, Froger J, Gouaïch A, Laffont I. Trajectory formation principles are the same after mild or moderate stroke. PLoS One. 2017;12(3):e0173674.CrossRefPubMedPubMedCentral Mottet D, van Dokkum LE, Froger J, Gouaïch A, Laffont I. Trajectory formation principles are the same after mild or moderate stroke. PLoS One. 2017;12(3):e0173674.CrossRefPubMedPubMedCentral
63.
go back to reference Harris CM, Wolpert DM. Signal-dependent noise determines motor planning. Nature. 1998;394(6695):780–4.CrossRefPubMed Harris CM, Wolpert DM. Signal-dependent noise determines motor planning. Nature. 1998;394(6695):780–4.CrossRefPubMed
64.
go back to reference Rohrer B, Fasoli S, Krebs HI, Volpe B, Frontera WR, Stein J, Hogan N. Submovements grow larger, fewer, and more blended during stroke recovery. Mot Control. 2004;8(4):472–83.CrossRef Rohrer B, Fasoli S, Krebs HI, Volpe B, Frontera WR, Stein J, Hogan N. Submovements grow larger, fewer, and more blended during stroke recovery. Mot Control. 2004;8(4):472–83.CrossRef
65.
go back to reference Van Dokkum LEH, Mottet D, Laffont I, Bonafé A, de Champfleur NM, Froger J, Le Bars E. Kinematics in the brain: unmasking motor control strategies? Exp brain res. 2017 Jun 2. Van Dokkum LEH, Mottet D, Laffont I, Bonafé A, de Champfleur NM, Froger J, Le Bars E. Kinematics in the brain: unmasking motor control strategies? Exp brain res. 2017 Jun 2.
66.
go back to reference Bobath B. The treatment of motor disorders of pyramidal and extra-pyramidal origin by reflex inhibition and by facilitation of movements. Physiotherapy. 1955;41(5):146–53.PubMed Bobath B. The treatment of motor disorders of pyramidal and extra-pyramidal origin by reflex inhibition and by facilitation of movements. Physiotherapy. 1955;41(5):146–53.PubMed
67.
go back to reference Kabat H, McLeod M, Holt C. The practical application of proprioceptive neuromuscular facilitation. Physiotherapy. 1959;45(4):87–92.PubMed Kabat H, McLeod M, Holt C. The practical application of proprioceptive neuromuscular facilitation. Physiotherapy. 1959;45(4):87–92.PubMed
68.
go back to reference Brunnstrom S. Associated reactions of the upper extremity in adult patients with hemiplegia; an approach to training. Phys Ther Rev. 1956;36(4):225–36.PubMed Brunnstrom S. Associated reactions of the upper extremity in adult patients with hemiplegia; an approach to training. Phys Ther Rev. 1956;36(4):225–36.PubMed
69.
go back to reference Bayle N, Fried SJ, Kappos EA, Hutin E, Fung K, et al. Movement smoothness differentiates voluntary from parkinsonian bradykinesia. J Addict Res Ther. 2016; doi:10.4172/2155-6105.1000264. Bayle N, Fried SJ, Kappos EA, Hutin E, Fung K, et al. Movement smoothness differentiates voluntary from parkinsonian bradykinesia. J Addict Res Ther. 2016; doi:10.​4172/​2155-6105.​1000264.
70.
go back to reference Kamper DG, McKenna-Cole AN, Kahn LE, Reinkensmeyer DJ. Alterations in reaching after stroke and their relation to movement direction and impairment severity. Arch Phys Med Rehabil. 2002;83(5):702–7.CrossRefPubMed Kamper DG, McKenna-Cole AN, Kahn LE, Reinkensmeyer DJ. Alterations in reaching after stroke and their relation to movement direction and impairment severity. Arch Phys Med Rehabil. 2002;83(5):702–7.CrossRefPubMed
71.
go back to reference Dipietro L, Krebs HI, Fasoli SE, Volpe BT, Hogan N. Submovement changes characterize generalization of motor recovery after stroke. Cortex. 2008;45(3):318–24.CrossRefPubMed Dipietro L, Krebs HI, Fasoli SE, Volpe BT, Hogan N. Submovement changes characterize generalization of motor recovery after stroke. Cortex. 2008;45(3):318–24.CrossRefPubMed
72.
go back to reference Sukal-Moulton T, Krosschell KJ, Gaebler-Spira DJ, Dewald JP. Motor impairments related to brain injury timing in early hemiparesis. Part II: abnormal upper extremity joint torque synergies. Neurorehabil Neural Repair. 2014;28:24–35.CrossRefPubMed Sukal-Moulton T, Krosschell KJ, Gaebler-Spira DJ, Dewald JP. Motor impairments related to brain injury timing in early hemiparesis. Part II: abnormal upper extremity joint torque synergies. Neurorehabil Neural Repair. 2014;28:24–35.CrossRefPubMed
73.
go back to reference Kahn LE, Zygman ML, Rymer WZ, Reinkensmeyer DJ. Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. J Neuroeng Rehabil. 2006;3:12.CrossRefPubMedPubMedCentral Kahn LE, Zygman ML, Rymer WZ, Reinkensmeyer DJ. Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. J Neuroeng Rehabil. 2006;3:12.CrossRefPubMedPubMedCentral
76.
go back to reference Gracies JM. Pathophysiology of spastic paresis. I: paresis and soft tissue changes. Muscle Nerve. 2005;31:535–51.CrossRefPubMed Gracies JM. Pathophysiology of spastic paresis. I: paresis and soft tissue changes. Muscle Nerve. 2005;31:535–51.CrossRefPubMed
Metadata
Title
Pattern of improvement in upper limb pointing task kinematics after a 3-month training program with robotic assistance in stroke
Authors
Ophélie Pila
Christophe Duret
François-Xavier Laborne
Jean-Michel Gracies
Nicolas Bayle
Emilie Hutin
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2017
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-017-0315-1

Other articles of this Issue 1/2017

Journal of NeuroEngineering and Rehabilitation 1/2017 Go to the issue