Skip to main content
Top
Published in: Immunity & Ageing 1/2018

Open Access 01-12-2018 | Research

Expression changes of autophagy-related proteins in AKI patients treated with CRRT and their effects on prognosis of adult and elderly patients

Authors: Yang Zhang, Ling Wang, Lei Meng, Guang-Ke Cao, Yu-Liang Zhao, Yu Wu

Published in: Immunity & Ageing | Issue 1/2018

Login to get access

Abstract

Background

Sepsis is one of the common death factors in intensive care unit, which refers to the systemic inflammatory response syndrome caused by infection. It has many complications such as acute renal injury, shock, multiple organ dysfunction, and failure. The mortality of acute renal injury is the highest among the complications, which is a serious threat to the safety of patients and affects the quality of life. This study aimed to observe the changes in autophagy-related protein expressions in patients with acute kidney injury (AKI) after continuous renal replacement therapy (CRRT) and their impacts on prognosis.

Methods

207 AKI patients visiting the Emergency Department of The First People’s Hospital of Xuzhou from January 2014 to February 2018 were recruited and treated with CRRT. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was applied to detect the expression of autophagy-related genes, including light chain 3 type II (LC3-II), autophagy-related 5 (Atg-5) and Beclin-1, in the monocytes of the patient’s peripheral blood before and after treatment. The levels of inflammatory mediators interleukin (IL)-1β and IL-6 were determined via enzyme-linked immunosorbent assay before and after treatment. The patient’s serum creatinine (Scr) level before and after treatment was measured using a full-automatic biochemistry analyser. Moreover, the treatment effect was graded after CRRT, and the relationship between the prognosis of patients and the autophagy-related proteins was observed.

Results

The Scr levels in the patients were significantly decreased after treatment with CRRT. Before treatment, the IL-1β and IL-6 blood levels were high in the patients, while the amounts were significantly reduced after CRTT. The expressions of LC3-II, Atg-5 and Beclin-1 in the monocytes of patients after treatment were significantly decreased compared with those before treatment. Compared with those in survived patients, the expression of autophagy-related proteins was significantly elevated in in patients died after one to three weeks after the treatment. IL-1β, IL-6, LC3-II and Beclin-1, but not Atg-5 values were significantly correlated with Scr.

Conclusion

The expression of LC3-II, Atg-5 and Beclin-1 in the monocytes of patients may change prominently after treatment with CRRT, so they are expected to be regarded as new prognostic indicators for AKI patients.
Literature
1.
2.
go back to reference Makris K, Spanou L. Acute kidney injury: definition, Pathophysiology and Clinical Phenotypes. Clin Biochem Rev. 2016;37:85–98.PubMedPubMedCentral Makris K, Spanou L. Acute kidney injury: definition, Pathophysiology and Clinical Phenotypes. Clin Biochem Rev. 2016;37:85–98.PubMedPubMedCentral
3.
go back to reference Di Lullo L, Bellasi A, Russo D, Cozzolino M, Ronco C. Cardiorenal acute kidney injury: epidemiology, presentation, causes, pathophysiology and treatment. Int J Cardiol. 2017;227:143–50.CrossRef Di Lullo L, Bellasi A, Russo D, Cozzolino M, Ronco C. Cardiorenal acute kidney injury: epidemiology, presentation, causes, pathophysiology and treatment. Int J Cardiol. 2017;227:143–50.CrossRef
4.
go back to reference Liu J, Livingston MJ, Dong G, Tang C, Su Y, Wu G, Yin XM, Dong Z. Histone deacetylase inhibitors protect against cisplatin-induced acute kidney injury by activating autophagy in proximal tubular cells. Cell Death Dis. 2018;9:322.CrossRef Liu J, Livingston MJ, Dong G, Tang C, Su Y, Wu G, Yin XM, Dong Z. Histone deacetylase inhibitors protect against cisplatin-induced acute kidney injury by activating autophagy in proximal tubular cells. Cell Death Dis. 2018;9:322.CrossRef
5.
go back to reference Kim TW, Kim YJ, Kim HT, Park SR, Lee MY, Park YD, Lee CH, Jung JY. NQO1 deficiency leads enhanced autophagy in cisplatin-induced acute kidney injury through the AMPK/TSC2/mTOR signaling pathway. Antioxid Redox Signal. 2016;24:867–83.CrossRef Kim TW, Kim YJ, Kim HT, Park SR, Lee MY, Park YD, Lee CH, Jung JY. NQO1 deficiency leads enhanced autophagy in cisplatin-induced acute kidney injury through the AMPK/TSC2/mTOR signaling pathway. Antioxid Redox Signal. 2016;24:867–83.CrossRef
6.
go back to reference Wang LT, Chen BL, Wu CT, Huang KH, Chiang CK, Hwa Liu S. Protective role of AMP-activated protein kinase-evoked autophagy on an in vitro model of ischemia/reperfusion-induced renal tubular cell injury. PLoS One. 2013;8:e79814.CrossRef Wang LT, Chen BL, Wu CT, Huang KH, Chiang CK, Hwa Liu S. Protective role of AMP-activated protein kinase-evoked autophagy on an in vitro model of ischemia/reperfusion-induced renal tubular cell injury. PLoS One. 2013;8:e79814.CrossRef
7.
go back to reference Cao L, Walker MP, Vaidya NK, Fu M, Kumar S, Kumar A. Cocaine-mediated autophagy in astrocytes involves sigma 1 receptor, PI3K, mTOR, Atg5/7, Beclin-1 and induces type II programed cell death. Mol Neurobiol. 2016;53:4417–30.CrossRef Cao L, Walker MP, Vaidya NK, Fu M, Kumar S, Kumar A. Cocaine-mediated autophagy in astrocytes involves sigma 1 receptor, PI3K, mTOR, Atg5/7, Beclin-1 and induces type II programed cell death. Mol Neurobiol. 2016;53:4417–30.CrossRef
8.
go back to reference Tanida I, Ueno T, Kominami E. LC3 and autophagy. Methods Mol Biol. 2008;445:77–88.CrossRef Tanida I, Ueno T, Kominami E. LC3 and autophagy. Methods Mol Biol. 2008;445:77–88.CrossRef
9.
go back to reference Accardi G, Caruso C. Immune-inflammatory responses in the elderly: an update. Immun Ageing. 2018;15:11.CrossRef Accardi G, Caruso C. Immune-inflammatory responses in the elderly: an update. Immun Ageing. 2018;15:11.CrossRef
10.
go back to reference Patel SS, Molnar MZ, Tayek JA, Ix JH, Noori N, Benner D, Heymsfield S, Kopple JD, Kovesdy CP, Kalantar-Zadeh K. Serum creatinine as a marker of muscle mass in chronic kidney disease: results of a cross-sectional study and review of literature. J Cachexia Sarcopenia Muscle. 2013;4:19–29.CrossRef Patel SS, Molnar MZ, Tayek JA, Ix JH, Noori N, Benner D, Heymsfield S, Kopple JD, Kovesdy CP, Kalantar-Zadeh K. Serum creatinine as a marker of muscle mass in chronic kidney disease: results of a cross-sectional study and review of literature. J Cachexia Sarcopenia Muscle. 2013;4:19–29.CrossRef
11.
go back to reference Stucker F, Ponte B, Tataw J, Martin PY, Wozniak H, Pugin J, Saudan P. Efficacy and safety of citrate-based anticoagulation compared to heparin in patients with acute kidney injury requiring continuous renal replacement therapy: a randomized controlled trial. Crit Care. 2015;19:91.CrossRef Stucker F, Ponte B, Tataw J, Martin PY, Wozniak H, Pugin J, Saudan P. Efficacy and safety of citrate-based anticoagulation compared to heparin in patients with acute kidney injury requiring continuous renal replacement therapy: a randomized controlled trial. Crit Care. 2015;19:91.CrossRef
12.
go back to reference Rewa O, Bagshaw SM. Acute kidney injury-epidemiology, outcomes and economics. Nat Rev Nephrol. 2014;10:193–207.CrossRef Rewa O, Bagshaw SM. Acute kidney injury-epidemiology, outcomes and economics. Nat Rev Nephrol. 2014;10:193–207.CrossRef
13.
go back to reference Zarbock A, Kellum JA, Schmidt C, Van Aken H, Wempe C, Pavenstädt H, Boanta A, Gerß J, Meersch M. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA. 2016;315:2190–9.CrossRef Zarbock A, Kellum JA, Schmidt C, Van Aken H, Wempe C, Pavenstädt H, Boanta A, Gerß J, Meersch M. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA. 2016;315:2190–9.CrossRef
14.
go back to reference Deretic V, Levine B. Autophagy balances inflammation in innate immunity. Autophagy. 2018;14:243–51.CrossRef Deretic V, Levine B. Autophagy balances inflammation in innate immunity. Autophagy. 2018;14:243–51.CrossRef
15.
go back to reference Park JM, Seo M, Jung CH, Grunwald D, Stone M, Otto NM, Toso E, Ahn Y, Kyba M, Griffin TJ, Higgins L, Kim DH. ULK1 phosphorylates Ser30 of BECN1 in association with ATG14 to stimulate autophagy induction. Autophagy. 2018;14:584–97.CrossRef Park JM, Seo M, Jung CH, Grunwald D, Stone M, Otto NM, Toso E, Ahn Y, Kyba M, Griffin TJ, Higgins L, Kim DH. ULK1 phosphorylates Ser30 of BECN1 in association with ATG14 to stimulate autophagy induction. Autophagy. 2018;14:584–97.CrossRef
16.
go back to reference Rajan S, Shanmughapriya S, Tomar D, Dong Z, Cheung JI, Stathopulos PB, Muniswamy M. Perturbation of mitochondrial calcium uniporter promotes cardiac oxidative stress and autophagy during heart failure. Circ Res. 2017;121:A125.CrossRef Rajan S, Shanmughapriya S, Tomar D, Dong Z, Cheung JI, Stathopulos PB, Muniswamy M. Perturbation of mitochondrial calcium uniporter promotes cardiac oxidative stress and autophagy during heart failure. Circ Res. 2017;121:A125.CrossRef
17.
go back to reference Mehta AK, Hua K, Whipple W, Nguyen M, Perera RM, Haybaeck J, Weidhass J, Settleman J, Singh A. MiR-124 suppresses p62 and p65/NFkB to regulate autophagy, inflammation and cell death in KRAS mutant mesenchymal NSCLC cells. Cancer Rsearch Proc. Washington, DC: AACR Annual Meeting 2017; 2017. Mehta AK, Hua K, Whipple W, Nguyen M, Perera RM, Haybaeck J, Weidhass J, Settleman J, Singh A. MiR-124 suppresses p62 and p65/NFkB to regulate autophagy, inflammation and cell death in KRAS mutant mesenchymal NSCLC cells. Cancer Rsearch Proc. Washington, DC: AACR Annual Meeting 2017; 2017.
18.
go back to reference Erenpreisa J, Salmiņa K, Belyayev A, Inashkina I, Cragg MS. Survival at the brink: Chromatin Autophagy of Tumor Cells in Response to Genotoxic Challenge. In: Autophagy: Cancer, other pathologies, inflammation, immunity, infection, and aging. Salt Lake City: Academic press; 2018. p. 275–94.CrossRef Erenpreisa J, Salmiņa K, Belyayev A, Inashkina I, Cragg MS. Survival at the brink: Chromatin Autophagy of Tumor Cells in Response to Genotoxic Challenge. In: Autophagy: Cancer, other pathologies, inflammation, immunity, infection, and aging. Salt Lake City: Academic press; 2018. p. 275–94.CrossRef
19.
go back to reference Streeter A, Menzies FM, Rubinsztein DC. LC3-II tagging and western blotting for monitoring autophagic activity in mammalian cells. In: Systems biology of Alzheimer’s disease. New York: Humana Press; 2016. p. 161–70.CrossRef Streeter A, Menzies FM, Rubinsztein DC. LC3-II tagging and western blotting for monitoring autophagic activity in mammalian cells. In: Systems biology of Alzheimer’s disease. New York: Humana Press; 2016. p. 161–70.CrossRef
20.
go back to reference Kim JY, Paton JC, Briles DE, Rhee DK, Pyo S. Streptococcus pneumoniae induces pyroptosis through the regulation of autophagy in murine microglia. Oncotarget. 2015;6:44161–78.PubMedPubMedCentral Kim JY, Paton JC, Briles DE, Rhee DK, Pyo S. Streptococcus pneumoniae induces pyroptosis through the regulation of autophagy in murine microglia. Oncotarget. 2015;6:44161–78.PubMedPubMedCentral
21.
go back to reference Udy AA, Baptista JP, Lim NL, Joynt GM, Jarrett P, Wockner L, Boots RJ, Lipman J. Augmented renal clearance in the ICU: results of a multicenter observational study of renal function in critically ill patients with normal plasma creatinine concentrations. Crit Care Med. 2014;42:520–7.CrossRef Udy AA, Baptista JP, Lim NL, Joynt GM, Jarrett P, Wockner L, Boots RJ, Lipman J. Augmented renal clearance in the ICU: results of a multicenter observational study of renal function in critically ill patients with normal plasma creatinine concentrations. Crit Care Med. 2014;42:520–7.CrossRef
Metadata
Title
Expression changes of autophagy-related proteins in AKI patients treated with CRRT and their effects on prognosis of adult and elderly patients
Authors
Yang Zhang
Ling Wang
Lei Meng
Guang-Ke Cao
Yu-Liang Zhao
Yu Wu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Immunity & Ageing / Issue 1/2018
Electronic ISSN: 1742-4933
DOI
https://doi.org/10.1186/s12979-018-0128-5

Other articles of this Issue 1/2018

Immunity & Ageing 1/2018 Go to the issue