Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2015

Open Access 01-12-2015 | Research

Surveying the interest of individuals with upper limb loss in novel prosthetic control techniques

Authors: Susannah M. Engdahl, Breanne P. Christie, Brian Kelly, Alicia Davis, Cynthia A. Chestek, Deanna H. Gates

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2015

Login to get access

Abstract

Background

Novel techniques for the control of upper limb prostheses may allow users to operate more complex prostheses than those that are currently available. Because many of these techniques are surgically invasive, it is important to understand whether individuals with upper limb loss would accept the associated risks in order to use a prosthesis.

Methods

An online survey of individuals with upper limb loss was conducted. Participants read descriptions of four prosthetic control techniques. One technique was noninvasive (myoelectric) and three were invasive (targeted muscle reinnervation, peripheral nerve interfaces, cortical interfaces). Participants rated how likely they were to try each technique if it offered each of six different functional features. They also rated their general interest in each of the six features. A two-way repeated measures analysis of variance with Greenhouse-Geisser corrections was used to examine the effect of the technique type and feature on participants’ interest in each technique.

Results

Responses from 104 individuals were analyzed. Many participants were interested in trying the techniques – 83 % responded positively toward myoelectric control, 63 % toward targeted muscle reinnervation, 68 % toward peripheral nerve interfaces, and 39 % toward cortical interfaces. Common concerns about myoelectric control were weight, cost, durability, and difficulty of use, while the most common concern about the invasive techniques was surgical risk. Participants expressed greatest interest in basic prosthesis features (e.g., opening and closing the hand slowly), as opposed to advanced features like fine motor control and touch sensation.

Conclusions

The results of these investigations may be used to inform the development of future prosthetic technologies that are appealing to individuals with upper limb loss.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008;89(3):422–9.PubMedCrossRef Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008;89(3):422–9.PubMedCrossRef
2.
go back to reference Behrend C, Reizner W, Marchessault JA, Hammert WC. Update on advances in upper extremity prosthetics. J Hand Surg [Am]. 2011;36(10):1711–7.CrossRef Behrend C, Reizner W, Marchessault JA, Hammert WC. Update on advances in upper extremity prosthetics. J Hand Surg [Am]. 2011;36(10):1711–7.CrossRef
3.
go back to reference Biddiss EA, Chau TT. Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet Orthot Int. 2007;31(3):236–57.PubMedCrossRef Biddiss EA, Chau TT. Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet Orthot Int. 2007;31(3):236–57.PubMedCrossRef
4.
go back to reference Biddiss E, Beaton D, Chau T. Consumer design priorities for upper limb prosthetics. Disabil Rehabil Assist Technol. 2007;2(6):346–57.PubMedCrossRef Biddiss E, Beaton D, Chau T. Consumer design priorities for upper limb prosthetics. Disabil Rehabil Assist Technol. 2007;2(6):346–57.PubMedCrossRef
5.
go back to reference Kyberd PJ, Hill W. Survey of upper limb prosthesis users in Sweden, the United Kingdom and Canada. Prosthet Orthot Int. 2011;35(2):234–41.PubMedCrossRef Kyberd PJ, Hill W. Survey of upper limb prosthesis users in Sweden, the United Kingdom and Canada. Prosthet Orthot Int. 2011;35(2):234–41.PubMedCrossRef
6.
go back to reference Atkins DJ, Heard DCY, Donovan WH. Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. J Prosthet Orthot. 1996;8(1):2–11.CrossRef Atkins DJ, Heard DCY, Donovan WH. Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. J Prosthet Orthot. 1996;8(1):2–11.CrossRef
7.
go back to reference Ohnishi K, Weir RF, Kuiken TA. Neural machine interfaces for controlling multifunctional powered upper-limb prostheses. Expert Rev Med Devic. 2007;4(1):43–53.CrossRef Ohnishi K, Weir RF, Kuiken TA. Neural machine interfaces for controlling multifunctional powered upper-limb prostheses. Expert Rev Med Devic. 2007;4(1):43–53.CrossRef
8.
go back to reference Ajiboye AB, Weir RF. A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthesis control. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):280–91.PubMedCrossRef Ajiboye AB, Weir RF. A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthesis control. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):280–91.PubMedCrossRef
9.
go back to reference Mattioli FER, EA Lamounier, A Cardoso, AB Soares, AO Andrade. Classification of EMG signals using artificial neural networks for virtual hand prosthesis control. in Conf Proc IEEE Eng Med Biol Soc. 2011; 7254-57. Mattioli FER, EA Lamounier, A Cardoso, AB Soares, AO Andrade. Classification of EMG signals using artificial neural networks for virtual hand prosthesis control. in Conf Proc IEEE Eng Med Biol Soc. 2011; 7254-57.
10.
go back to reference Farina D, Févotte C, Doncarli C, Merletti R. Blind separation of linear instantaneous mixtures of nonstationary surface myoelectric signals. IEEE Trans Biomed Eng. 2004;51(9):1555–67.PubMedCrossRef Farina D, Févotte C, Doncarli C, Merletti R. Blind separation of linear instantaneous mixtures of nonstationary surface myoelectric signals. IEEE Trans Biomed Eng. 2004;51(9):1555–67.PubMedCrossRef
11.
go back to reference Sensinger JW, Lock BA, Kuiken TA. Adaptive pattern recognition of myoelectric signals: exploration of conceptual framework and practical algorithms. IEEE Trans Neural Syst Rehabil Eng. 2009;17(3):270–8.PubMedCentralPubMedCrossRef Sensinger JW, Lock BA, Kuiken TA. Adaptive pattern recognition of myoelectric signals: exploration of conceptual framework and practical algorithms. IEEE Trans Neural Syst Rehabil Eng. 2009;17(3):270–8.PubMedCentralPubMedCrossRef
12.
go back to reference Resnik L, SL Klinger, K Etter, C Fantini. Controlling a multi-degree of freedom upper limb prosthesis using foot controls: user experience. Disabil Rehabil Assist Technol, Early Online, 2014;9(4): 318–29 Resnik L, SL Klinger, K Etter, C Fantini. Controlling a multi-degree of freedom upper limb prosthesis using foot controls: user experience. Disabil Rehabil Assist Technol, Early Online, 2014;9(4): 318–29
13.
go back to reference Carrozza MC, Persichetti A, Laschi C, Vecchi F, Lazzarini R, Vacalebri P, et al. A wearable Biomechatronic interface for controlling robots with voluntary foot movements. IEEE/ASME Trans Mechatronics. 2007;12(1):1–11.CrossRef Carrozza MC, Persichetti A, Laschi C, Vecchi F, Lazzarini R, Vacalebri P, et al. A wearable Biomechatronic interface for controlling robots with voluntary foot movements. IEEE/ASME Trans Mechatronics. 2007;12(1):1–11.CrossRef
14.
go back to reference Luzzio CC. Controlling an artificial arm with foot movements. Neurorehab Neural Re. 2000;14(3):207–12. Luzzio CC. Controlling an artificial arm with foot movements. Neurorehab Neural Re. 2000;14(3):207–12.
15.
go back to reference Silva J, Heim W, Chau T. A self-contained, Mechanomyography-driven externally powered prosthesis. Arch Phys Med Rehab. 2005;86(10):2066–70.CrossRef Silva J, Heim W, Chau T. A self-contained, Mechanomyography-driven externally powered prosthesis. Arch Phys Med Rehab. 2005;86(10):2066–70.CrossRef
16.
go back to reference Abboudi RL, Glass CA, Newby NA, Flint JA, Craelius W. A biomimetic controller for a multifinger prosthesis. IEEE Trans Rehabil Eng. 1999;7(2):121–9.PubMedCrossRef Abboudi RL, Glass CA, Newby NA, Flint JA, Craelius W. A biomimetic controller for a multifinger prosthesis. IEEE Trans Rehabil Eng. 1999;7(2):121–9.PubMedCrossRef
17.
go back to reference Heath GH. Control of proportional grasping using a myokinemetric signal. Technol Disabil. 2003;15(2):73–83. Heath GH. Control of proportional grasping using a myokinemetric signal. Technol Disabil. 2003;15(2):73–83.
18.
go back to reference Kuiken TA, Li G, Lock BA, et al. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. J Am Med Assoc. 2009;301(6):619–28.CrossRef Kuiken TA, Li G, Lock BA, et al. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. J Am Med Assoc. 2009;301(6):619–28.CrossRef
19.
go back to reference Weir RF, PR Troyk, G DeMichele, D Kerns. Technical Details of the Implantable Myoelectric Sensor (IMES) System for Multifunction Prosthesis Control. in Conf Proc IEEE Eng Med Biol Soc. 2005; 7337-40 Weir RF, PR Troyk, G DeMichele, D Kerns. Technical Details of the Implantable Myoelectric Sensor (IMES) System for Multifunction Prosthesis Control. in Conf Proc IEEE Eng Med Biol Soc. 2005; 7337-40
20.
go back to reference Weir RF, Troyk PR, DeMichele GA, Kerns DA, Schorsch JF, Maas H. Implantable myoelectric sensors (IMESs) for intramuscular electromyogram recording. IEEE Trans Biomed Eng. 2009;56(1):159–71.PubMedCentralPubMedCrossRef Weir RF, Troyk PR, DeMichele GA, Kerns DA, Schorsch JF, Maas H. Implantable myoelectric sensors (IMESs) for intramuscular electromyogram recording. IEEE Trans Biomed Eng. 2009;56(1):159–71.PubMedCentralPubMedCrossRef
21.
go back to reference Merrill DR, Lockhart J, Troyk PR, Weir RF, Hankin DL. Development of an implantable myoelectric sensor for advanced prosthesis control. Artif Organs. 2011;35(3):249–52.PubMedCentralPubMedCrossRef Merrill DR, Lockhart J, Troyk PR, Weir RF, Hankin DL. Development of an implantable myoelectric sensor for advanced prosthesis control. Artif Organs. 2011;35(3):249–52.PubMedCentralPubMedCrossRef
22.
go back to reference Tyler DJ, Durand DM. Functionally selective peripheral nerve stimulation with a flat interface nerve electrode. IEEE Trans Neural Syst Rehabil Eng. 2002;10(4):294–303.PubMedCrossRef Tyler DJ, Durand DM. Functionally selective peripheral nerve stimulation with a flat interface nerve electrode. IEEE Trans Neural Syst Rehabil Eng. 2002;10(4):294–303.PubMedCrossRef
23.
go back to reference Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ. A neural interface provides long-term stable natural touch perception. Sci Transl Med. 2014;6(257):257ra138.PubMedCrossRef Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ. A neural interface provides long-term stable natural touch perception. Sci Transl Med. 2014;6(257):257ra138.PubMedCrossRef
24.
go back to reference Clark GA, NM Ledbetter, DJ Warren, RR Harrison. Recording sensory and motor information from peripheral nerves with Utah Slanted Electrode Arrays. in Conf Proc IEEE Eng Med Biol Soc. 2011; 4641-44. Clark GA, NM Ledbetter, DJ Warren, RR Harrison. Recording sensory and motor information from peripheral nerves with Utah Slanted Electrode Arrays. in Conf Proc IEEE Eng Med Biol Soc. 2011; 4641-44.
25.
go back to reference Thota AK, S Kuntaegowdanahalli, AK Starosciak, JJ Abbas, J Orbay, KW Horch, R Jung. A system and method to interface with multiple groups of axons in several fascicles of peripheral nerves. J Neurosci Meth, 2014;244: 78-84. Thota AK, S Kuntaegowdanahalli, AK Starosciak, JJ Abbas, J Orbay, KW Horch, R Jung. A system and method to interface with multiple groups of axons in several fascicles of peripheral nerves. J Neurosci Meth, 2014;244: 78-84.
26.
go back to reference Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013;381(9866):557–64.PubMedCentralPubMedCrossRef Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013;381(9866):557–64.PubMedCentralPubMedCrossRef
27.
go back to reference Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012;485(7398):372–5.PubMedCentralPubMedCrossRef Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012;485(7398):372–5.PubMedCentralPubMedCrossRef
29.
go back to reference Davidson J. A survey of the satisfaction of upper limb amputees with their prostheses, their lifestyles, and their abilities. J Hand Ther. 2002;15(1):62–70.PubMedCrossRef Davidson J. A survey of the satisfaction of upper limb amputees with their prostheses, their lifestyles, and their abilities. J Hand Ther. 2002;15(1):62–70.PubMedCrossRef
30.
go back to reference Dudkiewicz I, Gabrielov R, Seiv-Ner I, Zelig G, Heim M. Evaluation of prosthetic usage in upper limb amputees. Disabil Rehabil. 2004;26(1):60–3.PubMedCrossRef Dudkiewicz I, Gabrielov R, Seiv-Ner I, Zelig G, Heim M. Evaluation of prosthetic usage in upper limb amputees. Disabil Rehabil. 2004;26(1):60–3.PubMedCrossRef
31.
go back to reference Kejlaa GH. Consumer concerns and the functional value of prostheses to upper limb amputees. Prosthet Orthot Int. 1993;17(3):157–63.PubMed Kejlaa GH. Consumer concerns and the functional value of prostheses to upper limb amputees. Prosthet Orthot Int. 1993;17(3):157–63.PubMed
Metadata
Title
Surveying the interest of individuals with upper limb loss in novel prosthetic control techniques
Authors
Susannah M. Engdahl
Breanne P. Christie
Brian Kelly
Alicia Davis
Cynthia A. Chestek
Deanna H. Gates
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2015
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-015-0044-2

Other articles of this Issue 1/2015

Journal of NeuroEngineering and Rehabilitation 1/2015 Go to the issue