Skip to main content
Top
Published in: BMC Medicine 1/2010

Open Access 01-12-2010 | Research article

The effects of increased dose of exercise-based therapies to enhance motor recovery after stroke: a systematic review and meta-analysis

Authors: Emma V Cooke, Kathryn Mares, Allan Clark, Raymond C Tallis, Valerie M Pomeroy

Published in: BMC Medicine | Issue 1/2010

Login to get access

Abstract

Background

Exercise-based therapy is known to enhance motor recovery after stroke but the most appropriate amount, i.e. the dose, of therapy is unknown. To determine the strength of current evidence for provision of a higher dose of the same types of exercise-based therapy to enhance motor recovery after stroke.

Methods

An electronic search of: MEDLINE, EMBASE, CINHAL, AMED, and CENTRAL was undertaken. Two independent reviewers selected studies using predetermined inclusion criteria: randomised or quasi randomised controlled trials with or without blinding of assessors; adults, 18+ years, with a clinical diagnosis of stroke; experimental and control group interventions identical except for dose; exercise-based interventions investigated; and outcome measures of motor impairment, movement control or functional activity. Two reviewers independently extracted outcome and follow-up data. Effect sizes and 95% confidence intervals were interpreted with reference to risk of bias in included studies.

Results

9 papers reporting 7 studies were included. Only 3 of the 7 included studies had all design elements assessed as low risk of bias. Intensity of the control intervention ranged from a mean of 9 to 28 hours over a maximum of 20 weeks. Experimental groups received between 14 and 92 hours of therapy over a maximum of 20 weeks. The included studies were heterogeneous with respect to types of therapy, outcome measures and time-points for outcome and follow-up. Consequently, most effect sizes relate to one study only. Single study effect sizes suggest a trend for better recovery with increased dose at the end of therapy but this trend was less evident at follow-up Meta-analysis was possible at outcome for: hand-grip strength, -10.1 [-19.1,-1.2] (2 studies, 97 participants); Action Research Arm Test (ARAT), 0.1 [-5.7,6.0] (3 studies, 126 participants); and comfortable walking speed, 0.3 [0.1,0.5] (2 studies, 58 participants). At follow-up, between 12 and 26 weeks after start of therapy, meta-analysis findings were: Motricity Arm, 10.7 [1.7,19.8] (2 studies, 83 participants); ARAT, 2.2 [-6.0,10.4] (2 studies, 83 participants); Rivermead Mobility, 1.0 [-0.6, 2.5] (2 studies, 83 participants); and comfortable walking speed, 0.2 [0.0,0.4] (2 studies, 60 participants).

Conclusions

Current evidence provides some, but limited, support for the hypothesis that a higher dose of the same type of exercised-based therapy enhances motor recovery after stroke. Prospective dose-finding studies are required.
Appendix
Available only for authorised users
Literature
1.
go back to reference Langhorne P, Wagenaar R, Partridge C: Physiotherapy after stroke: more is better?. Physiotherapy Research International. 1996, 1: 75-88.CrossRefPubMed Langhorne P, Wagenaar R, Partridge C: Physiotherapy after stroke: more is better?. Physiotherapy Research International. 1996, 1: 75-88.CrossRefPubMed
2.
go back to reference Kwakkel G, Wagenaar RC, Koelman TW, Lankhorst GJ, Koetsier JC: Effects of intensity of rehabilitation after stroke. A research synthesis. Stroke. 1997, 28: 1550-1556.CrossRefPubMed Kwakkel G, Wagenaar RC, Koelman TW, Lankhorst GJ, Koetsier JC: Effects of intensity of rehabilitation after stroke. A research synthesis. Stroke. 1997, 28: 1550-1556.CrossRefPubMed
3.
go back to reference Kwakkel G, van Peppen R, Wagenaar RC, Wood-Dauphinee S, Richards C, Ashburn A, Miller K, Lincoln N, Partridge C, Wellwood I, Langhorne P: Effects of augmented exercise therapy time after stroke. A meta analysis. Stroke. 2004, 35: 2529-2536. 10.1161/01.STR.0000143153.76460.7d.CrossRefPubMed Kwakkel G, van Peppen R, Wagenaar RC, Wood-Dauphinee S, Richards C, Ashburn A, Miller K, Lincoln N, Partridge C, Wellwood I, Langhorne P: Effects of augmented exercise therapy time after stroke. A meta analysis. Stroke. 2004, 35: 2529-2536. 10.1161/01.STR.0000143153.76460.7d.CrossRefPubMed
4.
go back to reference Van Peppen RPS, Kwakkel G, Wood-dauphinee S, Hendricks HJM, Van der Wees PhJ, Dekker J: The impact of physical therapy on functional outcomes after stroke. What's the evidence?. Clinical Rehabilitation. 2004, 18: 833-862. 10.1191/0269215504cr843oa.CrossRefPubMed Van Peppen RPS, Kwakkel G, Wood-dauphinee S, Hendricks HJM, Van der Wees PhJ, Dekker J: The impact of physical therapy on functional outcomes after stroke. What's the evidence?. Clinical Rehabilitation. 2004, 18: 833-862. 10.1191/0269215504cr843oa.CrossRefPubMed
5.
go back to reference Galvin R, Murphy B, Cusack T, Stokes E: The impact of increased duration of exercise therapy on functional recovery following stroke - what is the evidence?. Topics in Stroke Rehabilitation. 2008, 15: 365-377. 10.1310/tsr1504-365.CrossRefPubMed Galvin R, Murphy B, Cusack T, Stokes E: The impact of increased duration of exercise therapy on functional recovery following stroke - what is the evidence?. Topics in Stroke Rehabilitation. 2008, 15: 365-377. 10.1310/tsr1504-365.CrossRefPubMed
6.
go back to reference Dromerick AW, Lang CE, Birkenmier RL, Wagner JM, Miller JP, Videen TO, Powers WJ, Wolf SL, Edwards DF: Very early constraint-induced movement during stroke rehabilitation (VECTORS). Neurology. 2009, 73: 195-201. 10.1212/WNL.0b013e3181ab2b27.CrossRefPubMedPubMedCentral Dromerick AW, Lang CE, Birkenmier RL, Wagner JM, Miller JP, Videen TO, Powers WJ, Wolf SL, Edwards DF: Very early constraint-induced movement during stroke rehabilitation (VECTORS). Neurology. 2009, 73: 195-201. 10.1212/WNL.0b013e3181ab2b27.CrossRefPubMedPubMedCentral
7.
go back to reference Kozlowski DA, James DC, Schallert T: Use-dependent exaggeration of neuronal injury after unilateral sensorimotor cortex lesions. The Journal of Neuroscience. 1996, 16: 4776-4786.PubMed Kozlowski DA, James DC, Schallert T: Use-dependent exaggeration of neuronal injury after unilateral sensorimotor cortex lesions. The Journal of Neuroscience. 1996, 16: 4776-4786.PubMed
8.
go back to reference Humm JL, Kozlowski DA, Bland ST, James DC, Schallert T: Use-dependent exaggeration of brain injury: is glutamate involved?. Experimental Neurology. 1999, 157: 349-358. 10.1006/exnr.1999.7061.CrossRefPubMed Humm JL, Kozlowski DA, Bland ST, James DC, Schallert T: Use-dependent exaggeration of brain injury: is glutamate involved?. Experimental Neurology. 1999, 157: 349-358. 10.1006/exnr.1999.7061.CrossRefPubMed
9.
go back to reference Bland S, Schallert T, Strong R, Aronowski J, Grotta JC: Early exclusive use of the affected forelimb after moderate transient focal ischemia in rats. Functional and anatomical outcome. Stroke. 2000, 31: 1144-1152. Bland S, Schallert T, Strong R, Aronowski J, Grotta JC: Early exclusive use of the affected forelimb after moderate transient focal ischemia in rats. Functional and anatomical outcome. Stroke. 2000, 31: 1144-1152.
10.
go back to reference Risedal A, Zeng J, Johansson BB: Early training may exacerbate brain damage after focal brain ishemia in the rat. Journal of Cerebral Blood Flow and Metabolism. 1999, 19: 997-1003.CrossRefPubMed Risedal A, Zeng J, Johansson BB: Early training may exacerbate brain damage after focal brain ishemia in the rat. Journal of Cerebral Blood Flow and Metabolism. 1999, 19: 997-1003.CrossRefPubMed
11.
go back to reference Biernaskie J, Corbett D: Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. The Journal of Neuroscience. 2001, 21: 5272-5280.PubMed Biernaskie J, Corbett D: Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. The Journal of Neuroscience. 2001, 21: 5272-5280.PubMed
12.
go back to reference Nugent JA, Schurr KA, Adams RD: A dose-response relationship between amount of weight-bearing exercise and walking outcome following cerebrovascular accident. Arch Phys Med Rehabil. 1994, 75: 399-402. 10.1016/0003-9993(94)90162-7.CrossRefPubMed Nugent JA, Schurr KA, Adams RD: A dose-response relationship between amount of weight-bearing exercise and walking outcome following cerebrovascular accident. Arch Phys Med Rehabil. 1994, 75: 399-402. 10.1016/0003-9993(94)90162-7.CrossRefPubMed
13.
go back to reference Byl NN, Pitsch EA, Abrams GM: Functional outcomes can vary by dose: learning-based sensorimotor training for patients stable poststroke. Neurorehabilitation & Neural Repair. 2008, 22: 494-504.CrossRef Byl NN, Pitsch EA, Abrams GM: Functional outcomes can vary by dose: learning-based sensorimotor training for patients stable poststroke. Neurorehabilitation & Neural Repair. 2008, 22: 494-504.CrossRef
14.
go back to reference Sterr A, Elbert T, Berthold I, Kolbel B, Taub E: Longer versus shorter daily constraint-induced movement therapy of chronic hemipareis an exploratory study. Arch Phys Med Rehabil. 2002, 83: 1374-1377. 10.1053/apmr.2002.35108.CrossRefPubMed Sterr A, Elbert T, Berthold I, Kolbel B, Taub E: Longer versus shorter daily constraint-induced movement therapy of chronic hemipareis an exploratory study. Arch Phys Med Rehabil. 2002, 83: 1374-1377. 10.1053/apmr.2002.35108.CrossRefPubMed
15.
go back to reference Cooke E: The effects of type and intensity of physiotherapy on strength and function after stroke. PhD Thesis. St. George's, University of London Cooke E: The effects of type and intensity of physiotherapy on strength and function after stroke. PhD Thesis. St. George's, University of London
16.
go back to reference Kwakkel G: Impact of intensity of practice after stroke: issues for consideration. Disability and Rehabilitation. 2006, 28: 823-830. 10.1080/09638280500534861.CrossRefPubMed Kwakkel G: Impact of intensity of practice after stroke: issues for consideration. Disability and Rehabilitation. 2006, 28: 823-830. 10.1080/09638280500534861.CrossRefPubMed
18.
go back to reference Kwakkel G, Wagenaar RC, Twisk JWR, Lankhorst GJ, Koetsier JC: Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomized trial. The Lancet. 1999, 354: 191-196. 10.1016/S0140-6736(98)09477-X.CrossRef Kwakkel G, Wagenaar RC, Twisk JWR, Lankhorst GJ, Koetsier JC: Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomized trial. The Lancet. 1999, 354: 191-196. 10.1016/S0140-6736(98)09477-X.CrossRef
19.
go back to reference Kwakkel G, Kollen BJ, Wagenaar RC: Long term effects of intensity of upper and lower limb training after stroke: a randomised trial. J Neurol Neurosurg Psychiatry. 2002, 72: 473-479.PubMedPubMedCentral Kwakkel G, Kollen BJ, Wagenaar RC: Long term effects of intensity of upper and lower limb training after stroke: a randomised trial. J Neurol Neurosurg Psychiatry. 2002, 72: 473-479.PubMedPubMedCentral
20.
go back to reference Kwakkel G: Dynamics in functional recovery after stroke. 1998, Proefschrift Vrije Universiteit Amsterdam, ISBN 9080449717 Kwakkel G: Dynamics in functional recovery after stroke. 1998, Proefschrift Vrije Universiteit Amsterdam, ISBN 9080449717
21.
go back to reference The Glasgow Augmented Physiotherapy Study (GAPS) Group: Can augmented physiotherapy input enhance recovery of mobility after stroke? A randomized controlled trial. Clinical Rehabilitation. 2004, 18: 529-537. 10.1191/0269215504cr768oa.CrossRef The Glasgow Augmented Physiotherapy Study (GAPS) Group: Can augmented physiotherapy input enhance recovery of mobility after stroke? A randomized controlled trial. Clinical Rehabilitation. 2004, 18: 529-537. 10.1191/0269215504cr768oa.CrossRef
22.
go back to reference Lincoln NB, Parry RH, Vass CD: Randomized, controlled trial to evaluate increased intensity of physiotherapy treatment of arm function after stroke. Stroke. 1999, 30: 573-579.CrossRefPubMed Lincoln NB, Parry RH, Vass CD: Randomized, controlled trial to evaluate increased intensity of physiotherapy treatment of arm function after stroke. Stroke. 1999, 30: 573-579.CrossRefPubMed
23.
go back to reference Partridge C, Mackenzie M, Edwards S, Reid A, Jayawardena S, Guck N, Potter J: Is dosage of physiotherapy a critical factor in deciding patterns of recovery from stroke: a pragmatic randomized controlled trial. Physiotherapy Research International. 2000, 5: 230-240. 10.1002/pri.203.CrossRefPubMed Partridge C, Mackenzie M, Edwards S, Reid A, Jayawardena S, Guck N, Potter J: Is dosage of physiotherapy a critical factor in deciding patterns of recovery from stroke: a pragmatic randomized controlled trial. Physiotherapy Research International. 2000, 5: 230-240. 10.1002/pri.203.CrossRefPubMed
24.
go back to reference Rodgers H, Mackintosh J, Price C, Wood R, Mcnamee P, Fearon T, Marritt A, Curless R: Does an early increased-intensity interdisciplinary upper limb therapy programme following acute stroke improve outcome?. Clinical Rehabilitation. 2003, 17: 579-589. 10.1191/0269215503cr652oa.CrossRefPubMed Rodgers H, Mackintosh J, Price C, Wood R, Mcnamee P, Fearon T, Marritt A, Curless R: Does an early increased-intensity interdisciplinary upper limb therapy programme following acute stroke improve outcome?. Clinical Rehabilitation. 2003, 17: 579-589. 10.1191/0269215503cr652oa.CrossRefPubMed
25.
go back to reference Donaldson C, Tallis R, Miller S, Sunderland A, Lemon R, Pomeroy VM: Effects of conventional therapy and functional strength training on upper limb motor recovery after stroke: a randomized Phase II study. Neurorehabilitation and Neural Repair. 2009, 2: 389-397. Donaldson C, Tallis R, Miller S, Sunderland A, Lemon R, Pomeroy VM: Effects of conventional therapy and functional strength training on upper limb motor recovery after stroke: a randomized Phase II study. Neurorehabilitation and Neural Repair. 2009, 2: 389-397.
26.
go back to reference Cooke EV, Tallis RC, Clark A, Pomeroy VM: Efficacy of functional strength training on restoration of lower-limb motor function early after stroke: Phase ! randomized controlled trial. Neurorehabilitation and Neural Repair. 2010, 24: 88-96. 10.1177/1545968309343216.CrossRefPubMed Cooke EV, Tallis RC, Clark A, Pomeroy VM: Efficacy of functional strength training on restoration of lower-limb motor function early after stroke: Phase ! randomized controlled trial. Neurorehabilitation and Neural Repair. 2010, 24: 88-96. 10.1177/1545968309343216.CrossRefPubMed
27.
go back to reference Putman K, De Wit L, Schupp W, Ilse B, Berman P, Connell L, Dejager E, De Meyer A-M, De Weerdt W, feys H, Walter J, Bincoln N, Louckx F, Anneleen M, Birgit S, Smith B, Leys M: Use of time by physiotherapists and occupational therapists in a stroke rehabilitation unit: a comparison between four European rehabilitation centres. Disability and Rehabilitation. 2006, 28: 1417-1424. 10.1080/09638280600638216.CrossRefPubMed Putman K, De Wit L, Schupp W, Ilse B, Berman P, Connell L, Dejager E, De Meyer A-M, De Weerdt W, feys H, Walter J, Bincoln N, Louckx F, Anneleen M, Birgit S, Smith B, Leys M: Use of time by physiotherapists and occupational therapists in a stroke rehabilitation unit: a comparison between four European rehabilitation centres. Disability and Rehabilitation. 2006, 28: 1417-1424. 10.1080/09638280600638216.CrossRefPubMed
28.
go back to reference Turner PA, Whitfield TA: Physiotherapists' reasons for selection of treatment techniques: A cross-national survey. Physiotherapy Theory and Practice. 1999, 15: 235-246. 10.1080/095939899307649.CrossRef Turner PA, Whitfield TA: Physiotherapists' reasons for selection of treatment techniques: A cross-national survey. Physiotherapy Theory and Practice. 1999, 15: 235-246. 10.1080/095939899307649.CrossRef
29.
go back to reference Pomeroy VM, King L, Pollock A, Baily-Hallam A, Langhorne P: Electrostimulation for promoting recovery of movement or functional ability after stroke. The Cochrane Database of Systematic Reviews. 2006, CD003241. pub2-2 Pomeroy VM, King L, Pollock A, Baily-Hallam A, Langhorne P: Electrostimulation for promoting recovery of movement or functional ability after stroke. The Cochrane Database of Systematic Reviews. 2006, CD003241. pub2-2
30.
go back to reference Dobkin BH: Progressive staging of pilot studies to improve Phase III trials for motor interventions. Neurorehabilitation & Neural Repair. 2009, 23: 197-206.CrossRef Dobkin BH: Progressive staging of pilot studies to improve Phase III trials for motor interventions. Neurorehabilitation & Neural Repair. 2009, 23: 197-206.CrossRef
31.
go back to reference Pomeroy VM, Tallis RC: Need to focus research in stroke rehabilitation. Lancet. 2000, 355: 836-837. 10.1016/S0140-6736(99)08143-X.CrossRefPubMed Pomeroy VM, Tallis RC: Need to focus research in stroke rehabilitation. Lancet. 2000, 355: 836-837. 10.1016/S0140-6736(99)08143-X.CrossRefPubMed
Metadata
Title
The effects of increased dose of exercise-based therapies to enhance motor recovery after stroke: a systematic review and meta-analysis
Authors
Emma V Cooke
Kathryn Mares
Allan Clark
Raymond C Tallis
Valerie M Pomeroy
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2010
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/1741-7015-8-60

Other articles of this Issue 1/2010

BMC Medicine 1/2010 Go to the issue