Skip to main content
Top
Published in: Immunity & Ageing 1/2018

Open Access 01-12-2018 | Research

Aged mice display altered numbers and phenotype of basophils, and bone marrow-derived basophil activation, with a limited role for aging-associated microbiota

Authors: Adriaan A. van Beek, Floris Fransen, Ben Meijer, Paul de Vos, Edward F. Knol, Huub F. J. Savelkoul

Published in: Immunity & Ageing | Issue 1/2018

Login to get access

Abstract

Background

The influence of age on basophils is poorly understood, as well as the effect of aging-associated microbiota on basophils. Therefore, we studied the influence of aging and aging-associated microbiota on basophil frequency and phenotype, and differentiation from basophil precursors.

Results

Basophils became more abundant in bone marrow (BM) and spleens of 19-month-old mice compared with 4-month-old mice. Aged basophils tended to express less CD200R3 and more CD123, both in BM and spleen. Differences in microbiota composition with aging were confirmed by 16S sequencing. Microbiota transfers from young and old mice to germ-free recipients revealed that CD11b tended to be lowered on splenic basophils by aging-associated microbiota. Furthermore, abundance of Alistipes, Oscillibacter, Bacteroidetes RC9 gut group, and S24–7 family positively correlated and CD123 expression, whereas Akkermansia abundance negatively correlated with basophils numbers.
Subsequently, we purified FcεRIα+CD11cCD117 BM-derived basophils and found that those from aged mice expressed lower levels of CD11b upon stimulation. Higher frequencies of IL-4+ basophils were generated from basophil precursors of aged mice, which could be reproduced in basophils derived from germ-free recipients of aging-associated microbiota.

Conclusions

Collectively, these results show the influence of aging on basophils. Furthermore, this study shows that aging-associated microbiota altered activation of BM-derived basophils in a similar fashion as observed in BM-derived basophils from aged mice.
Literature
1.
go back to reference Luckey T. Introduction to intestinal microecology. Am J Clin Nutr. 1972;25(12):1292–4.CrossRef Luckey T. Introduction to intestinal microecology. Am J Clin Nutr. 1972;25(12):1292–4.CrossRef
2.
go back to reference Tlaskalová-Hogenová H, Štěpánková R, Kozáková H, Hudcovic T, Vannucci L, Tučková L, et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol. 2011;8(2):110–20.CrossRef Tlaskalová-Hogenová H, Štěpánková R, Kozáková H, Hudcovic T, Vannucci L, Tučková L, et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol. 2011;8(2):110–20.CrossRef
3.
go back to reference Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, et al. An estimation of the number of cells in the human body. Ann Hum Biol. 2013;40(6):463–71.CrossRef Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, et al. An estimation of the number of cells in the human body. Ann Hum Biol. 2013;40(6):463–71.CrossRef
4.
go back to reference Ivanov II, Littman DR. Modulation of immune homeostasis by commensal bacteria. Curr Opin Microbiol. 2011;14(1):106–14.CrossRef Ivanov II, Littman DR. Modulation of immune homeostasis by commensal bacteria. Curr Opin Microbiol. 2011;14(1):106–14.CrossRef
5.
go back to reference Chu H, Mazmanian SK. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol. 2013;14(7):668–75.CrossRef Chu H, Mazmanian SK. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol. 2013;14(7):668–75.CrossRef
6.
go back to reference Luo Y, Chen G-L, Hannemann N, Ipseiz N, Krönke G, Bäuerle T, et al. Microbiota from obese mice regulate hematopoietic stem cell differentiation by altering the bone niche. Cell Metab. 2015;22(5):886–94.CrossRef Luo Y, Chen G-L, Hannemann N, Ipseiz N, Krönke G, Bäuerle T, et al. Microbiota from obese mice regulate hematopoietic stem cell differentiation by altering the bone niche. Cell Metab. 2015;22(5):886–94.CrossRef
7.
go back to reference Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med. 2010;16(2):228–31.CrossRef Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med. 2010;16(2):228–31.CrossRef
8.
go back to reference Hill DA, Siracusa MC, Abt MC, Kim BS, Kobuley D, Kubo M, et al. Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med. 2012;18(4):538–46.CrossRef Hill DA, Siracusa MC, Abt MC, Kim BS, Kobuley D, Kubo M, et al. Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med. 2012;18(4):538–46.CrossRef
9.
go back to reference Dorshkind K, Montecino-Rodriguez E, Signer RAJ. The ageing immune system: is it ever too old to become young again? Nat Rev Immunol. 2009;9(1):57–62.CrossRef Dorshkind K, Montecino-Rodriguez E, Signer RAJ. The ageing immune system: is it ever too old to become young again? Nat Rev Immunol. 2009;9(1):57–62.CrossRef
10.
go back to reference Smith P, Dunne DW, Fallon PG. Defective in vivo induction of functional type 2 cytokine responses in aged mice. Eur J Immunol. 2001;31(5):1495–502.CrossRef Smith P, Dunne DW, Fallon PG. Defective in vivo induction of functional type 2 cytokine responses in aged mice. Eur J Immunol. 2001;31(5):1495–502.CrossRef
11.
go back to reference Uciechowski P, Rink L. Basophil, Eosinophil, and Neutrophil Functions in the Elderly. In: Massoud A, Rezaei N. (eds) Immunology of Aging. Berlin: Springer;2014. Uciechowski P, Rink L. Basophil, Eosinophil, and Neutrophil Functions in the Elderly. In: Massoud A, Rezaei N. (eds) Immunology of Aging. Berlin: Springer;2014.
12.
go back to reference Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 2010;5(5):e10667.CrossRef Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 2010;5(5):e10667.CrossRef
13.
go back to reference Bieneman AP, Chichester KL, Chen Y-H, Schroeder JT. Toll-like receptor 2 ligands activate human basophils for both IgE-dependent and IgE-independent secretion. J Allergy Clin Immunol. 2005;115(2):295–301.CrossRef Bieneman AP, Chichester KL, Chen Y-H, Schroeder JT. Toll-like receptor 2 ligands activate human basophils for both IgE-dependent and IgE-independent secretion. J Allergy Clin Immunol. 2005;115(2):295–301.CrossRef
14.
go back to reference Kamijo S, Nunomura S, Ra C, Kanaguchi Y, Suzuki Y, Ogawa H, et al. Innate basophil IL-4 responses against allergens, endotoxin, and cytokines require the Fc receptor γ-chain. J Allergy Clin Immunol. 2016;137(5):1613–5. e2.CrossRef Kamijo S, Nunomura S, Ra C, Kanaguchi Y, Suzuki Y, Ogawa H, et al. Innate basophil IL-4 responses against allergens, endotoxin, and cytokines require the Fc receptor γ-chain. J Allergy Clin Immunol. 2016;137(5):1613–5. e2.CrossRef
15.
go back to reference Marone G, Poto S, di Martino L, Condorelli M. Human basophil releasability: I. age-related changes in basophil releasability. J Allergy Clin Immunol. 1986;77(2):377–83.CrossRef Marone G, Poto S, di Martino L, Condorelli M. Human basophil releasability: I. age-related changes in basophil releasability. J Allergy Clin Immunol. 1986;77(2):377–83.CrossRef
16.
go back to reference Schwarzenbach H, Nakagawa T, Conroy M, Weck A. Skin reactivity, basophil degranulation and IgE levels in ageing. Clin Exp Allergy. 1982;12(5):465–73.CrossRef Schwarzenbach H, Nakagawa T, Conroy M, Weck A. Skin reactivity, basophil degranulation and IgE levels in ageing. Clin Exp Allergy. 1982;12(5):465–73.CrossRef
17.
go back to reference Leng SX, Xue Q-L, Huang Y, Ferrucci L, Fried LP, Walston JD. Baseline total and specific differential white blood cell counts and 5-year all-cause mortality in community-dwelling older women. Exp Gerontol. 2005;40(12):982–7.CrossRef Leng SX, Xue Q-L, Huang Y, Ferrucci L, Fried LP, Walston JD. Baseline total and specific differential white blood cell counts and 5-year all-cause mortality in community-dwelling older women. Exp Gerontol. 2005;40(12):982–7.CrossRef
18.
go back to reference Leng SX, Xue Q-L, Tian J, Huang Y, Yeh S-H, Fried LP. Associations of neutrophil and monocyte counts with frailty in community-dwelling disabled older women: results from the Women’s health and aging studies I. Exp Gerontol. 2009;44(8):511–6.CrossRef Leng SX, Xue Q-L, Tian J, Huang Y, Yeh S-H, Fried LP. Associations of neutrophil and monocyte counts with frailty in community-dwelling disabled older women: results from the Women’s health and aging studies I. Exp Gerontol. 2009;44(8):511–6.CrossRef
19.
go back to reference Shad KF, Aghazadeh Y, Ahmad S, Kress B. Peripheral markers of Alzheimer's disease: surveillance of white blood cells. Synapse. 2013;67(8):541–3.CrossRef Shad KF, Aghazadeh Y, Ahmad S, Kress B. Peripheral markers of Alzheimer's disease: surveillance of white blood cells. Synapse. 2013;67(8):541–3.CrossRef
20.
go back to reference Song C, Vandewoude M, Stevens W, De Clerck L, Van der Planken M, Whelan A, et al. Alterations in immune functions during normal aging and Alzheimer's disease. Psychiatry Res. 1999;85(1):71–80.CrossRef Song C, Vandewoude M, Stevens W, De Clerck L, Van der Planken M, Whelan A, et al. Alterations in immune functions during normal aging and Alzheimer's disease. Psychiatry Res. 1999;85(1):71–80.CrossRef
21.
go back to reference Van Beek AA, Knol EF, De Vos P, Smelt MJ, Savelkoul HFJ, Van Neerven RJJ. Recent developments in basophil research: do basophils initiate and perpetuate type 2 T-helper cell responses? Int Arch Allergy Immunol. 2013;160(1):7–17.CrossRef Van Beek AA, Knol EF, De Vos P, Smelt MJ, Savelkoul HFJ, Van Neerven RJJ. Recent developments in basophil research: do basophils initiate and perpetuate type 2 T-helper cell responses? Int Arch Allergy Immunol. 2013;160(1):7–17.CrossRef
22.
go back to reference Moore ML, Newcomb DC, Parekh VV, Van Kaer L, Collins RD, Zhou W, et al. STAT1 negatively regulates lung basophil IL-4 expression induced by respiratory syncytial virus infection. J Immunol. 2009;183(3):2016–26.CrossRef Moore ML, Newcomb DC, Parekh VV, Van Kaer L, Collins RD, Zhou W, et al. STAT1 negatively regulates lung basophil IL-4 expression induced by respiratory syncytial virus infection. J Immunol. 2009;183(3):2016–26.CrossRef
23.
go back to reference Chen K, Xu W, Wilson M, He B, Miller NW, Bengtén E, et al. Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell–stimulating programs in basophils. Nat Immunol. 2009;10(8):889–98.CrossRef Chen K, Xu W, Wilson M, He B, Miller NW, Bengtén E, et al. Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell–stimulating programs in basophils. Nat Immunol. 2009;10(8):889–98.CrossRef
24.
go back to reference Denzel A, Maus UA, Gomez MR, Moll C, Niedermeier M, Winter C, et al. Basophils enhance immunological memory responses. Nat Immunol. 2008;9(7):733–42.CrossRef Denzel A, Maus UA, Gomez MR, Moll C, Niedermeier M, Winter C, et al. Basophils enhance immunological memory responses. Nat Immunol. 2008;9(7):733–42.CrossRef
25.
go back to reference Charles N, Hardwick D, Daugas E, Illei GG, Rivera J. Basophils and the T helper 2 environment can promote the development of lupus nephritis. Nat Med. 2010;16(6):701–7.CrossRef Charles N, Hardwick D, Daugas E, Illei GG, Rivera J. Basophils and the T helper 2 environment can promote the development of lupus nephritis. Nat Med. 2010;16(6):701–7.CrossRef
26.
go back to reference Pan Q, Gong L, Xiao H, Feng Y, Li L, Deng Z, et al. Basophil activation-dependent autoantibody and interleukin-17 production exacerbate systemic lupus erythematosus. Front Immunol. 2017;8:348.PubMedPubMedCentral Pan Q, Gong L, Xiao H, Feng Y, Li L, Deng Z, et al. Basophil activation-dependent autoantibody and interleukin-17 production exacerbate systemic lupus erythematosus. Front Immunol. 2017;8:348.PubMedPubMedCentral
27.
go back to reference Liang P, Tang Y, Fu S, Lv J, Liu B, Feng M, et al. Basophil count, a marker for disease activity in systemic lupus erythematosus. Clin Rheumatol. 2015;34(5):891–6.CrossRef Liang P, Tang Y, Fu S, Lv J, Liu B, Feng M, et al. Basophil count, a marker for disease activity in systemic lupus erythematosus. Clin Rheumatol. 2015;34(5):891–6.CrossRef
28.
go back to reference Sektioglu IM, Carretero R, Bulbuc N, Bald T, Tuting T, Rudensky AY, et al. Basophils promote tumor rejection via chemotaxis and infiltration of CD8+ T cells. Cancer Res. 2017;77(2):291–302.CrossRef Sektioglu IM, Carretero R, Bulbuc N, Bald T, Tuting T, Rudensky AY, et al. Basophils promote tumor rejection via chemotaxis and infiltration of CD8+ T cells. Cancer Res. 2017;77(2):291–302.CrossRef
29.
go back to reference Siracusa MC, Saenz SA, Hill DA, Kim BS, Headley MB, Doering TA, et al. TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature. 2011;477:229–33.CrossRef Siracusa MC, Saenz SA, Hill DA, Kim BS, Headley MB, Doering TA, et al. TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature. 2011;477:229–33.CrossRef
30.
go back to reference Schneider E, Thieblemont N, De Moraes ML, Dy M. Basophils: new players in the cytokine network. Eur Cytokine Netw. 2010;21(3):142–53.PubMed Schneider E, Thieblemont N, De Moraes ML, Dy M. Basophils: new players in the cytokine network. Eur Cytokine Netw. 2010;21(3):142–53.PubMed
31.
go back to reference Yoshimoto T, Nakanishi K. Generation and characterization of mouse basophils from bone marrow and purification of basophils from spleen. Curr Protoc Immunol 2012:3.24.1–3..16. Yoshimoto T, Nakanishi K. Generation and characterization of mouse basophils from bone marrow and purification of basophils from spleen. Curr Protoc Immunol 2012:3.24.1–3..16.
32.
go back to reference Yoshimoto T, Yasuda K, Tanaka H, Nakahira M, Imai Y, Fujimori Y, et al. Basophils contribute to TH2-IgE responses in vivo via IL-4 production and presentation of peptide–MHC class II complexes to CD4+ T cells. Nat Immunol. 2009;10(7):706–12.CrossRef Yoshimoto T, Yasuda K, Tanaka H, Nakahira M, Imai Y, Fujimori Y, et al. Basophils contribute to TH2-IgE responses in vivo via IL-4 production and presentation of peptide–MHC class II complexes to CD4+ T cells. Nat Immunol. 2009;10(7):706–12.CrossRef
33.
go back to reference Kojima T, Obata K, Mukai K, Sato S, Takai T, Minegishi Y, et al. Mast cells and basophils are selectively activated in vitro and in vivo through CD200R3 in an IgE-independent manner. J Immunol. 2007;179(10):7093–100.CrossRef Kojima T, Obata K, Mukai K, Sato S, Takai T, Minegishi Y, et al. Mast cells and basophils are selectively activated in vitro and in vivo through CD200R3 in an IgE-independent manner. J Immunol. 2007;179(10):7093–100.CrossRef
34.
go back to reference Gerdes J, Lemke H, Baisch H, Wacker H-H, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol. 1984;133(4):1710–5.PubMed Gerdes J, Lemke H, Baisch H, Wacker H-H, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol. 1984;133(4):1710–5.PubMed
35.
go back to reference Hida S, Yamasaki S, Sakamoto Y, Takamoto M, Obata K, Takai T, et al. Fc receptor g-chain, a constitutive component of the IL-3 receptor, is required for IL-3-induced IL-4 production in basophils. Nat Immunol. 2009;10(2):214–22.CrossRef Hida S, Yamasaki S, Sakamoto Y, Takamoto M, Obata K, Takai T, et al. Fc receptor g-chain, a constitutive component of the IL-3 receptor, is required for IL-3-induced IL-4 production in basophils. Nat Immunol. 2009;10(2):214–22.CrossRef
36.
go back to reference Shiratori I, Yamaguchi M, Suzukawa M, Yamamoto K, Lanier LL, Saito T, et al. Down-regulation of basophil function by human CD200 and human herpesvirus-8 CD200. J Immunol. 2005;175(7):4441–9.CrossRef Shiratori I, Yamaguchi M, Suzukawa M, Yamamoto K, Lanier LL, Saito T, et al. Down-regulation of basophil function by human CD200 and human herpesvirus-8 CD200. J Immunol. 2005;175(7):4441–9.CrossRef
37.
go back to reference van Beek AA, Hugenholtz F, Meijer B, Sovran B, Perdijk O, Vermeij WP, et al. Tryptophan restriction arrests B cell development and enhances microbial diversity in WT and prematurely aging Ercc1−/Δ7 mice. J Leukoc Biol. 2016;101(4):811–21.CrossRef van Beek AA, Hugenholtz F, Meijer B, Sovran B, Perdijk O, Vermeij WP, et al. Tryptophan restriction arrests B cell development and enhances microbial diversity in WT and prematurely aging Ercc1−/Δ7 mice. J Leukoc Biol. 2016;101(4):811–21.CrossRef
38.
go back to reference Mahbub S, Deburghgraeve CR, Kovacs EJ. Advanced age impairs macrophage polarization. J Interf Cytokine Res. 2012;32(1):18–26.CrossRef Mahbub S, Deburghgraeve CR, Kovacs EJ. Advanced age impairs macrophage polarization. J Interf Cytokine Res. 2012;32(1):18–26.CrossRef
39.
go back to reference Zhang B, Bailey WM, Braun KJ, Gensel JC. Age decreases macrophage IL-10 expression: implications for functional recovery and tissue repair in spinal cord injury. Exp Neurol. 2015;273:83–91.CrossRef Zhang B, Bailey WM, Braun KJ, Gensel JC. Age decreases macrophage IL-10 expression: implications for functional recovery and tissue repair in spinal cord injury. Exp Neurol. 2015;273:83–91.CrossRef
40.
go back to reference Fransen F, Van Beek A, Borghuis T, El Aidy S, Hugenholtz F, Van der Gaast-de Jongh C, et al. Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice. Front Immunol. 2017;8:1385.CrossRef Fransen F, Van Beek A, Borghuis T, El Aidy S, Hugenholtz F, Van der Gaast-de Jongh C, et al. Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice. Front Immunol. 2017;8:1385.CrossRef
Metadata
Title
Aged mice display altered numbers and phenotype of basophils, and bone marrow-derived basophil activation, with a limited role for aging-associated microbiota
Authors
Adriaan A. van Beek
Floris Fransen
Ben Meijer
Paul de Vos
Edward F. Knol
Huub F. J. Savelkoul
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Immunity & Ageing / Issue 1/2018
Electronic ISSN: 1742-4933
DOI
https://doi.org/10.1186/s12979-018-0135-6

Other articles of this Issue 1/2018

Immunity & Ageing 1/2018 Go to the issue