Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2015

Open Access 01-12-2015 | Research

Comparison of eye tracking, electrooculography and an auditory brain-computer interface for binary communication: a case study with a participant in the locked-in state

Authors: Ivo Käthner, Andrea Kübler, Sebastian Halder

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2015

Login to get access

Abstract

Background

In this study, we evaluated electrooculography (EOG), an eye tracker and an auditory brain-computer interface (BCI) as access methods to augmentative and alternative communication (AAC). The participant of the study has been in the locked-in state (LIS) for 6 years due to amyotrophic lateral sclerosis. He was able to communicate with slow residual eye movements, but had no means of partner independent communication. We discuss the usability of all tested access methods and the prospects of using BCIs as an assistive technology.

Methods

Within four days, we tested whether EOG, eye tracking and a BCI would allow the participant in LIS to make simple selections. We optimized the parameters in an iterative procedure for all systems.

Results

The participant was able to gain control over all three systems. Nonetheless, due to the level of proficiency previously achieved with his low-tech AAC method, he did not consider using any of the tested systems as an additional communication channel. However, he would consider using the BCI once control over his eye muscles would no longer be possible. He rated the ease of use of the BCI as the highest among the tested systems, because no precise eye movements were required; but also as the most tiring, due to the high level of attention needed to operate the BCI.

Conclusions

In this case study, the partner based communication was possible due to the good care provided and the proficiency achieved by the interlocutors. To ease the transition from a low-tech AAC method to a BCI once control over all muscles is lost, it must be simple to operate. For persons, who rely on AAC and are affected by a progressive neuromuscular disease, we argue that a complementary approach, combining BCIs and standard assistive technology, can prove valuable to achieve partner independent communication and ease the transition to a purely BCI based approach. Finally, we provide further evidence for the importance of a user-centered approach in the design of new assistive devices.
Appendix
Available only for authorised users
Literature
1.
go back to reference Posner JB, Saper CB, Schiff N, Plum F. Plum and Posner’s Diagnosis of Stupor and Coma. 4th ed. New York: Oxford University Press; 2007. Posner JB, Saper CB, Schiff N, Plum F. Plum and Posner’s Diagnosis of Stupor and Coma. 4th ed. New York: Oxford University Press; 2007.
2.
go back to reference American Congress of Rehabilitation Medicine. Recommendations for use of uniform nomenclature pertinent to patients with severe alterations in consciousness. Arch Phys Med Rehabil. 1995;76(2):205–9.CrossRef American Congress of Rehabilitation Medicine. Recommendations for use of uniform nomenclature pertinent to patients with severe alterations in consciousness. Arch Phys Med Rehabil. 1995;76(2):205–9.CrossRef
3.
go back to reference Bauer G, Gerstenbrand F, Rumpl E. Varieties of the locked-in syndrome. J Neurol. 1979;221(2):77–91.CrossRefPubMed Bauer G, Gerstenbrand F, Rumpl E. Varieties of the locked-in syndrome. J Neurol. 1979;221(2):77–91.CrossRefPubMed
4.
go back to reference Birbaumer N. Breaking the silence: Brain-computer interfaces (BCI) for communication and motor control. Psychophysiology. 2006;43(6):517–32.CrossRefPubMed Birbaumer N. Breaking the silence: Brain-computer interfaces (BCI) for communication and motor control. Psychophysiology. 2006;43(6):517–32.CrossRefPubMed
5.
go back to reference Beukelman DR, Fager S, Ball L, Dietz A. AAC for adults with acquired neurological conditions: A review. Augment Altern Commun. 2007;23(3):230–42.CrossRefPubMed Beukelman DR, Fager S, Ball L, Dietz A. AAC for adults with acquired neurological conditions: A review. Augment Altern Commun. 2007;23(3):230–42.CrossRefPubMed
6.
go back to reference Spataro R, Ciriacono M, Manno C, La Bella V. The eye-tracking computer device for communication in amyotrophic lateral sclerosis. Acta Neurol Scand. 2014;130(1):40–5.CrossRefPubMed Spataro R, Ciriacono M, Manno C, La Bella V. The eye-tracking computer device for communication in amyotrophic lateral sclerosis. Acta Neurol Scand. 2014;130(1):40–5.CrossRefPubMed
7.
go back to reference Deng LY, Hsu C-L, Lin T-C, Tuan J-S, Chang S-M. EOG-based Human–Computer Interface system development. Expert Systems Applications. 2010;37(4):3337–43.CrossRef Deng LY, Hsu C-L, Lin T-C, Tuan J-S, Chang S-M. EOG-based Human–Computer Interface system development. Expert Systems Applications. 2010;37(4):3337–43.CrossRef
8.
go back to reference Kaufmann T, Holz E, Kübler A. Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state. Front Neurosci. 2013;7:129.CrossRefPubMedCentralPubMed Kaufmann T, Holz E, Kübler A. Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state. Front Neurosci. 2013;7:129.CrossRefPubMedCentralPubMed
9.
go back to reference Tomita Y, Igarashi Y, Honda S, Matsuo N. Electro-oculography mouse for amyotrophic lateral sclerosis patients, Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1996 Bridging Disciplines for Biomedicine, vol. 5. 1996. p. 1780–1. Tomita Y, Igarashi Y, Honda S, Matsuo N. Electro-oculography mouse for amyotrophic lateral sclerosis patients, Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1996 Bridging Disciplines for Biomedicine, vol. 5. 1996. p. 1780–1.
10.
go back to reference Kübler A, Kotchoubey B, Kaiser J, Wolpaw JR, Birbaumer N. Brain–computer communication: Unlocking the locked in. Psychol Bull. 2001;127(3):358–75.CrossRefPubMed Kübler A, Kotchoubey B, Kaiser J, Wolpaw JR, Birbaumer N. Brain–computer communication: Unlocking the locked in. Psychol Bull. 2001;127(3):358–75.CrossRefPubMed
11.
go back to reference Wolpaw JR, Wolpaw EW. Brain-Computer Interfaces: Principles and Practice. Oxford. New York: Oxford Univ Pr; 2012.CrossRef Wolpaw JR, Wolpaw EW. Brain-Computer Interfaces: Principles and Practice. Oxford. New York: Oxford Univ Pr; 2012.CrossRef
12.
go back to reference Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol. 1988;70(6):510–23.CrossRefPubMed Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol. 1988;70(6):510–23.CrossRefPubMed
13.
go back to reference Kleih SC, Nijboer F, Halder S, Kübler A. Motivation modulates the P300 amplitude during brain–computer interface use. Clin Neurophysiol. 2010;121(7):1023–31.CrossRefPubMed Kleih SC, Nijboer F, Halder S, Kübler A. Motivation modulates the P300 amplitude during brain–computer interface use. Clin Neurophysiol. 2010;121(7):1023–31.CrossRefPubMed
14.
go back to reference Mak JN, Arbel Y, Minett JW, McCane LM, Yuksel B, Ryan D, et al. Optimizing the P300- based brain–computer interface: current status, limitations and future directions. J Neural Eng. 2011;8(2):025003.CrossRefPubMed Mak JN, Arbel Y, Minett JW, McCane LM, Yuksel B, Ryan D, et al. Optimizing the P300- based brain–computer interface: current status, limitations and future directions. J Neural Eng. 2011;8(2):025003.CrossRefPubMed
16.
go back to reference Guger C, Daban S, Sellers E, Holzner C, Krausz G, Carabalona R, et al. How many people are able to control a P300-based brain–computer interface (BCI)? Neurosci Lett. 2009;462(1):94–8.CrossRefPubMed Guger C, Daban S, Sellers E, Holzner C, Krausz G, Carabalona R, et al. How many people are able to control a P300-based brain–computer interface (BCI)? Neurosci Lett. 2009;462(1):94–8.CrossRefPubMed
17.
go back to reference Kübler A, Birbaumer N. Brain–computer interfaces and communication in paralysis: Extinction of goal directed thinking in completely paralysed patients? Clin Neurophysiol. 2008;119(11):2658–66.CrossRefPubMedCentralPubMed Kübler A, Birbaumer N. Brain–computer interfaces and communication in paralysis: Extinction of goal directed thinking in completely paralysed patients? Clin Neurophysiol. 2008;119(11):2658–66.CrossRefPubMedCentralPubMed
18.
go back to reference Nijboer SEW, Mellinger J, Jordan MA, Matuz T, Furdea A, et al. A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol. 2008;119(8):1909–16.CrossRefPubMedCentralPubMed Nijboer SEW, Mellinger J, Jordan MA, Matuz T, Furdea A, et al. A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol. 2008;119(8):1909–16.CrossRefPubMedCentralPubMed
19.
go back to reference Townsend G, LaPallo BK, Boulay CB, Krusienski DJ, Frye GE, Hauser CK, et al. A novel P300-based brain–computer interface stimulus presentation paradigm: Moving beyond rows and columns. Clin Neurophysiol. 2010;121(7):1109–20.CrossRefPubMedCentralPubMed Townsend G, LaPallo BK, Boulay CB, Krusienski DJ, Frye GE, Hauser CK, et al. A novel P300-based brain–computer interface stimulus presentation paradigm: Moving beyond rows and columns. Clin Neurophysiol. 2010;121(7):1109–20.CrossRefPubMedCentralPubMed
20.
go back to reference Halder S, Pinegger A, Käthner I, Wriessnegger SC, Faller J, Pires Antunes JB, et al. Brain-controlled applications using dynamic P300 speller matrices. Artif Intell Med. 2015;63(1):7–17.CrossRefPubMed Halder S, Pinegger A, Käthner I, Wriessnegger SC, Faller J, Pires Antunes JB, et al. Brain-controlled applications using dynamic P300 speller matrices. Artif Intell Med. 2015;63(1):7–17.CrossRefPubMed
21.
go back to reference Holz EM, Botrel L, Kaufmann T, Kübler A. Long-Term Independent Brain-Computer Interface Home Use Improves Quality of Life of a Patient in the Locked-In State: A Case Study. Arch Phys Med Rehabil. 2015;96(3, Supplement):16–26.CrossRef Holz EM, Botrel L, Kaufmann T, Kübler A. Long-Term Independent Brain-Computer Interface Home Use Improves Quality of Life of a Patient in the Locked-In State: A Case Study. Arch Phys Med Rehabil. 2015;96(3, Supplement):16–26.CrossRef
22.
go back to reference Sellers EW, Vaughan TM, Wolpaw JR. A brain-computer interface for long-term independent home use. Amyotroph Lateral Scler. 2010;11(5):449–55.CrossRefPubMed Sellers EW, Vaughan TM, Wolpaw JR. A brain-computer interface for long-term independent home use. Amyotroph Lateral Scler. 2010;11(5):449–55.CrossRefPubMed
23.
go back to reference Pasqualotto E, Matuz T, Federici S, Ruf CA, Bartl M, Belardinelli MO, et al. Usability and Workload of Access Technology for People With Severe Motor Impairment A Comparison of Brain-Computer Interfacing and Eye Tracking. Neurorehabil Neural Repair. 2015. doi:10.1177/1545968315575611.PubMed Pasqualotto E, Matuz T, Federici S, Ruf CA, Bartl M, Belardinelli MO, et al. Usability and Workload of Access Technology for People With Severe Motor Impairment A Comparison of Brain-Computer Interfacing and Eye Tracking. Neurorehabil Neural Repair. 2015. doi:10.​1177/​1545968315575611​.PubMed
24.
go back to reference Riccio A, Mattia D, Simione L, Olivetti M, Cincotti F. Eye-gaze independent EEG-based brain-computer interfaces for communication. J Neural Eng. 2012;9(4):045001.CrossRefPubMed Riccio A, Mattia D, Simione L, Olivetti M, Cincotti F. Eye-gaze independent EEG-based brain-computer interfaces for communication. J Neural Eng. 2012;9(4):045001.CrossRefPubMed
25.
go back to reference De Vos M, Gandras K, Debener S. Towards a truly mobile auditory brain–computer interface: Exploring the P300 to take away. Int J Psychophysiol. 2014;91(1):46–53.CrossRefPubMed De Vos M, Gandras K, Debener S. Towards a truly mobile auditory brain–computer interface: Exploring the P300 to take away. Int J Psychophysiol. 2014;91(1):46–53.CrossRefPubMed
26.
go back to reference Halder S, Rea M, Andreoni R, Nijboer F, Hammer EM, Kleih SC, et al. An auditory oddball brain–computer interface for binary choices. Clin Neurophysiol. 2010;121(4):516–23.CrossRefPubMed Halder S, Rea M, Andreoni R, Nijboer F, Hammer EM, Kleih SC, et al. An auditory oddball brain–computer interface for binary choices. Clin Neurophysiol. 2010;121(4):516–23.CrossRefPubMed
27.
go back to reference Pokorny C, Klobassa DS, Pichler G, Erlbeck H, Real RGL, Kübler A, et al. The auditory P300-based single-switch brain–computer interface: Paradigm transition from healthy subjects to minimally conscious patients. Artif Intell Med. 2013;59(2):81–90.CrossRefPubMed Pokorny C, Klobassa DS, Pichler G, Erlbeck H, Real RGL, Kübler A, et al. The auditory P300-based single-switch brain–computer interface: Paradigm transition from healthy subjects to minimally conscious patients. Artif Intell Med. 2013;59(2):81–90.CrossRefPubMed
28.
go back to reference Sellers EW, Donchin E. A P300-based brain–computer interface: Initial tests by ALS patients. Clin Neurophysiol. 2006;117(3):538–48.CrossRefPubMed Sellers EW, Donchin E. A P300-based brain–computer interface: Initial tests by ALS patients. Clin Neurophysiol. 2006;117(3):538–48.CrossRefPubMed
29.
go back to reference Hill NJ, Lal TN, Bierig K, Birbaumer N, Schölkopf B. An auditory paradigm for brain-computer interfaces. In: Saul LK, Weiss Y, Bottou L, editors. Advances in Neural Information Processing Systems 17. Cambridge, MA: MIT Press; 2005. p. 569–76. Hill NJ, Lal TN, Bierig K, Birbaumer N, Schölkopf B. An auditory paradigm for brain-computer interfaces. In: Saul LK, Weiss Y, Bottou L, editors. Advances in Neural Information Processing Systems 17. Cambridge, MA: MIT Press; 2005. p. 569–76.
30.
go back to reference Hill NJ, Schölkopf B. An online brain–computer interface based on shifting attention to concurrent streams of auditory stimuli. J Neural Eng. 2012;9(2):026011.CrossRefPubMedCentralPubMed Hill NJ, Schölkopf B. An online brain–computer interface based on shifting attention to concurrent streams of auditory stimuli. J Neural Eng. 2012;9(2):026011.CrossRefPubMedCentralPubMed
31.
go back to reference Hill NJ, Ricci E, Haider S, McCane LM, Heckman S, Wolpaw JR, et al. A practical, intuitive brain–computer interface for communicating ‘yes’ or ‘no’ by listening. J Neural Eng. 2014;11(3):035003.CrossRefPubMedCentralPubMed Hill NJ, Ricci E, Haider S, McCane LM, Heckman S, Wolpaw JR, et al. A practical, intuitive brain–computer interface for communicating ‘yes’ or ‘no’ by listening. J Neural Eng. 2014;11(3):035003.CrossRefPubMedCentralPubMed
32.
go back to reference Furdea A, Halder S, Krusienski DJ, Bross D, Nijboer F, Birbaumer N, et al. An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology. 2009;46(3):617–25.CrossRefPubMed Furdea A, Halder S, Krusienski DJ, Bross D, Nijboer F, Birbaumer N, et al. An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology. 2009;46(3):617–25.CrossRefPubMed
33.
go back to reference Höhne J, Schreuder M, Blankertz B, Tangermann M. A novel 9-class auditory ERP paradigm driving a predictive text entry system. Front Neurosci. 2011;5:99.CrossRefPubMedCentralPubMed Höhne J, Schreuder M, Blankertz B, Tangermann M. A novel 9-class auditory ERP paradigm driving a predictive text entry system. Front Neurosci. 2011;5:99.CrossRefPubMedCentralPubMed
34.
go back to reference Höhne J, Tangermann M. Towards User-Friendly Spelling with an Auditory Brain-Computer Interface: The CharStreamer Paradigm. PLoS One. 2014;9(6):e98322.CrossRefPubMedCentralPubMed Höhne J, Tangermann M. Towards User-Friendly Spelling with an Auditory Brain-Computer Interface: The CharStreamer Paradigm. PLoS One. 2014;9(6):e98322.CrossRefPubMedCentralPubMed
35.
go back to reference Käthner I, Ruf CA, Pasqualotto E, Braun C, Birbaumer N, Halder S. A portable auditory P300 brain-computer interface with directional cues. Clin Neurophysiol. 2013;124(2):327–38.CrossRefPubMed Käthner I, Ruf CA, Pasqualotto E, Braun C, Birbaumer N, Halder S. A portable auditory P300 brain-computer interface with directional cues. Clin Neurophysiol. 2013;124(2):327–38.CrossRefPubMed
36.
37.
38.
go back to reference Simon N, Käthner I, Ruf CA, Pasqualotto E, Kübler A, Halder S. An auditory multiclass brain-computer interface with natural stimuli: Usability evaluation with healthy participants and a motor impaired end user. Front Hum Neurosci. 2015;8:1039.CrossRefPubMedCentralPubMed Simon N, Käthner I, Ruf CA, Pasqualotto E, Kübler A, Halder S. An auditory multiclass brain-computer interface with natural stimuli: Usability evaluation with healthy participants and a motor impaired end user. Front Hum Neurosci. 2015;8:1039.CrossRefPubMedCentralPubMed
39.
go back to reference Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. BCI2000: A general-purpose, brain-computer interface (BCI) system. IEEE Trans Biomed Eng. 2004;51(6):1034–43.CrossRefPubMed Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. BCI2000: A general-purpose, brain-computer interface (BCI) system. IEEE Trans Biomed Eng. 2004;51(6):1034–43.CrossRefPubMed
40.
go back to reference Krusienski DJ, Sellers EW, Cabestaing F, Bayoudh S, McFarland DJ, Vaughan TM, et al. A comparison of classification techniques for the P300 Speller. J Neural Eng. 2006;3(4):299–305.CrossRefPubMed Krusienski DJ, Sellers EW, Cabestaing F, Bayoudh S, McFarland DJ, Vaughan TM, et al. A comparison of classification techniques for the P300 Speller. J Neural Eng. 2006;3(4):299–305.CrossRefPubMed
41.
go back to reference Sharbrough FW, Chatrian G-E, Lesser RP, Lüders H, Nuwer M, Picton TW. American electroencephalographic society guidelines for standard electrode position nomenclature. J Clin Neurophysiol. 1991;8:200–2.CrossRef Sharbrough FW, Chatrian G-E, Lesser RP, Lüders H, Nuwer M, Picton TW. American electroencephalographic society guidelines for standard electrode position nomenclature. J Clin Neurophysiol. 1991;8:200–2.CrossRef
42.
go back to reference Fried-Oken M, Fox L, Rau MT, Tullman J, Baker G, Hindal M, et al. Purposes of AAC device use for persons with ALS as reported by caregivers. Augment Altern Commun. 2006;22(3):209–21.CrossRefPubMed Fried-Oken M, Fox L, Rau MT, Tullman J, Baker G, Hindal M, et al. Purposes of AAC device use for persons with ALS as reported by caregivers. Augment Altern Commun. 2006;22(3):209–21.CrossRefPubMed
44.
go back to reference Caligari M, Godi M, Guglielmetti S, Franchignoni F, Nardone A. Eye tracking communication devices in amyotrophic lateral sclerosis: Impact on disability and quality of life. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14(7–8):546–52.CrossRefPubMed Caligari M, Godi M, Guglielmetti S, Franchignoni F, Nardone A. Eye tracking communication devices in amyotrophic lateral sclerosis: Impact on disability and quality of life. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14(7–8):546–52.CrossRefPubMed
45.
go back to reference Calvo A, Chiò A, Castellina E, Corno F, Farinetti L, Ghiglione P, et al. Eye Tracking Impact on Quality-of-Life of ALS Patients. In: 11th International Conference on Computers Helping People with Special Needs, Linz (AT). 2008. p. 70–7.CrossRef Calvo A, Chiò A, Castellina E, Corno F, Farinetti L, Ghiglione P, et al. Eye Tracking Impact on Quality-of-Life of ALS Patients. In: 11th International Conference on Computers Helping People with Special Needs, Linz (AT). 2008. p. 70–7.CrossRef
46.
go back to reference Hwang C-S, Weng H-H, Wang L-F, Tsai C-H, Chang H-T. An Eye-Tracking Assistive Device Improves the Quality of Life for ALS Patients and Reduces the Caregivers’ Burden. J Mot Behav. 2014;46(4):233–8.CrossRefPubMed Hwang C-S, Weng H-H, Wang L-F, Tsai C-H, Chang H-T. An Eye-Tracking Assistive Device Improves the Quality of Life for ALS Patients and Reduces the Caregivers’ Burden. J Mot Behav. 2014;46(4):233–8.CrossRefPubMed
47.
go back to reference Ball LJ, Nordness AS, Fager SK, Kersch K, Mohr B, Pattee GL, et al. Eye-Gaze Access to AAC Technology for People with Amyotrophic Lateral Sclerosis. J Med Speech-Lang Pathol. 2010;18(3):11–23. Ball LJ, Nordness AS, Fager SK, Kersch K, Mohr B, Pattee GL, et al. Eye-Gaze Access to AAC Technology for People with Amyotrophic Lateral Sclerosis. J Med Speech-Lang Pathol. 2010;18(3):11–23.
48.
go back to reference Vilimek R, Zander TO. BC(eye): Combining Eye-Gaze Input with Brain-Computer Interaction. In: Stephanidis C, editor. Universal Access in Human-Computer Interaction Intelligent and Ubiquitous Interaction Environments. Berlin Heidelberg: Springer; 2009. p. 593–602. doi:10.1007/978-3-642-02710-9_66.CrossRef Vilimek R, Zander TO. BC(eye): Combining Eye-Gaze Input with Brain-Computer Interaction. In: Stephanidis C, editor. Universal Access in Human-Computer Interaction Intelligent and Ubiquitous Interaction Environments. Berlin Heidelberg: Springer; 2009. p. 593–602. doi:10.​1007/​978-3-642-02710-9_​66.CrossRef
49.
go back to reference Baykara E, Ruf CA, Fioravanti C, Käthner I, Simon N, Kleih SC, et al. Effects of training and motivation on auditory P300 brain-computer interface performance. Clinical Neurophysiology. 2015 (in press). doi:10.1016/j.clinph.2015.04.054 Baykara E, Ruf CA, Fioravanti C, Käthner I, Simon N, Kleih SC, et al. Effects of training and motivation on auditory P300 brain-computer interface performance. Clinical Neurophysiology. 2015 (in press). doi:10.​1016/​j.​clinph.​2015.​04.​054
50.
go back to reference Halder S, Käthner I, Kübler A. Training leads to increased auditory brain-computer interface performance of end-users with motor impairments. Clinical Neurophysiology. 2015 (in press). doi:10.1016/j.clinph.2015.08.007 Halder S, Käthner I, Kübler A. Training leads to increased auditory brain-computer interface performance of end-users with motor impairments. Clinical Neurophysiology. 2015 (in press). doi:10.​1016/​j.​clinph.​2015.​08.​007
51.
go back to reference Marchetti M, Priftis K. Effectiveness of the P3-speller in brain–computer interfaces for amyotrophic lateral sclerosis patients: a systematic review and meta-analysis. Front Neuroeng. 2014;7. doi:10.3389/fneng.2014.00012. Marchetti M, Priftis K. Effectiveness of the P3-speller in brain–computer interfaces for amyotrophic lateral sclerosis patients: a systematic review and meta-analysis. Front Neuroeng. 2014;7. doi:10.​3389/​fneng.​2014.​00012.
53.
go back to reference De Massari D, Matuz T, Furdea A, Ruf CA, Halder S, Birbaumer N. Brain–computer interface and semantic classical conditioning of communication in paralysis. Biol Psychol. 2013;92(2):267–74.CrossRefPubMed De Massari D, Matuz T, Furdea A, Ruf CA, Halder S, Birbaumer N. Brain–computer interface and semantic classical conditioning of communication in paralysis. Biol Psychol. 2013;92(2):267–74.CrossRefPubMed
54.
go back to reference Murguialday AR, Hill J, Bensch M, Martens S, Halder S, Nijboer F, et al. Transition from the locked in to the completely locked-in state: A physiological analysis. Clin Neurophysiol. 2011;122(5):925–33.CrossRefPubMed Murguialday AR, Hill J, Bensch M, Martens S, Halder S, Nijboer F, et al. Transition from the locked in to the completely locked-in state: A physiological analysis. Clin Neurophysiol. 2011;122(5):925–33.CrossRefPubMed
55.
go back to reference Naito M, Michioka Y, Ozawa K, Ito Y, Kiguchi M, Kanazawa T. A communication means for totally locked-in ALS patients based on changes in cerebral blood volume measured with near-infrared light. IEICE Trans Inf Syst. 2007;E90D(7):1028–37.CrossRef Naito M, Michioka Y, Ozawa K, Ito Y, Kiguchi M, Kanazawa T. A communication means for totally locked-in ALS patients based on changes in cerebral blood volume measured with near-infrared light. IEICE Trans Inf Syst. 2007;E90D(7):1028–37.CrossRef
57.
go back to reference Holz EM, Botrel L, Kübler A. Independent BCI Use in Two Patients Diagnosed with Amyotrophic Lateral Sclerosis. In: Müller-Putz G, Bauernfeind G, Brunner C, Steryl D, Wriessnegger S, editors. Proceedings of the 6th International Brain-Computer Interface Conference. 2014. p. 92–5. Holz EM, Botrel L, Kübler A. Independent BCI Use in Two Patients Diagnosed with Amyotrophic Lateral Sclerosis. In: Müller-Putz G, Bauernfeind G, Brunner C, Steryl D, Wriessnegger S, editors. Proceedings of the 6th International Brain-Computer Interface Conference. 2014. p. 92–5.
58.
go back to reference Kübler A, Holz EM, Riccio A, Zickler C, Kaufmann T, Kleih SC, et al. The user-centered design as novel perspective for evaluating the usability of BCI-controlled applications. PLoS One. 2014;9(12):e112392.CrossRefPubMedCentralPubMed Kübler A, Holz EM, Riccio A, Zickler C, Kaufmann T, Kleih SC, et al. The user-centered design as novel perspective for evaluating the usability of BCI-controlled applications. PLoS One. 2014;9(12):e112392.CrossRefPubMedCentralPubMed
59.
go back to reference Zickler C, Riccio A, Leotta F, Hillian-Tress S, Halder S, Holz E, et al. A Brain-Computer Interface as Input Channel for a Standard Assistive Technology Software. Clin EEG Neurosci. 2011;42(4):236–44.CrossRefPubMed Zickler C, Riccio A, Leotta F, Hillian-Tress S, Halder S, Holz E, et al. A Brain-Computer Interface as Input Channel for a Standard Assistive Technology Software. Clin EEG Neurosci. 2011;42(4):236–44.CrossRefPubMed
60.
go back to reference Riccio A, Leotta F, Bianchi L, Aloise F, Zickler C, Hoogerwerf E-J, et al. Workload measurement in a communication application operated through a P300-based brain–computer interface. J Neural Eng. 2011;8(2):025028.CrossRefPubMed Riccio A, Leotta F, Bianchi L, Aloise F, Zickler C, Hoogerwerf E-J, et al. Workload measurement in a communication application operated through a P300-based brain–computer interface. J Neural Eng. 2011;8(2):025028.CrossRefPubMed
Metadata
Title
Comparison of eye tracking, electrooculography and an auditory brain-computer interface for binary communication: a case study with a participant in the locked-in state
Authors
Ivo Käthner
Andrea Kübler
Sebastian Halder
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2015
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-015-0071-z

Other articles of this Issue 1/2015

Journal of NeuroEngineering and Rehabilitation 1/2015 Go to the issue