Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2016

Open Access 01-12-2016 | Research

Powered wheelchair simulator development: implementing combined navigation-reaching tasks with a 3D hand motion controller

Authors: Gordon Tao, Philippe S. Archambault

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2016

Login to get access

Abstract

Background

Powered wheelchair (PW) training involving combined navigation and reaching is often limited or unfeasible. Virtual reality (VR) simulators offer a feasible alternative for rehabilitation training either at home or in a clinical setting. This study evaluated a low-cost magnetic-based hand motion controller as an interface for reaching tasks within the McGill Immersive Wheelchair (miWe) simulator.

Methods

Twelve experienced PW users performed three navigation-reaching tasks in the real world (RW) and in VR: working at a desk, using an elevator, and opening a door. The sense of presence in VR was assessed using the iGroup Presence Questionnaire (IPQ). We determined concordance of task performance in VR with that in the RW. A video task analysis was performed to analyse task behaviours.

Results

Compared to previous miWe data, IPQ scores were greater in the involvement domain (p < 0.05). Task analysis showed most of navigation and reaching behaviours as having moderate to excellent (K > 0.4, Cohen’s Kappa) agreement between the two environments, but greater (p < 0.05) risk of collisions and reaching errors in VR. VR performance demonstrated longer (p < 0.05) task times and more discreet movements for the elevator and desk tasks but not the door task.

Conclusions

Task performance showed poorer kinematic performance in VR than RW but similar strategies. Therefore, the reaching component represents a promising addition to the miWe training simulator, though some limitations must be addressed in future development.
Literature
1.
go back to reference Holliday P, Mihailidis A, Rolfson R, Fernie G. Understanding and measuring powered wheelchair mobility and manoeuvrability. Part I. Reach in confined spaces. Disabil Rehabil. 2005;27(16):939–49.PubMedCrossRef Holliday P, Mihailidis A, Rolfson R, Fernie G. Understanding and measuring powered wheelchair mobility and manoeuvrability. Part I. Reach in confined spaces. Disabil Rehabil. 2005;27(16):939–49.PubMedCrossRef
2.
go back to reference Ward AL, Sanjak M, Duffy K, Bravver E, Williams N, Nichols M, et al. Power wheelchair prescription, utilization, satisfaction, and cost for patients with amyotrophic lateral sclerosis: preliminary data for evidence-based guidelines. Arch Phys Med Rehabil. 2010;91(2):268–72.PubMedCrossRef Ward AL, Sanjak M, Duffy K, Bravver E, Williams N, Nichols M, et al. Power wheelchair prescription, utilization, satisfaction, and cost for patients with amyotrophic lateral sclerosis: preliminary data for evidence-based guidelines. Arch Phys Med Rehabil. 2010;91(2):268–72.PubMedCrossRef
3.
go back to reference Sonenblum SE, Sprigle S, Harris FH, Maurer CL. Characterization of power wheelchair use in the home and community. Arch Phys Med Rehabil. 2008;89(3):486–91.PubMedCrossRef Sonenblum SE, Sprigle S, Harris FH, Maurer CL. Characterization of power wheelchair use in the home and community. Arch Phys Med Rehabil. 2008;89(3):486–91.PubMedCrossRef
4.
go back to reference Kaye HS, Kang T, LaPlante MP. Mobility device use in the United States: National Institute on Disability and Rehabilitation Research, US Department of Education. Institute for Health and Aging, University of California. 2000. Kaye HS, Kang T, LaPlante MP. Mobility device use in the United States: National Institute on Disability and Rehabilitation Research, US Department of Education. Institute for Health and Aging, University of California. 2000.
5.
go back to reference Kirby RL, Keeler L, Wang S, Thompson K, Theriault C. Proportion of Wheelchair Users Who Receive Wheelchair Skills Training During an Admission to a Canadian Rehabilitation Center. Top Geriatr Rehabil. 2015;31(1):58–66.CrossRef Kirby RL, Keeler L, Wang S, Thompson K, Theriault C. Proportion of Wheelchair Users Who Receive Wheelchair Skills Training During an Admission to a Canadian Rehabilitation Center. Top Geriatr Rehabil. 2015;31(1):58–66.CrossRef
6.
go back to reference Linden MA, Whyatt C, Craig C, Kerr C. Efficacy of a powered wheelchair simulator for school aged children: A randomized controlled trial. Rehabil Psychol. 2013;58(4):405.PubMedCrossRef Linden MA, Whyatt C, Craig C, Kerr C. Efficacy of a powered wheelchair simulator for school aged children: A randomized controlled trial. Rehabil Psychol. 2013;58(4):405.PubMedCrossRef
7.
go back to reference Archambault PS, Chong JNF, Sorrento G, Routhier F, Boissy P, editors. Comparison of powered wheelchair driving performance in a real and in a simulated environment. Virtual Rehabilitation (ICVR), 2011 International Conference on; 2011 27–29 June 2011. Archambault PS, Chong JNF, Sorrento G, Routhier F, Boissy P, editors. Comparison of powered wheelchair driving performance in a real and in a simulated environment. Virtual Rehabilitation (ICVR), 2011 International Conference on; 2011 27–29 June 2011.
8.
go back to reference Abellard P, Randria I, Abellard A, Ben Khelifa M, Ramanantsizehena P. Electric Wheelchair Navigation Simulators: why, when, how? In: Di Paola A, Cicirelli G, editors. Mechatronic Systems Appications. InTech; 2010. Abellard P, Randria I, Abellard A, Ben Khelifa M, Ramanantsizehena P. Electric Wheelchair Navigation Simulators: why, when, how? In: Di Paola A, Cicirelli G, editors. Mechatronic Systems Appications. InTech; 2010.
9.
go back to reference Levin MF, Deutsch JE, Kafri M, Liebermann DG. Validity of Virtual Reality Environments for Sensorimotor Rehabilitation. Virtual Reality for Physical and Motor Rehabilitation. Springer: New York; 2014. p. 95–118. Levin MF, Deutsch JE, Kafri M, Liebermann DG. Validity of Virtual Reality Environments for Sensorimotor Rehabilitation. Virtual Reality for Physical and Motor Rehabilitation. Springer: New York; 2014. p. 95–118.
10.
go back to reference Holden MK. Virtual environments for motor rehabilitation: review. Cyberpsychol Behav. 2005;8(3):187–211.PubMedCrossRef Holden MK. Virtual environments for motor rehabilitation: review. Cyberpsychol Behav. 2005;8(3):187–211.PubMedCrossRef
11.
go back to reference Mantovani F, Castelnuovo G. The Sense of Presence in Virtual Training: Enhancing Skills Acquisition and Transfer of Knowledge through Learning Experience in Virtual Environments. In: Riva G., D.F. editor. Being There: Concepts, Effects and Measurement of User Presence in Synthetic Environments. Amsterdam. IOS Press. 2003:167–82. Mantovani F, Castelnuovo G. The Sense of Presence in Virtual Training: Enhancing Skills Acquisition and Transfer of Knowledge through Learning Experience in Virtual Environments. In: Riva G., D.F. editor. Being There: Concepts, Effects and Measurement of User Presence in Synthetic Environments. Amsterdam. IOS Press. 2003:167–82.
12.
go back to reference Ma H-I, Hwang W-J, Wang C-Y, Fang J-J, Leong I-F, Wang T-Y. Trunk–arm coordination in reaching for moving targets in people with Parkinson’s disease: Comparison between virtual and physical reality. Hum Mov Sci. 2012;31(5):1340–52.PubMedCrossRef Ma H-I, Hwang W-J, Wang C-Y, Fang J-J, Leong I-F, Wang T-Y. Trunk–arm coordination in reaching for moving targets in people with Parkinson’s disease: Comparison between virtual and physical reality. Hum Mov Sci. 2012;31(5):1340–52.PubMedCrossRef
15.
go back to reference IJsselsteijn W. Elements of a multi-level theory of presence: Phenomenology, mental processing and neural correlates. Proc PRESENCE. 2002;2002:245–59. IJsselsteijn W. Elements of a multi-level theory of presence: Phenomenology, mental processing and neural correlates. Proc PRESENCE. 2002;2002:245–59.
16.
go back to reference Seegert A. Doing there vs. being there: performing presence in interactive fiction. J Gaming Virtual Worlds. 2009;1(1):23–37.CrossRef Seegert A. Doing there vs. being there: performing presence in interactive fiction. J Gaming Virtual Worlds. 2009;1(1):23–37.CrossRef
17.
go back to reference Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.PubMedCrossRef Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.PubMedCrossRef
19.
go back to reference Schubert T, Friedmann F, Regenbrecht H. The experience of presence: Factor analytic insights. Presence. 2001;10(3):266–81.CrossRef Schubert T, Friedmann F, Regenbrecht H. The experience of presence: Factor analytic insights. Presence. 2001;10(3):266–81.CrossRef
21.
go back to reference Fleiss J. Statistical methods tor rates and proportions. Nueva York: Wiley; 1981. p. 8. Fleiss J. Statistical methods tor rates and proportions. Nueva York: Wiley; 1981. p. 8.
22.
go back to reference Harrison A, Derwent G, Enticknap A, Rose F, Attree E. Application of virtual reality technology to the assessment and training of powered wheelchair users. ICDVRAT 2000. 2000. Harrison A, Derwent G, Enticknap A, Rose F, Attree E. Application of virtual reality technology to the assessment and training of powered wheelchair users. ICDVRAT 2000. 2000.
25.
go back to reference Liebermann DG, Berman S, Weiss PL, Levin MF. Kinematics of reaching movements in a 2-D virtual environment in adults with and without stroke. IEEE Trans Neural Syst Rehabil Eng. 2012;20(6):778–87.PubMedCrossRef Liebermann DG, Berman S, Weiss PL, Levin MF. Kinematics of reaching movements in a 2-D virtual environment in adults with and without stroke. IEEE Trans Neural Syst Rehabil Eng. 2012;20(6):778–87.PubMedCrossRef
26.
go back to reference Wang C-Y, Hwang W-J, Fang J-J, Sheu C-F, Leong I-F, Ma H-I. Comparison of virtual reality versus physical reality on movement characteristics of persons with Parkinson's disease: effects of moving targets. Arch Phys Med Rehabil. 2011;92(8):1238–45.PubMedCrossRef Wang C-Y, Hwang W-J, Fang J-J, Sheu C-F, Leong I-F, Ma H-I. Comparison of virtual reality versus physical reality on movement characteristics of persons with Parkinson's disease: effects of moving targets. Arch Phys Med Rehabil. 2011;92(8):1238–45.PubMedCrossRef
27.
go back to reference Lott A, Bisson E, Lajoie Y, McComas J, Sveistrup H. The effect of two types of virtual reality on voluntary center of pressure displacement. Cyberpsychol Behav. 2003;6(5):477–85.PubMedCrossRef Lott A, Bisson E, Lajoie Y, McComas J, Sveistrup H. The effect of two types of virtual reality on voluntary center of pressure displacement. Cyberpsychol Behav. 2003;6(5):477–85.PubMedCrossRef
28.
go back to reference Magdalon EC, Michaelsen SM, Quevedo AA, Levin MF. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment. Acta Psychol (Amst). 2011;138(1):126–34.CrossRef Magdalon EC, Michaelsen SM, Quevedo AA, Levin MF. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment. Acta Psychol (Amst). 2011;138(1):126–34.CrossRef
30.
go back to reference Archambault PS, Norouzi NG, Kairy D, Solomon JM, Levin MF. Towards Establishing Clinical Guidelines for an Arm Rehabilitation Virtual Reality System. Replace, Repair, Restore, Relieve–Bridging Clinical and Engineering Solutions in Neurorehabilitation. Springer: New York; 2014. p. 263–70. Archambault PS, Norouzi NG, Kairy D, Solomon JM, Levin MF. Towards Establishing Clinical Guidelines for an Arm Rehabilitation Virtual Reality System. Replace, Repair, Restore, Relieve–Bridging Clinical and Engineering Solutions in Neurorehabilitation. Springer: New York; 2014. p. 263–70.
Metadata
Title
Powered wheelchair simulator development: implementing combined navigation-reaching tasks with a 3D hand motion controller
Authors
Gordon Tao
Philippe S. Archambault
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2016
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-016-0112-2

Other articles of this Issue 1/2016

Journal of NeuroEngineering and Rehabilitation 1/2016 Go to the issue