Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2017

Open Access 01-12-2017 | Methodology

Influence of functional task-oriented mental practice on the gait of transtibial amputees: a randomized, clinical trial

Authors: Rodrigo Gontijo Cunha, Paulo José Guimarães Da-Silva, Clarissa Cardoso dos Santos Couto Paz, Ana Carolina da Silva Ferreira, Carlos Julio Tierra-Criollo

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2017

Login to get access

Abstract

Background

Mental practice (MP) through motor imagery is a cognitive training strategy used to improve locomotor skills during rehabilitation programs. Recent works have used MP tasks to investigate the neurophysiology of human gait; however, its effect on functional performance has not been evaluated. In the present study, the influence of gait-oriented MP tasks on the rehabilitation process of gait in transtibial amputees was investigated by assessing the vertical (V), anterior-posterior (AP), and medio-lateral (ML) ground reaction forces (GRFs) and the time duration of the support phase of the prosthetic limb.

Methods

Unilateral transtibial amputees, who were capable of performing motor imagination tasks (MIQ-RS score ≥4), were randomly divided into two groups: Group A (n = 10), who performed functional gait-oriented MP combined with gait training, and Group B (n = 5), who performed non-motor task MP. The MP intervention was performed in the first-person perspective for 40 min, 3 times/week, for 4 weeks. The GRF outcome measures were recorded by a force platform to evaluate gait performance during 4 distinct stages: at baseline (BL), 1 month before the MP session; Pre-MP, 1–3 days before the MP session; Post-MP, 1–3 days after the MP session; and follow-up (FU), 1 month after MP session. The gait variables were compared inter- and intra-group by applying the Mann-Whitney and Friedman tests (alpha = 0.05).

Results

All volunteers exhibited a homogenous gait pattern prior to MP intervention, with no gait improvement during the BL and Pre-MP stages. Only Group A showed significant improvements in gait performance after the intervention, with enhanced impact absorption, as indicated by decreased first V and AP peaks; propulsion capacity, indicated by increasing second V and AP peaks; and balance control of the prosthetic limb, indicated by decreasing ML peaks and increasing duration of support. This gait pattern persisted until the FU stage.

Conclusions

MP combined with gait training allowed transtibial amputees to reestablish independent locomotion. Since the effects of MP were preserved after 1 month, the improvement is considered related to the specificity of the MP tasks. Therefore, MP may improve the clinical aspect of gait rehabilitation when included in a training program.
Literature
1.
go back to reference Winter DA. The Biomechanics and Motor Control of Human Gait: Normal, Elderly, and Pathological. 2nd ed. Waterloo: University of Waterloo Press; 1991. Winter DA. The Biomechanics and Motor Control of Human Gait: Normal, Elderly, and Pathological. 2nd ed. Waterloo: University of Waterloo Press; 1991.
2.
go back to reference Perry J, Burnfield JM. Gait Analysis: normal and pathological function. 2nd ed. New Jersey: Slack Incorporated; 2010. Perry J, Burnfield JM. Gait Analysis: normal and pathological function. 2nd ed. New Jersey: Slack Incorporated; 2010.
4.
5.
go back to reference Vanicek N, Strike S, McNaughton L, Polman R. Gait patterns in transtibial amputee fallers vs. non-fallers: Biomechanical differences during level walking. Gait Posture. 2009;29:415–20.CrossRefPubMed Vanicek N, Strike S, McNaughton L, Polman R. Gait patterns in transtibial amputee fallers vs. non-fallers: Biomechanical differences during level walking. Gait Posture. 2009;29:415–20.CrossRefPubMed
6.
go back to reference Eils E, Behrens S, Mers O, Thorwesten L, Völker K, Rosenbaum D. Reduced plantar sensation causes a cautious walking pattern. Gait Posture. 2004;20:54–60.CrossRefPubMed Eils E, Behrens S, Mers O, Thorwesten L, Völker K, Rosenbaum D. Reduced plantar sensation causes a cautious walking pattern. Gait Posture. 2004;20:54–60.CrossRefPubMed
7.
go back to reference Gabriel RE, Abrantes J, Granta K, Bulas-Cruz J, Melo-Pinro P, Filipe V. Dynamic joint stiffness of the ankle during walking: gender-related differences. Phys Ther Sport. 2008;12:16–24.CrossRef Gabriel RE, Abrantes J, Granta K, Bulas-Cruz J, Melo-Pinro P, Filipe V. Dynamic joint stiffness of the ankle during walking: gender-related differences. Phys Ther Sport. 2008;12:16–24.CrossRef
8.
go back to reference Baker PA, Hewison SR. Gait recovery pattern of unilateral lower limb amputees during rehabilitation. Prosthet Orthot Int. 1990;14:80–4.PubMed Baker PA, Hewison SR. Gait recovery pattern of unilateral lower limb amputees during rehabilitation. Prosthet Orthot Int. 1990;14:80–4.PubMed
9.
go back to reference Yiğiter K, Sener G, Erbahçeci F, Bayar K, Ülger ÖG, Akdoğan S. A comparison of traditional prosthetic training versus proprioceptive neuromuscular facilitation resistive gait training with trans-femoral amputees. Prosthet Orthot Int. 2002;26:213–7.CrossRefPubMed Yiğiter K, Sener G, Erbahçeci F, Bayar K, Ülger ÖG, Akdoğan S. A comparison of traditional prosthetic training versus proprioceptive neuromuscular facilitation resistive gait training with trans-femoral amputees. Prosthet Orthot Int. 2002;26:213–7.CrossRefPubMed
10.
go back to reference Jones SF, Twigg PC, Scally AJ, Buckley JG. The gait initiation process in unilateral lower-limb amputees when stepping up and stepping down to a new level. Clin Biomech. 2005;20:405–13.CrossRef Jones SF, Twigg PC, Scally AJ, Buckley JG. The gait initiation process in unilateral lower-limb amputees when stepping up and stepping down to a new level. Clin Biomech. 2005;20:405–13.CrossRef
11.
go back to reference Brunelli S, Morone G, Iosa M, Ciotti C, De Giorgi R, Foti C, et al. Efficacy of progressive muscle relaxation, mental imagery, and phantom exercise training on phantom limb: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96:181–7.CrossRefPubMed Brunelli S, Morone G, Iosa M, Ciotti C, De Giorgi R, Foti C, et al. Efficacy of progressive muscle relaxation, mental imagery, and phantom exercise training on phantom limb: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96:181–7.CrossRefPubMed
12.
go back to reference Breakey JM. Gait of unilateral below-knee amputees. Orthot Prosthet. 1976;30:17–24. Breakey JM. Gait of unilateral below-knee amputees. Orthot Prosthet. 1976;30:17–24.
13.
go back to reference Schmalz T, Blumentritt S, Jarasch R. Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait Posture. 2002;3:255–63.CrossRef Schmalz T, Blumentritt S, Jarasch R. Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait Posture. 2002;3:255–63.CrossRef
14.
go back to reference Mattes SJ, Martin PE, Royer TD. Walking symmetry and energy cost in persons with unilateral transtibial amputations: matching prosthetic and intact limb inertial properties. Arch Phys Med Rehabil. 2000;81:561–8.CrossRefPubMed Mattes SJ, Martin PE, Royer TD. Walking symmetry and energy cost in persons with unilateral transtibial amputations: matching prosthetic and intact limb inertial properties. Arch Phys Med Rehabil. 2000;81:561–8.CrossRefPubMed
15.
go back to reference Nolan L, Wit A, Dudziñski K, Lees A, Lake M, Wychowañski M. Adjustments in gait symmetry with walking speed in trans-femoral and transtibial amputees. Gait Posture. 2003;17:142–51.CrossRefPubMed Nolan L, Wit A, Dudziñski K, Lees A, Lake M, Wychowañski M. Adjustments in gait symmetry with walking speed in trans-femoral and transtibial amputees. Gait Posture. 2003;17:142–51.CrossRefPubMed
17.
go back to reference Rossini PM, Puri F. Neuromagnetic integrated methods tracking human brain mechanisms of sensorimotor areas ‘plastic’ reorganization. Brain Res Rev. 2000;33:131–54.CrossRefPubMed Rossini PM, Puri F. Neuromagnetic integrated methods tracking human brain mechanisms of sensorimotor areas ‘plastic’ reorganization. Brain Res Rev. 2000;33:131–54.CrossRefPubMed
18.
go back to reference Edgerton VR, Tillakaratne NJ, Bigbee AJ, de Leon RD, Roy RR. Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci. 2004;27:145–67.CrossRefPubMed Edgerton VR, Tillakaratne NJ, Bigbee AJ, de Leon RD, Roy RR. Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci. 2004;27:145–67.CrossRefPubMed
19.
go back to reference Chen R, Corwell B, Yaseen Z, Hallett M, Cohen LG. Mechanisms of cortical reorganization in lower-limb amputees. J Neurosci. 1998;18:3443–50.PubMed Chen R, Corwell B, Yaseen Z, Hallett M, Cohen LG. Mechanisms of cortical reorganization in lower-limb amputees. J Neurosci. 1998;18:3443–50.PubMed
21.
go back to reference Garrison KA, Winstein CJ, Aziz-Zadeh L. The mirror neuron system: A neural substrate for methods in stroke rehabilitation. Neurorehabil Neural Repair. 2010;24:404–12.CrossRefPubMed Garrison KA, Winstein CJ, Aziz-Zadeh L. The mirror neuron system: A neural substrate for methods in stroke rehabilitation. Neurorehabil Neural Repair. 2010;24:404–12.CrossRefPubMed
22.
go back to reference Cusack WF, Patterson R, Thach S, Kistenberg RS, Wheaton LA. Motor performance benefits of matched limb imitation in prosthesis users. Exp Brain Res. 2014;232:2143–54.CrossRefPubMed Cusack WF, Patterson R, Thach S, Kistenberg RS, Wheaton LA. Motor performance benefits of matched limb imitation in prosthesis users. Exp Brain Res. 2014;232:2143–54.CrossRefPubMed
23.
go back to reference Page SJ, Szaflarski JP, Eliassen JC, Pan H, Cramer SC. Cortical plasticity following motor skill learning during mental practice in stroke. Neurorehabil Neural Repair. 2009;23:382–9.CrossRefPubMedPubMedCentral Page SJ, Szaflarski JP, Eliassen JC, Pan H, Cramer SC. Cortical plasticity following motor skill learning during mental practice in stroke. Neurorehabil Neural Repair. 2009;23:382–9.CrossRefPubMedPubMedCentral
24.
go back to reference Jeannerod M. The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci. 1994;17:187–245.CrossRef Jeannerod M. The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci. 1994;17:187–245.CrossRef
25.
go back to reference Jackson PL, Doyon J, Richards CL, Malouin F. The efficacy of combined physical and mental practice in the learning of a foot-sequence task after stroke: a case report. Neurorehabil Neural Repair. 2004;18:106–11.CrossRefPubMed Jackson PL, Doyon J, Richards CL, Malouin F. The efficacy of combined physical and mental practice in the learning of a foot-sequence task after stroke: a case report. Neurorehabil Neural Repair. 2004;18:106–11.CrossRefPubMed
26.
go back to reference Jackson PL, Lafleur MF, Malouin F, Richards C, Doyon J. Potential role of mental practice using motor imagery in neurologic rehabilitation. Arch Phys Med Rehabil. 2001;82:1133–41.CrossRefPubMed Jackson PL, Lafleur MF, Malouin F, Richards C, Doyon J. Potential role of mental practice using motor imagery in neurologic rehabilitation. Arch Phys Med Rehabil. 2001;82:1133–41.CrossRefPubMed
27.
go back to reference Malouin F, Richards C. Mental practice for relearning locomotor skills. Phys Ther. 2010;90:240–51.CrossRefPubMed Malouin F, Richards C. Mental practice for relearning locomotor skills. Phys Ther. 2010;90:240–51.CrossRefPubMed
28.
go back to reference Malouin F, Richards CL, Durand A, Descent M, Poiré D, Frémont P, et al. Effects of practice, visual loss, limb amputation and disuse on motor imagery vividness. Neurorehabil Neural Repair. 2009;23:449–63.CrossRefPubMed Malouin F, Richards CL, Durand A, Descent M, Poiré D, Frémont P, et al. Effects of practice, visual loss, limb amputation and disuse on motor imagery vividness. Neurorehabil Neural Repair. 2009;23:449–63.CrossRefPubMed
29.
go back to reference Solodkin A, Hlustik P, Chen EE, Small SL, Small SI. Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex. 2004;14:1246–55.CrossRefPubMed Solodkin A, Hlustik P, Chen EE, Small SL, Small SI. Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex. 2004;14:1246–55.CrossRefPubMed
30.
go back to reference Santos-Couto-Paz CC, Teixeira-Salmela LF, Tierra-Criollo CJ. The addition of functional task-oriented mental practice to conventional physical therapy improves motor skills in daily functions after stroke. Braz J Phys Ther. 2013;17:564–71.CrossRefPubMedPubMedCentral Santos-Couto-Paz CC, Teixeira-Salmela LF, Tierra-Criollo CJ. The addition of functional task-oriented mental practice to conventional physical therapy improves motor skills in daily functions after stroke. Braz J Phys Ther. 2013;17:564–71.CrossRefPubMedPubMedCentral
31.
go back to reference Timmermans AA, Verbunt JA, van Woerden R, Moennekens M, Pernot DH, Seelen HA. Effect of mental practice on the improvement of function and daily activity performance of the upper extremity in patients with subacute stroke: a randomized clinical trial. J Am Med Dir Assoc. 2012;14:204–12.CrossRefPubMed Timmermans AA, Verbunt JA, van Woerden R, Moennekens M, Pernot DH, Seelen HA. Effect of mental practice on the improvement of function and daily activity performance of the upper extremity in patients with subacute stroke: a randomized clinical trial. J Am Med Dir Assoc. 2012;14:204–12.CrossRefPubMed
32.
go back to reference Stinear CM, Byblow WD, Steyvers M, Levin O, Swinnen SP. Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Exp Brain Res. 2006;168:157–64.CrossRefPubMed Stinear CM, Byblow WD, Steyvers M, Levin O, Swinnen SP. Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Exp Brain Res. 2006;168:157–64.CrossRefPubMed
33.
go back to reference Bakker M, de Lange FP, Stevens JA, Toni I, Bloem BR. Motor imagery of gait: a quantitative approach. Exp Brain Res. 2007;179:497–504.CrossRefPubMed Bakker M, de Lange FP, Stevens JA, Toni I, Bloem BR. Motor imagery of gait: a quantitative approach. Exp Brain Res. 2007;179:497–504.CrossRefPubMed
34.
go back to reference Gregg M, Hall C, Butler A. The MIQ-RS: a suitable option for examining movement imagery ability. Evid Based Complement Alternat Med. 2010;7:249–57.CrossRefPubMed Gregg M, Hall C, Butler A. The MIQ-RS: a suitable option for examining movement imagery ability. Evid Based Complement Alternat Med. 2010;7:249–57.CrossRefPubMed
35.
go back to reference Braun S, Kleynen MS, van Heel T, Kruithof N, Wade D, Beurskens A. The effects of mental practice in neurological rehabilitation: a systematic review and meta-analysis. Front Hum Neurosci. 2013;7:00390.CrossRef Braun S, Kleynen MS, van Heel T, Kruithof N, Wade D, Beurskens A. The effects of mental practice in neurological rehabilitation: a systematic review and meta-analysis. Front Hum Neurosci. 2013;7:00390.CrossRef
36.
go back to reference Riccio I, Iolascon G, Barillari MR, Gimigliano R, Gimigliano F. Mental practice is effective in upper limb recovery after stroke: a randomized single-blind cross-over study. Eur J Phys Rehabil Med. 2010;46:19–25.PubMed Riccio I, Iolascon G, Barillari MR, Gimigliano R, Gimigliano F. Mental practice is effective in upper limb recovery after stroke: a randomized single-blind cross-over study. Eur J Phys Rehabil Med. 2010;46:19–25.PubMed
37.
go back to reference Takahashi T, Ishida K, Hirose D, Nagano Y, Okumiya K, Nishinaga M, et al. Vertical ground reactions force shape is associated with gait parameters, time up and go, and functional reach in elderly females. J Rehabil Med. 2004;36:42–5.CrossRefPubMed Takahashi T, Ishida K, Hirose D, Nagano Y, Okumiya K, Nishinaga M, et al. Vertical ground reactions force shape is associated with gait parameters, time up and go, and functional reach in elderly females. J Rehabil Med. 2004;36:42–5.CrossRefPubMed
38.
go back to reference Verdini F, Marcucci M, Benedetti MG, Leo T. Identification and characterization of heel strike transient. Gait Posture. 2006;24:77–84.CrossRefPubMed Verdini F, Marcucci M, Benedetti MG, Leo T. Identification and characterization of heel strike transient. Gait Posture. 2006;24:77–84.CrossRefPubMed
39.
go back to reference Sanderson DJ, Martin PE. Lower extremity kinematic and kinetic adaptations in unilateral below-knee amputees during walking. Gait Posture. 1997;6:126–36.CrossRef Sanderson DJ, Martin PE. Lower extremity kinematic and kinetic adaptations in unilateral below-knee amputees during walking. Gait Posture. 1997;6:126–36.CrossRef
40.
go back to reference Boutin A, Blandin Y. On the cognitive processes underlying contextual interference: Contributions of practice schedule, task similarity and amount of practice. Hum Mov Sci. 2010;29:910–20.CrossRefPubMed Boutin A, Blandin Y. On the cognitive processes underlying contextual interference: Contributions of practice schedule, task similarity and amount of practice. Hum Mov Sci. 2010;29:910–20.CrossRefPubMed
41.
go back to reference Zmitrewicz RJ, Neptune RR, Walden JG, Rogers WE, Bosker GW. The effect of foot and ankle prosthetic components on braking and propulsive impulses during transtibial amputee gait. Arch Phys Med Rehabil. 2006;87:1334–9.CrossRefPubMed Zmitrewicz RJ, Neptune RR, Walden JG, Rogers WE, Bosker GW. The effect of foot and ankle prosthetic components on braking and propulsive impulses during transtibial amputee gait. Arch Phys Med Rehabil. 2006;87:1334–9.CrossRefPubMed
42.
go back to reference Dingwell JB, Davis BL, Frazier DM. Use of an instrumented treadmill for real-time gait symmetry evaluation and feedback in normal and trans-tibial amputee subjects. Prosthet Orthot Int. 1996;20:101–10.PubMed Dingwell JB, Davis BL, Frazier DM. Use of an instrumented treadmill for real-time gait symmetry evaluation and feedback in normal and trans-tibial amputee subjects. Prosthet Orthot Int. 1996;20:101–10.PubMed
43.
go back to reference Isakov E, Burger H, Krajnik J, Gregoric M, Marincek C. Influence of speed on gait parameters and on symmetry in trans-tibial amputees. Prosthet Orthot Int. 1996;20:153–8.PubMed Isakov E, Burger H, Krajnik J, Gregoric M, Marincek C. Influence of speed on gait parameters and on symmetry in trans-tibial amputees. Prosthet Orthot Int. 1996;20:153–8.PubMed
44.
go back to reference Courtine G, Papaxanthis C, Gentili R, Pozzo T. Gait-dependent motor memory facilitation in covert movement execution. Cog Brain Res. 2004;22:67–75.CrossRef Courtine G, Papaxanthis C, Gentili R, Pozzo T. Gait-dependent motor memory facilitation in covert movement execution. Cog Brain Res. 2004;22:67–75.CrossRef
45.
go back to reference Hubbard IJ, Parsons MW, Neilson C, Carey LM. Task-specific training: evidence for and translation to clinical practice. Occup Ther Int. 2009;16:175–89.CrossRefPubMed Hubbard IJ, Parsons MW, Neilson C, Carey LM. Task-specific training: evidence for and translation to clinical practice. Occup Ther Int. 2009;16:175–89.CrossRefPubMed
46.
go back to reference Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, et al. Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage. 2001;14:1186–92.CrossRefPubMed Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, et al. Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage. 2001;14:1186–92.CrossRefPubMed
47.
go back to reference Müller-Putz GR, Daly I, Kaiser V. Motor imagery-induced EEG patterns in individuals with spinal cord injury and their impact on brain–computer interface accuracy. J Neural Eng. 2014;11:035011.CrossRefPubMed Müller-Putz GR, Daly I, Kaiser V. Motor imagery-induced EEG patterns in individuals with spinal cord injury and their impact on brain–computer interface accuracy. J Neural Eng. 2014;11:035011.CrossRefPubMed
Metadata
Title
Influence of functional task-oriented mental practice on the gait of transtibial amputees: a randomized, clinical trial
Authors
Rodrigo Gontijo Cunha
Paulo José Guimarães Da-Silva
Clarissa Cardoso dos Santos Couto Paz
Ana Carolina da Silva Ferreira
Carlos Julio Tierra-Criollo
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2017
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-017-0238-x

Other articles of this Issue 1/2017

Journal of NeuroEngineering and Rehabilitation 1/2017 Go to the issue