Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2016

Open Access 01-12-2016 | Review

Robotic quantification of upper extremity loss of independent joint control or flexion synergy in individuals with hemiparetic stroke: a review of paradigms addressing the effects of shoulder abduction loading

Authors: Michael D. Ellis, Yiyun Lan, Jun Yao, Julius P. A. Dewald

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2016

Login to get access

Abstract

Unsupported or “against-gravity” reaching and hand opening movements are greatly impaired in individuals with hemiparetic stroke. The reduction in reaching excursion and hand opening is thought to be primarily limited by abnormal muscle co-activation of shoulder abductors with distal limb flexors, known as flexion synergy, that results in a loss of independent joint control or joint individuation. Our laboratory employs several methods for quantifying this movement impairment, however the most documented techniques are sophisticated and laboratory-based. Here a series of robotic methods that vary in complexity from comprehensive (laboratory-based) to focused (clinically relevant) are outlined in detail in order to facilitate translation and make recommendations for utilization across the translational spectrum as part of Journal of NeuroEngineering and Rehabilitation thematic series, “Technically-advanced assessments in sensory motor rehabilitation.” While these methods focus on our published work utilizing the device, ACT3D, these methods can be duplicated using any mechatronic device with the appropriate characteristics. The common thread and most important aspect of the methods described is addressing the deleterious effects of abduction loading. Distal upper extremity joint performance is directly and monotonically modulated by proximal (shoulder abduction) joint demands. The employment of robotic metrics is the best tool for selectively manipulating shoulder abduction task requirements spanning the individual’s full range of shoulder abduction strength. From the series of methods and the concluding recommendations, scientists and clinicians can determine the ideal robotic quantification method for the measurement of the impact of loss of independent joint control on reaching and hand function.
Literature
2.
go back to reference Dewald JP, Pope PS, Given JD, Buchanan TS, Rymer WZ. Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain. 1995;118(Pt 2):495–510.CrossRefPubMed Dewald JP, Pope PS, Given JD, Buchanan TS, Rymer WZ. Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain. 1995;118(Pt 2):495–510.CrossRefPubMed
3.
go back to reference Beer RF, Given JD, Dewald JP. Task-dependent weakness at the elbow in patients with hemiparesis. Arch Phys Med Rehabil. 1999;80(7):766–72.CrossRefPubMed Beer RF, Given JD, Dewald JP. Task-dependent weakness at the elbow in patients with hemiparesis. Arch Phys Med Rehabil. 1999;80(7):766–72.CrossRefPubMed
4.
go back to reference Dewald JP, Sheshadri V, Dawson ML, Beer RF. Upper-limb discoordination in hemiparetic stroke: implications for neurorehabilitation. Top Stroke Rehabil. 2001;8(1):1–12.CrossRefPubMed Dewald JP, Sheshadri V, Dawson ML, Beer RF. Upper-limb discoordination in hemiparetic stroke: implications for neurorehabilitation. Top Stroke Rehabil. 2001;8(1):1–12.CrossRefPubMed
5.
go back to reference Brunnstrom S. Motor testing procedures in hemiplegia: based on sequential recovery stages. Phys Ther. 1966;46(4):357–75.PubMed Brunnstrom S. Motor testing procedures in hemiplegia: based on sequential recovery stages. Phys Ther. 1966;46(4):357–75.PubMed
6.
go back to reference Twitchell TE. The restoration of motor function following hemiplegia in man. Brain. 1951;74:443–80.CrossRefPubMed Twitchell TE. The restoration of motor function following hemiplegia in man. Brain. 1951;74:443–80.CrossRefPubMed
7.
go back to reference Beer RF, Dewald JP, Dawson ML, Rymer WZ. Target-dependent differences between free and constrained arm movements in chronic hemiparesis. Exp Brain Res. 2004;156(4):458–70.CrossRefPubMed Beer RF, Dewald JP, Dawson ML, Rymer WZ. Target-dependent differences between free and constrained arm movements in chronic hemiparesis. Exp Brain Res. 2004;156(4):458–70.CrossRefPubMed
8.
go back to reference Beer RF, Ellis MD, Holubar BG, Dewald JP. Impact of gravity loading on post-stroke reaching and its relationship to weakness. Muscle Nerve. 2007;36(2):242–50.CrossRefPubMedPubMedCentral Beer RF, Ellis MD, Holubar BG, Dewald JP. Impact of gravity loading on post-stroke reaching and its relationship to weakness. Muscle Nerve. 2007;36(2):242–50.CrossRefPubMedPubMedCentral
9.
go back to reference Ellis MD, Drogos J, Carmona C, Keller T, Dewald JP. Neck rotation modulates flexion synergy torques, indicating an ipsilateral reticulospinal source for impairment in stroke. J Neurophysiol. 2012;108(11):3096–104.CrossRefPubMedPubMedCentral Ellis MD, Drogos J, Carmona C, Keller T, Dewald JP. Neck rotation modulates flexion synergy torques, indicating an ipsilateral reticulospinal source for impairment in stroke. J Neurophysiol. 2012;108(11):3096–104.CrossRefPubMedPubMedCentral
10.
go back to reference Beer RF, Dewald JP, Rymer WZ. Deficits in the coordination of multijoint arm movements in patients with hemiparesis: evidence for disturbed control of limb dynamics. Exp Brain Res. 2000;131(3):305–19.CrossRefPubMed Beer RF, Dewald JP, Rymer WZ. Deficits in the coordination of multijoint arm movements in patients with hemiparesis: evidence for disturbed control of limb dynamics. Exp Brain Res. 2000;131(3):305–19.CrossRefPubMed
11.
go back to reference Levin MF. Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain. 1996;119(Pt 1):281–93.CrossRefPubMed Levin MF. Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain. 1996;119(Pt 1):281–93.CrossRefPubMed
12.
go back to reference Dewald JP, Beer RF. Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis. Muscle Nerve. 2001;24(2):273–83.CrossRefPubMed Dewald JP, Beer RF. Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis. Muscle Nerve. 2001;24(2):273–83.CrossRefPubMed
13.
go back to reference Ellis MD, Acosta AM, Yao J, Dewald JP. Position-dependent torque coupling and associated muscle activation in the hemiparetic upper extremity. Exp Brain Res. 2007;176(4):594–602.CrossRefPubMed Ellis MD, Acosta AM, Yao J, Dewald JP. Position-dependent torque coupling and associated muscle activation in the hemiparetic upper extremity. Exp Brain Res. 2007;176(4):594–602.CrossRefPubMed
14.
go back to reference Ellis MD, Sukal T, Demott T, Dewald JP. Augmenting clinical evaluation of hemiparetic arm movement with a laboratory-based quantitative measurement of kinematics as a function of limb loading. Neurorehabil Neural Repair. 2008;22(4):321–9.CrossRefPubMedPubMedCentral Ellis MD, Sukal T, Demott T, Dewald JP. Augmenting clinical evaluation of hemiparetic arm movement with a laboratory-based quantitative measurement of kinematics as a function of limb loading. Neurorehabil Neural Repair. 2008;22(4):321–9.CrossRefPubMedPubMedCentral
15.
go back to reference Sukal TM, Ellis MD, Dewald JP. Shoulder abduction-induced reductions in reaching work area following hemiparetic stroke: neuroscientific implications. Exp Brain Res. 2007;183(2):215–23.CrossRefPubMedPubMedCentral Sukal TM, Ellis MD, Dewald JP. Shoulder abduction-induced reductions in reaching work area following hemiparetic stroke: neuroscientific implications. Exp Brain Res. 2007;183(2):215–23.CrossRefPubMedPubMedCentral
16.
go back to reference Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31.PubMed Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31.PubMed
17.
go back to reference Gowland C, Stratford P, Ward M, et al. Measuring physical impairment and disability with the Chedoke-McMaster stroke assessment. Stroke. 1993;24(1):58–63.CrossRefPubMed Gowland C, Stratford P, Ward M, et al. Measuring physical impairment and disability with the Chedoke-McMaster stroke assessment. Stroke. 1993;24(1):58–63.CrossRefPubMed
18.
go back to reference Cheung VC, Turolla A, Agostini M, et al. Muscle synergy patterns as physiological markers of motor cortical damage. Proc Natl Acad Sci U S A. 2012;109(36):14652–6.CrossRefPubMedPubMedCentral Cheung VC, Turolla A, Agostini M, et al. Muscle synergy patterns as physiological markers of motor cortical damage. Proc Natl Acad Sci U S A. 2012;109(36):14652–6.CrossRefPubMedPubMedCentral
19.
go back to reference Roh J, Rymer WZ, Beer RF. Evidence for altered upper extremity muscle synergies in chronic stroke survivors with mild and moderate impairment. Front Hum Neurosci. 2015;9:6.CrossRefPubMedPubMedCentral Roh J, Rymer WZ, Beer RF. Evidence for altered upper extremity muscle synergies in chronic stroke survivors with mild and moderate impairment. Front Hum Neurosci. 2015;9:6.CrossRefPubMedPubMedCentral
20.
go back to reference Simkins M, Al-Refai AH, Rosen J. Upper limb joint space modeling of stroke induced synergies using isolated and voluntary arm perturbations. IEEE Trans Neural Syst Rehabil Eng. 2014;22(3):491–500.CrossRefPubMed Simkins M, Al-Refai AH, Rosen J. Upper limb joint space modeling of stroke induced synergies using isolated and voluntary arm perturbations. IEEE Trans Neural Syst Rehabil Eng. 2014;22(3):491–500.CrossRefPubMed
21.
go back to reference Krabben T, Molier BI, Houwink A, Rietman JS, Buurke JH, Prange GB. Circle drawing as evaluative movement task in stroke rehabilitation: an explorative study. J Neuroeng Rehabil. 2011;8:15.CrossRefPubMedPubMedCentral Krabben T, Molier BI, Houwink A, Rietman JS, Buurke JH, Prange GB. Circle drawing as evaluative movement task in stroke rehabilitation: an explorative study. J Neuroeng Rehabil. 2011;8:15.CrossRefPubMedPubMedCentral
22.
go back to reference Lum PS, Burgar CG, Shor PC. Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans Neural Syst Rehabil Eng. 2004;12(2):186–94.CrossRefPubMed Lum PS, Burgar CG, Shor PC. Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans Neural Syst Rehabil Eng. 2004;12(2):186–94.CrossRefPubMed
23.
go back to reference Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 2014;11:3.CrossRefPubMedPubMedCentral Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 2014;11:3.CrossRefPubMedPubMedCentral
24.
go back to reference Ellis MD, Sukal-Moulton T, Dewald JP. Progressive shoulder abduction loading is a crucial element of arm rehabilitation in chronic stroke. Neurorehabil Neural Repair. 2009;23(8):862–9.CrossRefPubMedPubMedCentral Ellis MD, Sukal-Moulton T, Dewald JP. Progressive shoulder abduction loading is a crucial element of arm rehabilitation in chronic stroke. Neurorehabil Neural Repair. 2009;23(8):862–9.CrossRefPubMedPubMedCentral
25.
go back to reference Ellis MD, Sukal-Moulton TM, Dewald JP. Impairment-based 3-D robotic intervention improves upper extremity work area in chronic stroke: targeting abnormal joint torque coupling with progressive shoulder abduction loading. IEEE Trans Robot. 2009;25(3):549–55.CrossRefPubMedPubMedCentral Ellis MD, Sukal-Moulton TM, Dewald JP. Impairment-based 3-D robotic intervention improves upper extremity work area in chronic stroke: targeting abnormal joint torque coupling with progressive shoulder abduction loading. IEEE Trans Robot. 2009;25(3):549–55.CrossRefPubMedPubMedCentral
26.
go back to reference Miller LC, Dewald JP. Involuntary paretic wrist/finger flexion forces and EMG increase with shoulder abduction load in individuals with chronic stroke. Clin Neurophysiol. 2012;123(6):1216–25.CrossRefPubMedPubMedCentral Miller LC, Dewald JP. Involuntary paretic wrist/finger flexion forces and EMG increase with shoulder abduction load in individuals with chronic stroke. Clin Neurophysiol. 2012;123(6):1216–25.CrossRefPubMedPubMedCentral
27.
go back to reference Ellis MD, Alsauskaite L, Hussar K, Kumar K, Westgate J, Dewald JPA. Maximum elbow extension is achieved when initially combined with greater amounts of horizontal shoulder flexion; a kinematic evaluation of reaching in chronic severe stroke. J Neurol Phys Ther. 2011;35(4):213–23.CrossRef Ellis MD, Alsauskaite L, Hussar K, Kumar K, Westgate J, Dewald JPA. Maximum elbow extension is achieved when initially combined with greater amounts of horizontal shoulder flexion; a kinematic evaluation of reaching in chronic severe stroke. J Neurol Phys Ther. 2011;35(4):213–23.CrossRef
28.
go back to reference Ellis M, Carmona C, Drogos J, Traxel S, Dewald JPA. Progressive abduction loading therapy targeting flexion synergy to regain reaching function in chronic stroke: preliminary results from an RCT. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:1–4. Ellis M, Carmona C, Drogos J, Traxel S, Dewald JPA. Progressive abduction loading therapy targeting flexion synergy to regain reaching function in chronic stroke: preliminary results from an RCT. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:1–4.
29.
go back to reference Hagan C, Murphy G, Powers M, et al. Assessing a robotic measure of loss of independent joint control in chronic stroke. J Neurol Phys Ther. 2015;39(1):70–81.CrossRef Hagan C, Murphy G, Powers M, et al. Assessing a robotic measure of loss of independent joint control in chronic stroke. J Neurol Phys Ther. 2015;39(1):70–81.CrossRef
30.
go back to reference Ellis M, Liang C, Richardson M, Sipple K, Tafelski D, Dewald JPA. Development of a clinically viable single-value robotic evaluation of the impact of loss of independent joint control on reaching function following stroke. J Neurol Phys Ther. 2016;40(1):52–64.CrossRef Ellis M, Liang C, Richardson M, Sipple K, Tafelski D, Dewald JPA. Development of a clinically viable single-value robotic evaluation of the impact of loss of independent joint control on reaching function following stroke. J Neurol Phys Ther. 2016;40(1):52–64.CrossRef
31.
go back to reference Van der Lee JH, De Groot V, Beckerman H, Wagenaar RC, Lankhorst GJ, Bouter LM. The intra- and interrater reliability of the action research arm test: a practical test of upper extremity function in patients with stroke. Arch Phys Med Rehabil. 2001;82(1):14–9.CrossRefPubMed Van der Lee JH, De Groot V, Beckerman H, Wagenaar RC, Lankhorst GJ, Bouter LM. The intra- and interrater reliability of the action research arm test: a practical test of upper extremity function in patients with stroke. Arch Phys Med Rehabil. 2001;82(1):14–9.CrossRefPubMed
32.
go back to reference Lan Y, Yao J, Dewald JPA. Increased shoulder abduction loads decreases volitional finger extension in individuals with chronic stroke: preliminary findings. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:5808–11. Lan Y, Yao J, Dewald JPA. Increased shoulder abduction loads decreases volitional finger extension in individuals with chronic stroke: preliminary findings. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:5808–11.
33.
34.
go back to reference Ellis MD, Kottink AI, Prange GB, Rietman JS, Buurke JH, Dewald JP. Quantifying loss of independent joint control in acute stroke with a robotic evaluation of reaching workspace. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:8231–4.PubMed Ellis MD, Kottink AI, Prange GB, Rietman JS, Buurke JH, Dewald JP. Quantifying loss of independent joint control in acute stroke with a robotic evaluation of reaching workspace. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:8231–4.PubMed
Metadata
Title
Robotic quantification of upper extremity loss of independent joint control or flexion synergy in individuals with hemiparetic stroke: a review of paradigms addressing the effects of shoulder abduction loading
Authors
Michael D. Ellis
Yiyun Lan
Jun Yao
Julius P. A. Dewald
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2016
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-016-0203-0

Other articles of this Issue 1/2016

Journal of NeuroEngineering and Rehabilitation 1/2016 Go to the issue