Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2018

Open Access 01-12-2018 | Research

Ex vivo model of epilepsy in organotypic slices—a new tool for drug screening

Authors: Daniela M. Magalhães, Noémia Pereira, Diogo M. Rombo, Cláudia Beltrão-Cavacas, Ana M. Sebastião, Cláudia A. Valente

Published in: Journal of Neuroinflammation | Issue 1/2018

Login to get access

Abstract

Background

Epilepsy is a prevalent neurological disorder worldwide. It is characterized by an enduring predisposition to generate seizures and its development is accompanied by alterations in many cellular processes. Organotypic slice cultures represent a multicellular environment with the potential to assess biological mechanisms, and they are used as a starting point for refining molecules for in vivo studies. Here, we investigated organotypic slice cultures as a model of epilepsy.

Methods

We assessed, by electrophysiological recordings, the spontaneous activity of organotypic slices maintained under different culture protocols. Moreover, we evaluated, through molecular-based approaches, neurogenesis, neuronal death, gliosis, expression of proinflammatory cytokines, and activation of NLRP3 inflammasome (nucleotide-binding, leucine-rich repeat, pyrin domain) as biomarkers of neuroinflammation.

Results

We demonstrated that organotypic slices, maintained under a serum deprivation culture protocol, develop epileptic-like activity. Furthermore, throughout a comparative study with slices that do not depict any epileptiform activity, slices with epileptiform activity were found to display significant differences in terms of inflammation-related features, such as (1) increased neuronal death, with higher incidence in CA1 pyramidal neurons of the hippocampus; (2) activation of astrocytes and microglia, assessed through western blot and immunohistochemistry; (3) upregulation of proinflammatory cytokines, specifically interleukin-1β (IL-1β), interleukin-6, and tumor necrosis factor α, revealed by qPCR; and (4) enhanced expression of NLRP3, assessed by western blot, together with increased NLRP3 activation, showed by IL-1β quantification.

Conclusions

Thus, organotypic slice cultures gradually deprived of serum mimic the epileptic-like activity, as well as the inflammatory events associated with in vivo epilepsy. This system can be considered a new tool to explore the interplay between neuroinflammation and epilepsy and to screen potential drug candidates, within the inflammatory cascades, to reduce/halt epileptogenesis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Engel J, Pedley TA, Aicardi J. Epilepsy: a comprehensive textbook. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2007. Engel J, Pedley TA, Aicardi J. Epilepsy: a comprehensive textbook. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2007.
2.
go back to reference Fisher RS, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 2005;46(4):470–2.CrossRefPubMed Fisher RS, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 2005;46(4):470–2.CrossRefPubMed
4.
go back to reference Meldrum BS. Concept of activity-induced cell death in epilepsy: historical and contemporary perspectives. Prog Brain Res. 2002;135:3–11.CrossRefPubMed Meldrum BS. Concept of activity-induced cell death in epilepsy: historical and contemporary perspectives. Prog Brain Res. 2002;135:3–11.CrossRefPubMed
5.
6.
go back to reference Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 2013;14:32.CrossRefPubMedPubMedCentral Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 2013;14:32.CrossRefPubMedPubMedCentral
7.
go back to reference McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. CSH Perspect Biol. 2013;5:a008656. McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. CSH Perspect Biol. 2013;5:a008656.
8.
go back to reference Pike BR, et al. Accumulation of non-erythroid alpha II-spectrin and calpain-cleaved alpha II-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats. J Neurochem. 2001;78(6):1297–306.CrossRefPubMed Pike BR, et al. Accumulation of non-erythroid alpha II-spectrin and calpain-cleaved alpha II-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats. J Neurochem. 2001;78(6):1297–306.CrossRefPubMed
9.
go back to reference Pike BR, et al. Accumulation of calpain and caspase-3 proteolytic fragments of brain-derived alphaII-spectrin in cerebral spinal fluid after middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab. 2004;24(1):98–106.CrossRefPubMed Pike BR, et al. Accumulation of calpain and caspase-3 proteolytic fragments of brain-derived alphaII-spectrin in cerebral spinal fluid after middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab. 2004;24(1):98–106.CrossRefPubMed
10.
go back to reference Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci. 1997;7:3727–38.CrossRef Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci. 1997;7:3727–38.CrossRef
11.
go back to reference Jessberger S, Romer B, Babu H, Kempermann G. Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells. Exp Neurol. 2005;196:342–51.CrossRefPubMed Jessberger S, Romer B, Babu H, Kempermann G. Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells. Exp Neurol. 2005;196:342–51.CrossRefPubMed
12.
go back to reference Parent JM, Valentin VV, Lowenstein DH. Prolonged seizures increase proliferating neuroblasts in the adult rat subventricular zone-olfactory bulb pathway. J Neurosci. 2002;22:3174–88.CrossRefPubMed Parent JM, Valentin VV, Lowenstein DH. Prolonged seizures increase proliferating neuroblasts in the adult rat subventricular zone-olfactory bulb pathway. J Neurosci. 2002;22:3174–88.CrossRefPubMed
13.
go back to reference Parent JM, Murphy GG. Mechanisms and functional significance of aberrant seizures-induced hippocampal neurogenesis. Epilepsia. 2008;49(Suppl. 5):19–25.CrossRefPubMed Parent JM, Murphy GG. Mechanisms and functional significance of aberrant seizures-induced hippocampal neurogenesis. Epilepsia. 2008;49(Suppl. 5):19–25.CrossRefPubMed
15.
go back to reference Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and epilepsy: excitability and inflammation. Trends Neurosci. 2013;36:174–84.CrossRefPubMed Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and epilepsy: excitability and inflammation. Trends Neurosci. 2013;36:174–84.CrossRefPubMed
16.
go back to reference Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 1999;22:208–15.CrossRefPubMed Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 1999;22:208–15.CrossRefPubMed
17.
go back to reference Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 2009;32:421–31.CrossRefPubMed Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 2009;32:421–31.CrossRefPubMed
18.
go back to reference Hamilton NB, Attwell D. Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci. 2010;11:227–38.CrossRefPubMed Hamilton NB, Attwell D. Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci. 2010;11:227–38.CrossRefPubMed
21.
22.
go back to reference Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 2005;76:77–98.CrossRefPubMed Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 2005;76:77–98.CrossRefPubMed
23.
go back to reference Mirrione MM, Tsirka SE. A functional role for microglia in epilepsy. In: Afawi Z, editor. Clinical and genetic aspects of epilepsy. London: IntechOpen; 2011. Mirrione MM, Tsirka SE. A functional role for microglia in epilepsy. In: Afawi Z, editor. Clinical and genetic aspects of epilepsy. London: IntechOpen; 2011.  
24.
go back to reference Tambuyzer BR, Ponsaerts P, Nouwen EJ. Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol. 2009;85(3):352–70.CrossRefPubMed Tambuyzer BR, Ponsaerts P, Nouwen EJ. Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol. 2009;85(3):352–70.CrossRefPubMed
25.
go back to reference Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91:461–553.CrossRefPubMed Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91:461–553.CrossRefPubMed
26.
27.
go back to reference Vezzani A, Viviani B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology. 2015;96:70–82.CrossRefPubMed Vezzani A, Viviani B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology. 2015;96:70–82.CrossRefPubMed
29.
go back to reference Singhal G, Jaehne EJ, Corrigan F, Toben C, Baune BT. Inflammasome in neuroinflammation and chances in brain function: a focused review. Front Neurosci. 2014;8:315.CrossRefPubMedPubMedCentral Singhal G, Jaehne EJ, Corrigan F, Toben C, Baune BT. Inflammasome in neuroinflammation and chances in brain function: a focused review. Front Neurosci. 2014;8:315.CrossRefPubMedPubMedCentral
30.
go back to reference Walsh JG, Muruve DA, Power C. Inflammasomes in the CNS. Nat Rev. 2014;15:84–97.CrossRef Walsh JG, Muruve DA, Power C. Inflammasomes in the CNS. Nat Rev. 2014;15:84–97.CrossRef
31.
go back to reference Edye ME, Walker LE, Sills GJ, Allan SM, Brough D. Epilepsy and the inflammasome: targeting inflammation as a novel therapeutic strategy for seizure disorders. Inflammasome. 2014;1:36–43.CrossRef Edye ME, Walker LE, Sills GJ, Allan SM, Brough D. Epilepsy and the inflammasome: targeting inflammation as a novel therapeutic strategy for seizure disorders. Inflammasome. 2014;1:36–43.CrossRef
32.
go back to reference Meng X-F, Tan L, Tan M-S, Jiang T, Tan C-C, Li M-M, Wang H-F, Yu J-T. Inhibition of the NLRP3 inflammasome provides neuroprotection in rats following amygdala kindling-induced status epilepticus. J Neuroinflammation. 2014;11:212.CrossRefPubMedPubMedCentral Meng X-F, Tan L, Tan M-S, Jiang T, Tan C-C, Li M-M, Wang H-F, Yu J-T. Inhibition of the NLRP3 inflammasome provides neuroprotection in rats following amygdala kindling-induced status epilepticus. J Neuroinflammation. 2014;11:212.CrossRefPubMedPubMedCentral
33.
go back to reference Sarkisian MR. Overview of the current animal models for human seizure and epileptic disorders. Epilepsy Behav. 2001;2:201–16.CrossRefPubMed Sarkisian MR. Overview of the current animal models for human seizure and epileptic disorders. Epilepsy Behav. 2001;2:201–16.CrossRefPubMed
35.
go back to reference Loscher W. Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res. 2002;50:105–23.CrossRefPubMed Loscher W. Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res. 2002;50:105–23.CrossRefPubMed
36.
go back to reference Holopainen IE. Organotypic hippocampal slice cultures: a model system to study basic cellular and molecular mechanisms of neuronal cell death, neuroprotection, and synaptic plasticity. Neurochem Res. 2005;30:1521–8.CrossRefPubMed Holopainen IE. Organotypic hippocampal slice cultures: a model system to study basic cellular and molecular mechanisms of neuronal cell death, neuroprotection, and synaptic plasticity. Neurochem Res. 2005;30:1521–8.CrossRefPubMed
37.
go back to reference Sundstrom L, Morrison BIII, Bradley M, Pringle A. Organotypic cultures as tools for functional screening in the CNS. Drug Discov Today: Targets. 2005;10:993–1000.CrossRef Sundstrom L, Morrison BIII, Bradley M, Pringle A. Organotypic cultures as tools for functional screening in the CNS. Drug Discov Today: Targets. 2005;10:993–1000.CrossRef
38.
go back to reference De Simoni A, Griesinger CB, Edwards FA. Development of rat CA1 neurones in acute versus organotypic slices: role of experience in synaptic morphology and activity. J Physiol. 2003;550:135–47.CrossRefPubMedPubMedCentral De Simoni A, Griesinger CB, Edwards FA. Development of rat CA1 neurones in acute versus organotypic slices: role of experience in synaptic morphology and activity. J Physiol. 2003;550:135–47.CrossRefPubMedPubMedCentral
39.
go back to reference Noraberg J, Poulsen FR, Blaabjerg M, et al. Organotypic hippocampal slice cultures for studies of brain damage, neuroprotection and neurorepair. CNS Neurol Disord Drug Targets. 2005;4:435–52.CrossRef Noraberg J, Poulsen FR, Blaabjerg M, et al. Organotypic hippocampal slice cultures for studies of brain damage, neuroprotection and neurorepair. CNS Neurol Disord Drug Targets. 2005;4:435–52.CrossRef
40.
go back to reference Cho S, Wood A, Bowlby MR. Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr Neuropharmacol. 2007;5:19–33.CrossRefPubMedPubMedCentral Cho S, Wood A, Bowlby MR. Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr Neuropharmacol. 2007;5:19–33.CrossRefPubMedPubMedCentral
41.
go back to reference Heinemann U, Kann O, Schuma S. An overview of in vitro seizure models in acute and organotypic slices. In: Pitkänen A, Schwartzkroin PA, Moshé SL, editors. Models of seizures and epilepsy. Cambridge: Elsevier Academic Press; 2006. p. 35–44. Heinemann U, Kann O, Schuma S. An overview of in vitro seizure models in acute and organotypic slices. In: Pitkänen A, Schwartzkroin PA, Moshé SL, editors. Models of seizures and epilepsy. Cambridge: Elsevier Academic Press; 2006. p. 35–44.
42.
go back to reference Dyhrfjeld-Johnsen J, Berdichevsky Y, Swiercz W, Sabolek H, Staley KJ. Interictal spikes precede ictal discharges in an organotypic hippocampal slice culture model of epileptogenesis. J Clin Neurophysiol. 2010;27:418–24.CrossRefPubMedPubMedCentral Dyhrfjeld-Johnsen J, Berdichevsky Y, Swiercz W, Sabolek H, Staley KJ. Interictal spikes precede ictal discharges in an organotypic hippocampal slice culture model of epileptogenesis. J Clin Neurophysiol. 2010;27:418–24.CrossRefPubMedPubMedCentral
43.
go back to reference Albus K, Heinemann U, Kovacs R. Network activity in hippocampal slice cultures revealed by long-term in vitro recordings. J Neurosci Methods. 2013;217:1–8.CrossRefPubMed Albus K, Heinemann U, Kovacs R. Network activity in hippocampal slice cultures revealed by long-term in vitro recordings. J Neurosci Methods. 2013;217:1–8.CrossRefPubMed
44.
go back to reference Berdichevsky Y, Dzhala V, Mail M, Staley KJ. Interictal spikes, seizures and ictal cell death are not necessary for post-traumatic epileptogenesis in vitro. Neurobiol Dis. 2012;45:774–85.CrossRefPubMed Berdichevsky Y, Dzhala V, Mail M, Staley KJ. Interictal spikes, seizures and ictal cell death are not necessary for post-traumatic epileptogenesis in vitro. Neurobiol Dis. 2012;45:774–85.CrossRefPubMed
45.
go back to reference Stoppini L, Buchs PA, Muller D. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods. 1991;37:173–82.CrossRefPubMed Stoppini L, Buchs PA, Muller D. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods. 1991;37:173–82.CrossRefPubMed
46.
go back to reference Naundorf B, Geisel T, Wolf F. Action potential onset dynamics and the response speed of neuronal populations. J Comput Neurosci. 2005;18(3):297–309.CrossRefPubMed Naundorf B, Geisel T, Wolf F. Action potential onset dynamics and the response speed of neuronal populations. J Comput Neurosci. 2005;18(3):297–309.CrossRefPubMed
47.
go back to reference Aroeira RI, Ribeiro JA, Sebastião AM, Valente CA. Age-related changes of glycine receptor at the rat hippocampus: from the embryo to the adult. J Neurochem. 2011;118:339–53.CrossRefPubMed Aroeira RI, Ribeiro JA, Sebastião AM, Valente CA. Age-related changes of glycine receptor at the rat hippocampus: from the embryo to the adult. J Neurochem. 2011;118:339–53.CrossRefPubMed
48.
go back to reference Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:2002–7.CrossRef Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:2002–7.CrossRef
49.
go back to reference Noraberg J, Kristensen BW, Zimmer J. Markers for neuronal degeneration in organotypic slice cultures. Brain Res Protocol. 1999;3:278–90.CrossRef Noraberg J, Kristensen BW, Zimmer J. Markers for neuronal degeneration in organotypic slice cultures. Brain Res Protocol. 1999;3:278–90.CrossRef
50.
go back to reference Vismer MS, Forcelli PA, Skopin MD, Gale K, Koubeissi MZ. The piriform, perirhinal, and entorhinal cortex in seizure generation. Front Neural Circuit. 2015;9:27.CrossRef Vismer MS, Forcelli PA, Skopin MD, Gale K, Koubeissi MZ. The piriform, perirhinal, and entorhinal cortex in seizure generation. Front Neural Circuit. 2015;9:27.CrossRef
51.
go back to reference Yan XX, Jeromin A. Spectrin breakdown products (SBDPs) as potential biomarkers for neurodegenerative diseases. Curr Transl Geriatr Exp Gerontol Rep. 2013;1:85–93.CrossRef Yan XX, Jeromin A. Spectrin breakdown products (SBDPs) as potential biomarkers for neurodegenerative diseases. Curr Transl Geriatr Exp Gerontol Rep. 2013;1:85–93.CrossRef
52.
go back to reference Binder DK, Steinhäuser C. Functional changes in astroglial cells in epilepsy. Glia. 2006;54:358–68.CrossRefPubMed Binder DK, Steinhäuser C. Functional changes in astroglial cells in epilepsy. Glia. 2006;54:358–68.CrossRefPubMed
53.
go back to reference Foresti ML, Arisi GM, Shapiro LA. Role of glia in epilepsy-associated neuropathology, neuroinflammation and neurogenesis. Brain Res Rev. 2011;66:115–22.CrossRefPubMed Foresti ML, Arisi GM, Shapiro LA. Role of glia in epilepsy-associated neuropathology, neuroinflammation and neurogenesis. Brain Res Rev. 2011;66:115–22.CrossRefPubMed
54.
go back to reference Coltman BW, Ide CF. Temporal characterization of microglia, IL-1β-like immunoreactivity and astrocytes in the dentate gyrus of hippocampal organotypic slice cultures. Int J Devl Neuroscience. 1996;14(6):707–19.CrossRef Coltman BW, Ide CF. Temporal characterization of microglia, IL-1β-like immunoreactivity and astrocytes in the dentate gyrus of hippocampal organotypic slice cultures. Int J Devl Neuroscience. 1996;14(6):707–19.CrossRef
55.
go back to reference Wu H, Wu T, Xu X, Wang J, Wang J. Iron toxicity in mice with collagenase-induced intracerebral haemorrhage. J Cereb Blood Flow Metab. 2011;31:1243–50.CrossRefPubMed Wu H, Wu T, Xu X, Wang J, Wang J. Iron toxicity in mice with collagenase-induced intracerebral haemorrhage. J Cereb Blood Flow Metab. 2011;31:1243–50.CrossRefPubMed
57.
go back to reference Vitaliti G, Pavone P, Mahmood F, Nunnari G, Falsaperla R. Targeting inflammation as a therapeutic strategy for drug-resistant epilepsies: an update of new immune-modulating approaches. Hum Vaccin Immunother. 2014;10:868–75.CrossRefPubMedPubMedCentral Vitaliti G, Pavone P, Mahmood F, Nunnari G, Falsaperla R. Targeting inflammation as a therapeutic strategy for drug-resistant epilepsies: an update of new immune-modulating approaches. Hum Vaccin Immunother. 2014;10:868–75.CrossRefPubMedPubMedCentral
58.
go back to reference De Simoni MG, Perego C, Ravizza T. Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci. 2000;12:2623–33.CrossRefPubMed De Simoni MG, Perego C, Ravizza T. Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci. 2000;12:2623–33.CrossRefPubMed
59.
go back to reference Vezzani A, Granata T. Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia. 2005;46(11):1724–43.CrossRefPubMed Vezzani A, Granata T. Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia. 2005;46(11):1724–43.CrossRefPubMed
61.
go back to reference Chapleau CA, Carlo ME, Larimore JL, Pozzo-Miller L. The actions of BDNF on dendritic spine density and morphology in organotypic slice cultures depend on the presence of serum in culture media. J Neurosci Methods. 2008;169(1):182–90.CrossRefPubMed Chapleau CA, Carlo ME, Larimore JL, Pozzo-Miller L. The actions of BDNF on dendritic spine density and morphology in organotypic slice cultures depend on the presence of serum in culture media. J Neurosci Methods. 2008;169(1):182–90.CrossRefPubMed
62.
go back to reference Sadgrove MP, Laskowski A, Gray WP. Examination of granule layer cell count, cell density, and single-pulse BrdU incorporation in rat organotypic hippocampal slice cultures with respect to culture medium, septotemporal position, and time in vitro. J Comp Neurol. 2006;497(3):397–415.CrossRefPubMed Sadgrove MP, Laskowski A, Gray WP. Examination of granule layer cell count, cell density, and single-pulse BrdU incorporation in rat organotypic hippocampal slice cultures with respect to culture medium, septotemporal position, and time in vitro. J Comp Neurol. 2006;497(3):397–415.CrossRefPubMed
63.
go back to reference Lee SB, Kim JJ, Kim TW, Kim BS, Lee M-S, Yoo YD. Serum deprivation-induced reactive oxygen species production is mediated by Romo1. Apoptosis. 2010;15:204–18.CrossRefPubMed Lee SB, Kim JJ, Kim TW, Kim BS, Lee M-S, Yoo YD. Serum deprivation-induced reactive oxygen species production is mediated by Romo1. Apoptosis. 2010;15:204–18.CrossRefPubMed
65.
go back to reference Tschopp J, Schroder K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol. 2010;10:210–5.CrossRefPubMed Tschopp J, Schroder K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol. 2010;10:210–5.CrossRefPubMed
66.
go back to reference Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11:136–41.CrossRefPubMed Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11:136–41.CrossRefPubMed
67.
go back to reference Harwood SM, Yaqoob MM, Allen DA. Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis. Ann Clin Biochem. 2005;42:415–31.CrossRefPubMed Harwood SM, Yaqoob MM, Allen DA. Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis. Ann Clin Biochem. 2005;42:415–31.CrossRefPubMed
68.
go back to reference Abraham MC, Shaham S. Death without caspases, caspases without death. Trends Cell Biol. 2004;14(4):184–93.CrossRefPubMed Abraham MC, Shaham S. Death without caspases, caspases without death. Trends Cell Biol. 2004;14(4):184–93.CrossRefPubMed
69.
go back to reference Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73(4):1907–16.CrossRefPubMedPubMedCentral Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73(4):1907–16.CrossRefPubMedPubMedCentral
71.
go back to reference Dingledine R, Varnel NH, Dudek FE. When and how do seizures kill neurons, and is cell death relevant to epileptogenesis? Adv Exp Med Biol. 2014;813:109–22.CrossRefPubMedPubMedCentral Dingledine R, Varnel NH, Dudek FE. When and how do seizures kill neurons, and is cell death relevant to epileptogenesis? Adv Exp Med Biol. 2014;813:109–22.CrossRefPubMedPubMedCentral
72.
go back to reference Lossi L, Alasia S, Salio C, Merighi A. Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Prog Neurobiol. 2009;88(4):221–45.CrossRefPubMed Lossi L, Alasia S, Salio C, Merighi A. Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Prog Neurobiol. 2009;88(4):221–45.CrossRefPubMed
73.
go back to reference Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7(1):31–40.CrossRefPubMed Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7(1):31–40.CrossRefPubMed
77.
go back to reference Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13(4):227–32.CrossRefPubMedPubMedCentral Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13(4):227–32.CrossRefPubMedPubMedCentral
78.
go back to reference Vezzani A, Moneta D, Richichi C, Aliprandi M, Burrows SJ, Ravizza T, Perego C, De Simoni MG. Functional role of inflammatory cytokines and anti-inflammatory molecules in seizures and epileptogenesis. Epilepsia. 2002;43-S5:30–5.CrossRef Vezzani A, Moneta D, Richichi C, Aliprandi M, Burrows SJ, Ravizza T, Perego C, De Simoni MG. Functional role of inflammatory cytokines and anti-inflammatory molecules in seizures and epileptogenesis. Epilepsia. 2002;43-S5:30–5.CrossRef
79.
go back to reference Song L, Pei L, Yao S, Wu Y, Shang Y. NLRP3 inflammasome in neurological diseases, from functions to therapies. Front Cell Neurosci. 2017;11:63.PubMedPubMedCentral Song L, Pei L, Yao S, Wu Y, Shang Y. NLRP3 inflammasome in neurological diseases, from functions to therapies. Front Cell Neurosci. 2017;11:63.PubMedPubMedCentral
81.
go back to reference Li Q, Han X, J W. Organotypic hippocampal slices as models for stroke and traumatic brain injury. Mol Neurobiol. 2016;53(6):4226–37.CrossRefPubMed Li Q, Han X, J W. Organotypic hippocampal slices as models for stroke and traumatic brain injury. Mol Neurobiol. 2016;53(6):4226–37.CrossRefPubMed
82.
go back to reference Daviaud N, Garbayo E, Schiller PC, Perez-Pinzon M, Montero-Menei CN. Organotypic cultures as tools for optimizing central nervous system cell therapies. Exp Neurol. 2013;248:429–40.CrossRefPubMed Daviaud N, Garbayo E, Schiller PC, Perez-Pinzon M, Montero-Menei CN. Organotypic cultures as tools for optimizing central nervous system cell therapies. Exp Neurol. 2013;248:429–40.CrossRefPubMed
83.
go back to reference Doussau F, Dupont JL, Neel D, Schneider A, Poulain B, Bossu JL. Organotypic cultures of cerebellar slices as a model to investigate demyelinating disorders. Expert Opin Drug Discov. 2017;12(10):1011–22.CrossRefPubMed Doussau F, Dupont JL, Neel D, Schneider A, Poulain B, Bossu JL. Organotypic cultures of cerebellar slices as a model to investigate demyelinating disorders. Expert Opin Drug Discov. 2017;12(10):1011–22.CrossRefPubMed
Metadata
Title
Ex vivo model of epilepsy in organotypic slices—a new tool for drug screening
Authors
Daniela M. Magalhães
Noémia Pereira
Diogo M. Rombo
Cláudia Beltrão-Cavacas
Ana M. Sebastião
Cláudia A. Valente
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2018
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-018-1225-2

Other articles of this Issue 1/2018

Journal of Neuroinflammation 1/2018 Go to the issue