Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2018

Open Access 01-12-2018 | Research

Effects of dexamethasone on the Li-pilocarpine model of epilepsy: protection against hippocampal inflammation and astrogliosis

Authors: Adriana Fernanda K. Vizuete, Fernanda Hansen, Elisa Negri, Marina Concli Leite, Diogo Losch de Oliveira, Carlos-Alberto Gonçalves

Published in: Journal of Neuroinflammation | Issue 1/2018

Login to get access

Abstract

Background

Temporal lobe epilepsy (TLE) is the most common form of partial epilepsy and is accompanied, in one third of cases, by resistance to antiepileptic drugs (AED). Most AED target neuronal activity modulated by ionic channels, and the steroid sensitivity of these channels has supported the use of corticosteroids as adjunctives to AED. Assuming the importance of astrocytes in neuronal activity, we investigated inflammatory and astroglial markers in the hippocampus, a key structure affected in TLE and in the Li-pilocarpine model of epilepsy.

Methods

Initially, hippocampal slices were obtained from sham rats and rats subjected to the Li-pilocarpine model of epilepsy, at 1, 14, and 56 days after status epilepticus (SE), which correspond to the acute, silent, and chronic phases. Dexamethasone was added to the incubation medium to evaluate the secretion of S100B, an astrocyte-derived protein widely used as a marker of brain injury. In the second set of experiments, we evaluated the in vivo effect of dexamethasone, administrated at 2 days after SE, on hippocampal inflammatory (COX-1/2, PGE2, and cytokines) and astroglial parameters: GFAP, S100B, glutamine synthetase (GS) and water (AQP-4), and K+ (Kir 4.1) channels.

Results

Basal S100B secretion and S100B secretion in high-K+ medium did not differ at 1, 14, and 56 days for the hippocampal slices from epileptic rats, in contrast to sham animal slices, where high-K+ medium decreased S100B secretion. Dexamethasone addition to the incubation medium per se induced a decrease in S100B secretion in sham and epileptic rats (1 and 56 days after SE induction). Following in vivo dexamethasone administration, inflammatory improvements were observed, astrogliosis was prevented (based on GFAP and S100B content), and astroglial dysfunction was partially abrogated (based on Kir 4.1 protein and GSH content). The GS decrease was not prevented by dexamethasone, and AQP-4 was not altered in this epileptic model.

Conclusions

Changes in astroglial parameters emphasize the importance of these cells for understanding alterations and mechanisms of epileptic disorders in this model. In vivo dexamethasone administration prevented most of the parameters analyzed, reinforcing the importance of anti-inflammatory steroid therapy in the Li-pilocarpine model and possibly in other epileptic conditions in which neuroinflammation is present.
Appendix
Available only for authorised users
Literature
2.
go back to reference Dichter MA. Emerging insights into mechanisms of epilepsy: implications for new antiepileptic drug development. Epilepsia. 1994;35(Suppl 4):S51-7. Dichter MA. Emerging insights into mechanisms of epilepsy: implications for new antiepileptic drug development. Epilepsia. 1994;35(Suppl 4):S51-7.
3.
go back to reference Dalby NO, Mody I. The process of epileptogenesis: a pathophysiological approach. Curr Opin Neurol. 2001;14:187–92.CrossRefPubMed Dalby NO, Mody I. The process of epileptogenesis: a pathophysiological approach. Curr Opin Neurol. 2001;14:187–92.CrossRefPubMed
4.
go back to reference Sander JW. The epidemiology of epilepsy revisited. Curr Opin Neurobiol. 2003;16:165–70.CrossRef Sander JW. The epidemiology of epilepsy revisited. Curr Opin Neurobiol. 2003;16:165–70.CrossRef
5.
go back to reference Engel Jr J. Introduction to temporal lobe epilepsy. Epilepsy Res. 1996;26:141–50.CrossRef Engel Jr J. Introduction to temporal lobe epilepsy. Epilepsy Res. 1996;26:141–50.CrossRef
7.
go back to reference Leite JP, Garcia-cairasco N, Ca EA. New insights from the use of pilocarpine and kainate models. Epilepsy Res. 2002;50:93–103.CrossRefPubMed Leite JP, Garcia-cairasco N, Ca EA. New insights from the use of pilocarpine and kainate models. Epilepsy Res. 2002;50:93–103.CrossRefPubMed
8.
go back to reference Wahab A, Albus K, Gabriel S, Heinemann U. In search of models of pharmacoresistant epilepsy. Epilepsia. 2010;51:154–9.CrossRefPubMed Wahab A, Albus K, Gabriel S, Heinemann U. In search of models of pharmacoresistant epilepsy. Epilepsia. 2010;51:154–9.CrossRefPubMed
9.
go back to reference Cavalheiro EA, Leite JP, Bortolotto ZA, Turski WA, Ikonomidou C, Turski L. Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia. 1991;32:778–82.CrossRefPubMed Cavalheiro EA, Leite JP, Bortolotto ZA, Turski WA, Ikonomidou C, Turski L. Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia. 1991;32:778–82.CrossRefPubMed
10.
go back to reference Goffin K, Nissinen J, Van Laere K, Pitkänen A. Cyclicity of spontaneous recurrent seizures in pilocarpine model of temporal lobe epilepsy in rat. Exp Neurol. 2007;205:501–5.CrossRefPubMed Goffin K, Nissinen J, Van Laere K, Pitkänen A. Cyclicity of spontaneous recurrent seizures in pilocarpine model of temporal lobe epilepsy in rat. Exp Neurol. 2007;205:501–5.CrossRefPubMed
11.
go back to reference Chakir A, Fabene PF, Ouazzani R, Bentivoglio M. Drug resistance and hippocampal damage after delayed treatment of pilocarpine-induced epilepsy in the rat. Brain Res Bull. 2006;71:127–38.CrossRefPubMed Chakir A, Fabene PF, Ouazzani R, Bentivoglio M. Drug resistance and hippocampal damage after delayed treatment of pilocarpine-induced epilepsy in the rat. Brain Res Bull. 2006;71:127–38.CrossRefPubMed
12.
go back to reference Arisi GM, Ruch M, Foresti ML, Mukherjee S, Ribak CE. Astrocyte alterations in the hippocampus following pilocarpine-induced seizures in aged rats. Aging Dis. 2011;2(4):294–300.PubMedPubMedCentral Arisi GM, Ruch M, Foresti ML, Mukherjee S, Ribak CE. Astrocyte alterations in the hippocampus following pilocarpine-induced seizures in aged rats. Aging Dis. 2011;2(4):294–300.PubMedPubMedCentral
13.
go back to reference Borges K. Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model. Exp Neurol. 2003;182:21–34.CrossRefPubMed Borges K. Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model. Exp Neurol. 2003;182:21–34.CrossRefPubMed
14.
go back to reference de Oliveira DL, Fischer A, Jorge RS, da Silva MC, Leite M, Gonçalves CA, et al. Effects of early-life LiCl-pilocarpine-induced status epilepticus on memory and anxiety in adult rats are associated with mossy fiber sprouting and elevated CSF S100B protein. Epilepsia. 2008;49:842–52.CrossRefPubMed de Oliveira DL, Fischer A, Jorge RS, da Silva MC, Leite M, Gonçalves CA, et al. Effects of early-life LiCl-pilocarpine-induced status epilepticus on memory and anxiety in adult rats are associated with mossy fiber sprouting and elevated CSF S100B protein. Epilepsia. 2008;49:842–52.CrossRefPubMed
15.
go back to reference Shapiro LA, Wang L, Ribak CE. Rapid astrocyte and microglial activation following pilocarpine-induced seizures in rats. Epilepsia. 2008;49:33–41.CrossRefPubMed Shapiro LA, Wang L, Ribak CE. Rapid astrocyte and microglial activation following pilocarpine-induced seizures in rats. Epilepsia. 2008;49:33–41.CrossRefPubMed
16.
go back to reference Yang F, Liu Z, Chen J, Zhang S. Roles of astrocytes and microglia in seizure-induced aberrant neurogenesis in the hippocampus of adult rats. J Neurosci Res. 2010;88(3):519–29.PubMed Yang F, Liu Z, Chen J, Zhang S. Roles of astrocytes and microglia in seizure-induced aberrant neurogenesis in the hippocampus of adult rats. J Neurosci Res. 2010;88(3):519–29.PubMed
18.
go back to reference Foresti ML, Arisi GM, Shapiro LA. Role of glia in epilepsy-associated neuropathology, neuroinflammation and neurogenesis. Brain Res Rev Elsevier BV. 2010;66:115–22.CrossRefPubMed Foresti ML, Arisi GM, Shapiro LA. Role of glia in epilepsy-associated neuropathology, neuroinflammation and neurogenesis. Brain Res Rev Elsevier BV. 2010;66:115–22.CrossRefPubMed
19.
go back to reference Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 2009;32:421–31.CrossRefPubMed Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 2009;32:421–31.CrossRefPubMed
20.
go back to reference Coulter DA, Steinhauser C. Role of astrocytes in epilepsy. Cold Spring Harb Perspect Med. 2015;5:1–12.CrossRef Coulter DA, Steinhauser C. Role of astrocytes in epilepsy. Cold Spring Harb Perspect Med. 2015;5:1–12.CrossRef
21.
go back to reference Seifert G, Steinhäuser C. Neuron–astrocyte signaling and epilepsy. Exp Neurol Elsevier BV. 2011;244:4–10.CrossRefPubMed Seifert G, Steinhäuser C. Neuron–astrocyte signaling and epilepsy. Exp Neurol Elsevier BV. 2011;244:4–10.CrossRefPubMed
23.
go back to reference Bedner P. Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain. 2015;138:1208–22.CrossRefPubMed Bedner P. Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain. 2015;138:1208–22.CrossRefPubMed
24.
go back to reference Robel S, Buckingham SC, Boni JL, Campbell SL, Danbolt NC, Riedemann T, et al. Reactive astrogliosis causes the development of spontaneous seizures. J Neurosci. 2015;3:3330–45.CrossRef Robel S, Buckingham SC, Boni JL, Campbell SL, Danbolt NC, Riedemann T, et al. Reactive astrogliosis causes the development of spontaneous seizures. J Neurosci. 2015;3:3330–45.CrossRef
25.
go back to reference Marchi N, Granata T, Janigro D. Inflammatory pathways of seizure disorders. Trends Neurosci. 2014;37:55–65.CrossRefPubMed Marchi N, Granata T, Janigro D. Inflammatory pathways of seizure disorders. Trends Neurosci. 2014;37:55–65.CrossRefPubMed
26.
go back to reference De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F, et al. Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci. 2000;12:2623–33.CrossRefPubMed De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F, et al. Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci. 2000;12:2623–33.CrossRefPubMed
27.
go back to reference Ravizza T, Rizzi M, Perego C, Richichi C, Vel J, Mosh SL, et al. Inflammatory response and glia activation in developing rat hippocampus after status epilepticus. Epilepsia. 2005;46:113–7.CrossRefPubMed Ravizza T, Rizzi M, Perego C, Richichi C, Vel J, Mosh SL, et al. Inflammatory response and glia activation in developing rat hippocampus after status epilepticus. Epilepsia. 2005;46:113–7.CrossRefPubMed
28.
go back to reference Rizzi M, Perego C, Aliprandi M, Richichi C, Ravizza T, Colella D, et al. Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development. Neurobiol Dis. 2003;14:494–503.CrossRefPubMed Rizzi M, Perego C, Aliprandi M, Richichi C, Ravizza T, Colella D, et al. Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development. Neurobiol Dis. 2003;14:494–503.CrossRefPubMed
29.
go back to reference Somera-Molina KC, Robin B, Somera CA, Anderson C, Stine C, Koh S, et al. Glial activation links early-life seizures and long-term neurologic dysfunction: evidence using a small molecule inhibitor of proinflammatory cytokine upregulation. Epilepsia. 2007;48:1785–800.CrossRefPubMed Somera-Molina KC, Robin B, Somera CA, Anderson C, Stine C, Koh S, et al. Glial activation links early-life seizures and long-term neurologic dysfunction: evidence using a small molecule inhibitor of proinflammatory cytokine upregulation. Epilepsia. 2007;48:1785–800.CrossRefPubMed
30.
go back to reference Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and epilepsy: excitability and inflammation. Trends Neurosci. 2013;36:174–84.CrossRefPubMed Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and epilepsy: excitability and inflammation. Trends Neurosci. 2013;36:174–84.CrossRefPubMed
31.
go back to reference Portela L, Tort A, Walz R, Bianchin M, Trevisol-Bittencourt P, Wille P, et al. Interictal serum S100B levels in chronic neurocysticercosis and idiopathic epilepsy. Acta Neurol Scand. 2003;108:424–7.CrossRefPubMed Portela L, Tort A, Walz R, Bianchin M, Trevisol-Bittencourt P, Wille P, et al. Interictal serum S100B levels in chronic neurocysticercosis and idiopathic epilepsy. Acta Neurol Scand. 2003;108:424–7.CrossRefPubMed
32.
go back to reference Chen W, Tan Y, Ge Y. The effects of Levetiracetam on cerebrospinal fluid and plasma NPY and GAL, and on the components of stress response system, hs-CRP, and S100B protein in serum of patients with refractory epilepsy. Cell Biochem Biophys. 2015;73:489–94.CrossRefPubMed Chen W, Tan Y, Ge Y. The effects of Levetiracetam on cerebrospinal fluid and plasma NPY and GAL, and on the components of stress response system, hs-CRP, and S100B protein in serum of patients with refractory epilepsy. Cell Biochem Biophys. 2015;73:489–94.CrossRefPubMed
33.
go back to reference Sorci G, Giovannini G, Riuzzi F, Bonifazi P, Zelante T, Bistoni F, et al. The danger signal S100B integrates pathogen–and danger–sensing pathways to restrain inflammation. PLoS Pathog. 2011;7:e1001315.CrossRefPubMedPubMedCentral Sorci G, Giovannini G, Riuzzi F, Bonifazi P, Zelante T, Bistoni F, et al. The danger signal S100B integrates pathogen–and danger–sensing pathways to restrain inflammation. PLoS Pathog. 2011;7:e1001315.CrossRefPubMedPubMedCentral
34.
go back to reference Guerra MC, Tortorelli LS, Galland F, Da Ré C, Negri E, Engelke DS, et al. Lipopolysaccharide modulates astrocytic S100B secretion: a study in cerebrospinal fluid and astrocyte cultures from rats. J Neuroinflammation. 2011;8:128.CrossRefPubMedPubMedCentral Guerra MC, Tortorelli LS, Galland F, Da Ré C, Negri E, Engelke DS, et al. Lipopolysaccharide modulates astrocytic S100B secretion: a study in cerebrospinal fluid and astrocyte cultures from rats. J Neuroinflammation. 2011;8:128.CrossRefPubMedPubMedCentral
35.
go back to reference Leite MC, Galland F, De Souza DF, Guerra MC, Bobermin L, Biasibetti R, et al. Gap junction inhibitors modulate S100B secretion in astrocyte cultures and acute hippocampal slices gap junction inhibitors modulate S100B secretion in astrocyte cultures and acute hippocampal slices. J Neurosci Res. 2009;87:2439–46.CrossRefPubMed Leite MC, Galland F, De Souza DF, Guerra MC, Bobermin L, Biasibetti R, et al. Gap junction inhibitors modulate S100B secretion in astrocyte cultures and acute hippocampal slices gap junction inhibitors modulate S100B secretion in astrocyte cultures and acute hippocampal slices. J Neurosci Res. 2009;87:2439–46.CrossRefPubMed
36.
go back to reference Niu H, Hinkle DA, Wise PM. Dexamethasone regulates basic fibroblast growth factor, nerve growth factor and S100 beta expression in cultured hippocampal astrocytes. Brain Res Mol Brain Res. 1997;51:97–105.CrossRefPubMed Niu H, Hinkle DA, Wise PM. Dexamethasone regulates basic fibroblast growth factor, nerve growth factor and S100 beta expression in cultured hippocampal astrocytes. Brain Res Mol Brain Res. 1997;51:97–105.CrossRefPubMed
37.
go back to reference Gonçalves CA, Concli Leite M, Nardin P. Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin Biochem. 2008;41:755–63.CrossRefPubMed Gonçalves CA, Concli Leite M, Nardin P. Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin Biochem. 2008;41:755–63.CrossRefPubMed
38.
go back to reference Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, et al. S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta. 2009;1793(6):1008–22.CrossRefPubMed Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, et al. S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta. 2009;1793(6):1008–22.CrossRefPubMed
39.
go back to reference Yoshikawa M, Suzumura A, Tamaru T, Takayanagi T, Sawada M. Effects of phosphodiesterase inhibitors on cytokine productio n by microglia. Mult Scler. 1999;5:126–33.CrossRefPubMed Yoshikawa M, Suzumura A, Tamaru T, Takayanagi T, Sawada M. Effects of phosphodiesterase inhibitors on cytokine productio n by microglia. Mult Scler. 1999;5:126–33.CrossRefPubMed
40.
go back to reference Chen J, Cai F, Jiang L, Hu Y, Feng C. A prospective study of dexamethasone therapy in refractory epileptic encephalopathy with continuous spike-and-wave during sleep. Epilepsy Behav. 2016;55:1–5.CrossRefPubMed Chen J, Cai F, Jiang L, Hu Y, Feng C. A prospective study of dexamethasone therapy in refractory epileptic encephalopathy with continuous spike-and-wave during sleep. Epilepsy Behav. 2016;55:1–5.CrossRefPubMed
41.
go back to reference Haberlandt E, Weger C, Sigl SB, Rosta K, Rauchenzauner M, Scholl-bu S, et al. Adrenocorticotropic hormone versus pulsatile dexamethasone in the treatment of infantile epilepsy syndromes. Pediatr Neurol. 2010;42(1):21–7. Haberlandt E, Weger C, Sigl SB, Rosta K, Rauchenzauner M, Scholl-bu S, et al. Adrenocorticotropic hormone versus pulsatile dexamethasone in the treatment of infantile epilepsy syndromes. Pediatr Neurol. 2010;42(1):21–7.
42.
go back to reference Al-Shorbagy MY, El Sayeh BM, Abdallah DM. Diverse effects of variant doses of dexamethasone in lithium–pilocarpine induced seizures in rats. Can J Physiol Pharmacol. 2012;90:13–21.CrossRefPubMed Al-Shorbagy MY, El Sayeh BM, Abdallah DM. Diverse effects of variant doses of dexamethasone in lithium–pilocarpine induced seizures in rats. Can J Physiol Pharmacol. 2012;90:13–21.CrossRefPubMed
43.
go back to reference Duffy BA, Chun KP, Ma D, Lythgoe MF, Scott RC. Dexamethasone exacerbates cerebral edema and brain injury following lithium-pilocarpine induced status epilepticus. Neurobiol Dis. 2014;63:229–36.CrossRefPubMedPubMedCentral Duffy BA, Chun KP, Ma D, Lythgoe MF, Scott RC. Dexamethasone exacerbates cerebral edema and brain injury following lithium-pilocarpine induced status epilepticus. Neurobiol Dis. 2014;63:229–36.CrossRefPubMedPubMedCentral
45.
go back to reference Andersen SL. Changes in the second messenger cyclic AMP during development may underlie motoric symptoms in attention deficit/hyperactivity disorder (ADHD). Behav Brain Res. 2002;130:197–201.CrossRefPubMed Andersen SL. Changes in the second messenger cyclic AMP during development may underlie motoric symptoms in attention deficit/hyperactivity disorder (ADHD). Behav Brain Res. 2002;130:197–201.CrossRefPubMed
46.
47.
go back to reference Nehlig A, De Vasconcelos AP, Boyet S. Postnatal changes in local cerebral blood flow measured by the quantitative autoradiographic [14C] iodoantipyrine technique in freely moving rats. J Cereb Blood Flow Metab. 1989;9:579–88.CrossRefPubMed Nehlig A, De Vasconcelos AP, Boyet S. Postnatal changes in local cerebral blood flow measured by the quantitative autoradiographic [14C] iodoantipyrine technique in freely moving rats. J Cereb Blood Flow Metab. 1989;9:579–88.CrossRefPubMed
48.
go back to reference Ben-Ari Y. Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci. 2002;3:728–39.CrossRefPubMed Ben-Ari Y. Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci. 2002;3:728–39.CrossRefPubMed
49.
go back to reference Vizuete AFK, Mittmann MH, Gonçalves CA, De Oliveira DL. Phase-dependent Astroglial alterations in Li–pilocarpine- induced status epilepticus in young rats. Neurochem Res. 2017;42:2730–42.CrossRefPubMed Vizuete AFK, Mittmann MH, Gonçalves CA, De Oliveira DL. Phase-dependent Astroglial alterations in Li–pilocarpine- induced status epilepticus in young rats. Neurochem Res. 2017;42:2730–42.CrossRefPubMed
50.
go back to reference Allen S, Shea JM, Felmet T, Gadra J, Dehn PF. A kinetic microassay for glutathione in cells plated on 96-well microtiter plates. Methods Cell Sci. 2000;22:305–12.CrossRefPubMed Allen S, Shea JM, Felmet T, Gadra J, Dehn PF. A kinetic microassay for glutathione in cells plated on 96-well microtiter plates. Methods Cell Sci. 2000;22:305–12.CrossRefPubMed
51.
go back to reference Leite MC, Galland F, Brolese G, Guerra MC, Bortolotto JW, Freitas R, et al. A simple, sensitive and widely applicable ELISA for S100B: methodological features of the measurement of this glial protein. J Neurosci Methods. 2008;169:93–9.CrossRefPubMed Leite MC, Galland F, Brolese G, Guerra MC, Bortolotto JW, Freitas R, et al. A simple, sensitive and widely applicable ELISA for S100B: methodological features of the measurement of this glial protein. J Neurosci Methods. 2008;169:93–9.CrossRefPubMed
52.
go back to reference Tramontina F, Leite MC, Cereser K, de Souza DF, Tramontina AC, Nardin P, et al. Immunoassay for glial fibrillary acidic protein: antigen recognition is affected by its phosphorylation state. J Neurosci Methods. 2007;162:282–6.CrossRefPubMed Tramontina F, Leite MC, Cereser K, de Souza DF, Tramontina AC, Nardin P, et al. Immunoassay for glial fibrillary acidic protein: antigen recognition is affected by its phosphorylation state. J Neurosci Methods. 2007;162:282–6.CrossRefPubMed
53.
go back to reference Minet R, Villie F, Marcollet M, Meynial-Denis D, Cynober L. Measurement of glutamine synthetase activity in rat muscle by a colorimetric assay. Clin Chim Acta. 1997;268:121–32.CrossRefPubMed Minet R, Villie F, Marcollet M, Meynial-Denis D, Cynober L. Measurement of glutamine synthetase activity in rat muscle by a colorimetric assay. Clin Chim Acta. 1997;268:121–32.CrossRefPubMed
54.
go back to reference Peterson GL. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977;83:346–56.CrossRefPubMed Peterson GL. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977;83:346–56.CrossRefPubMed
56.
go back to reference Sun C, Mtchedlishvili Z, Erisir A, Kapur J. Diminished neurosteroid sensitivity of synaptic inhibition and altered location of the α4 subunit of GABA a receptors in an animal model of epilepsy. J Neurosci. 2007;27:12641–50.CrossRefPubMedPubMedCentral Sun C, Mtchedlishvili Z, Erisir A, Kapur J. Diminished neurosteroid sensitivity of synaptic inhibition and altered location of the α4 subunit of GABA a receptors in an animal model of epilepsy. J Neurosci. 2007;27:12641–50.CrossRefPubMedPubMedCentral
57.
go back to reference Joshi S, Rajasekaran K, Kapur J. GABAergic transmission in temporal lobe epilepsy: the role of neurosteroids. Exp Neurol. 2013;244:36–42.CrossRefPubMed Joshi S, Rajasekaran K, Kapur J. GABAergic transmission in temporal lobe epilepsy: the role of neurosteroids. Exp Neurol. 2013;244:36–42.CrossRefPubMed
58.
go back to reference Ramey WL, Martirosyan NL, Lieu CM, Hasham HA, Lemole GM, Weinand ME. Current management and surgical outcomes of medically intractable epilepsy. Clin Neurol Neurosurg. 2013;115:2411–8.CrossRefPubMed Ramey WL, Martirosyan NL, Lieu CM, Hasham HA, Lemole GM, Weinand ME. Current management and surgical outcomes of medically intractable epilepsy. Clin Neurol Neurosurg. 2013;115:2411–8.CrossRefPubMed
59.
go back to reference Vezzani A, Lang B, Aronica E. Immunity and inflammation in epilepsy. Cold Spring Harb Perspect Med. 2015;6:a022699.CrossRefPubMed Vezzani A, Lang B, Aronica E. Immunity and inflammation in epilepsy. Cold Spring Harb Perspect Med. 2015;6:a022699.CrossRefPubMed
60.
go back to reference Nardin P, Tortorelli L, Quincozes-Santos A, De Almeida LMV, Leite MC, Thomazi AP, et al. S100B secretion in acute brain slices: modulation by extracellular levels of Ca2+ and K+. Neurochem Res. 2009;34:1603–11.CrossRefPubMed Nardin P, Tortorelli L, Quincozes-Santos A, De Almeida LMV, Leite MC, Thomazi AP, et al. S100B secretion in acute brain slices: modulation by extracellular levels of Ca2+ and K+. Neurochem Res. 2009;34:1603–11.CrossRefPubMed
61.
go back to reference Zanotto C, Abib RT, Batassini C, Tortorelli LS, Biasibetti R, Rodrigues L, et al. Non-specific inhibitors of aquaporin-4 stimulate S100B secretion in acute hippocampal slices of rats. Brain Res. 2013;1491:14–22.CrossRefPubMed Zanotto C, Abib RT, Batassini C, Tortorelli LS, Biasibetti R, Rodrigues L, et al. Non-specific inhibitors of aquaporin-4 stimulate S100B secretion in acute hippocampal slices of rats. Brain Res. 2013;1491:14–22.CrossRefPubMed
62.
go back to reference Butt AM, Kalsi A. Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions. J Cell Mol Med. 2006;10:33–44.CrossRefPubMed Butt AM, Kalsi A. Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions. J Cell Mol Med. 2006;10:33–44.CrossRefPubMed
63.
go back to reference Strohschein S, Uttmann KH, Gabriel S, Binder DK. Impact of Aquaporin-4 channels on K 1 buffering and gap junction coupling in the hippocampus. Glia. 2011;980:973–80. Strohschein S, Uttmann KH, Gabriel S, Binder DK. Impact of Aquaporin-4 channels on K 1 buffering and gap junction coupling in the hippocampus. Glia. 2011;980:973–80.
64.
go back to reference Duport S, Stoppini L, Corrèges P. Electophysiological approach of theantiepileptic effect of dexamethasone on hippocampal slice culture using a multirecord system: the physiocard. Life Sci. 1997;60:251–6.CrossRef Duport S, Stoppini L, Corrèges P. Electophysiological approach of theantiepileptic effect of dexamethasone on hippocampal slice culture using a multirecord system: the physiocard. Life Sci. 1997;60:251–6.CrossRef
65.
go back to reference Avola R, Di Tullio MA, Fisichella A, Tayebati SK, Tomassoni D. Glial fibrillary acidic protein and vimentin expression is regulated by glucocorticoids and neurotrophic factors in primary rat astroglial cultures. Clin Exp Hypertens. 2004;26:323–33.CrossRefPubMed Avola R, Di Tullio MA, Fisichella A, Tayebati SK, Tomassoni D. Glial fibrillary acidic protein and vimentin expression is regulated by glucocorticoids and neurotrophic factors in primary rat astroglial cultures. Clin Exp Hypertens. 2004;26:323–33.CrossRefPubMed
66.
go back to reference Bruccoleri A, Pennypacker KR, Harry GJ. Effect of dexamethasone on elevated cytokine mRNA levels in chemical-induced hippocampal injury. J Neurosci Res. 1999;57:916–26.CrossRefPubMed Bruccoleri A, Pennypacker KR, Harry GJ. Effect of dexamethasone on elevated cytokine mRNA levels in chemical-induced hippocampal injury. J Neurosci Res. 1999;57:916–26.CrossRefPubMed
67.
go back to reference Jaquins-Gerstl A, Shu Z, Zhang J, Liu Y, Weber SG, Michael AC. The effect of dexamethasone on gliosis, ischemia, and dopamine extraction during microdialysis sampling in brain tissue. Anal Chem. 2011;83:7662–7.CrossRefPubMedPubMedCentral Jaquins-Gerstl A, Shu Z, Zhang J, Liu Y, Weber SG, Michael AC. The effect of dexamethasone on gliosis, ischemia, and dopamine extraction during microdialysis sampling in brain tissue. Anal Chem. 2011;83:7662–7.CrossRefPubMedPubMedCentral
68.
go back to reference Kleindienst A, Meissner S, Eyupoglu IY, Parsch H, Schmidt CBM. Dynamics of S100B release into serum and cerebrospinal fluid following acute brain injury. Acta Neurochir Suppl. 2010;106:247–50.CrossRefPubMed Kleindienst A, Meissner S, Eyupoglu IY, Parsch H, Schmidt CBM. Dynamics of S100B release into serum and cerebrospinal fluid following acute brain injury. Acta Neurochir Suppl. 2010;106:247–50.CrossRefPubMed
70.
go back to reference Marchi N, Granata T, Freri E, Ciusani E, Ragona F, Puvenna V, et al. Efficacy of anti-inflammatory therapy in a model of acute seizures and in a population of pediatric drug resistant epileptics. PLoS One. 2011;6:e18200.CrossRefPubMedPubMedCentral Marchi N, Granata T, Freri E, Ciusani E, Ragona F, Puvenna V, et al. Efficacy of anti-inflammatory therapy in a model of acute seizures and in a population of pediatric drug resistant epileptics. PLoS One. 2011;6:e18200.CrossRefPubMedPubMedCentral
72.
go back to reference Van Der W, Hessel E, Bos I, Mulder S, Verlinde S, Van Eijsden P, et al. Persistent reduction of hippocampal glutamine synthetase expression after status epilepticus in immature rats. Eur J Neurosci. 2014;40:3711–9.CrossRef Van Der W, Hessel E, Bos I, Mulder S, Verlinde S, Van Eijsden P, et al. Persistent reduction of hippocampal glutamine synthetase expression after status epilepticus in immature rats. Eur J Neurosci. 2014;40:3711–9.CrossRef
73.
go back to reference Patel AJ, Hunt A, Tahourdin CSM. Regulation of in vivo glutamine synthetase activity by glucocorticoids in the developing rat brain. Dev Brain Res. 1983;10:83–91.CrossRef Patel AJ, Hunt A, Tahourdin CSM. Regulation of in vivo glutamine synthetase activity by glucocorticoids in the developing rat brain. Dev Brain Res. 1983;10:83–91.CrossRef
74.
go back to reference Huang TL, Banion KO. Interleukin-1B and tumor necrosis factor-a suppress dexamethasone induction of glutamine synthetase in primary mouse astrocytes. J Neurochem. 1998;71:1436–42.CrossRefPubMed Huang TL, Banion KO. Interleukin-1B and tumor necrosis factor-a suppress dexamethasone induction of glutamine synthetase in primary mouse astrocytes. J Neurochem. 1998;71:1436–42.CrossRefPubMed
75.
go back to reference Freitas RM, Fonteles MMF. Oxidative stress in the hippocampus after pilocarpine- induced status epilepticus in Wistar rats. FEBS J. 2005;272:1307–12.CrossRefPubMed Freitas RM, Fonteles MMF. Oxidative stress in the hippocampus after pilocarpine- induced status epilepticus in Wistar rats. FEBS J. 2005;272:1307–12.CrossRefPubMed
76.
go back to reference Waldbaum S, Patel M. Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res. 2010;88:23–45.CrossRefPubMed Waldbaum S, Patel M. Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res. 2010;88:23–45.CrossRefPubMed
77.
go back to reference Hong S, Xin Y, Haiqin W, Guilian Z. The PPARγ agonist rosiglitazone prevents cognitive impairment by inhibiting astrocyte activation and oxidative stress following pilocarpine-induced status epilepticus. Neurol Sci. 2012;33:559–66.CrossRefPubMed Hong S, Xin Y, Haiqin W, Guilian Z. The PPARγ agonist rosiglitazone prevents cognitive impairment by inhibiting astrocyte activation and oxidative stress following pilocarpine-induced status epilepticus. Neurol Sci. 2012;33:559–66.CrossRefPubMed
78.
go back to reference Nagao Y, Harada Y, Mukai T, Shimizu S, Okuda A, Fujimoto M, et al. Expressional analysis of the astrocytic Kir 4.1 channel in a pilocarpine-induced temporal lobe epilepsy model. Front Cell Neurosci. 2013;7:1–10.CrossRef Nagao Y, Harada Y, Mukai T, Shimizu S, Okuda A, Fujimoto M, et al. Expressional analysis of the astrocytic Kir 4.1 channel in a pilocarpine-induced temporal lobe epilepsy model. Front Cell Neurosci. 2013;7:1–10.CrossRef
79.
go back to reference Zhao M, Bousquet E, Valamanesh F, Farman N. Differential regulations of AQP4 and Kir 4.1 by triamcinolone acetonide and dexamethasone in the healthy and inflamed retina. Invest Ophthalmol Vis Sci. 2011;52:6340–7.CrossRefPubMed Zhao M, Bousquet E, Valamanesh F, Farman N. Differential regulations of AQP4 and Kir 4.1 by triamcinolone acetonide and dexamethasone in the healthy and inflamed retina. Invest Ophthalmol Vis Sci. 2011;52:6340–7.CrossRefPubMed
80.
go back to reference Fazekas I, Szakács R, Mihály A, Zádor Z, Krisztin-Péva B, Juhász A, et al. Alterations of seizure-induced c- fos immunolabelling and gene expression in the rat cerebral cortex following dexamethasone treatment. Acta Histochem. 2006;108:463–73.CrossRefPubMed Fazekas I, Szakács R, Mihály A, Zádor Z, Krisztin-Péva B, Juhász A, et al. Alterations of seizure-induced c- fos immunolabelling and gene expression in the rat cerebral cortex following dexamethasone treatment. Acta Histochem. 2006;108:463–73.CrossRefPubMed
81.
go back to reference Pieretti S, Di Giannuario A, Loizzo A, Sagratella S, Scotti de Carolis A, Capasso A, et al. Dexamethasone prevents epileptiform activity induced by morphine in in vivo and in vitro experiments. J Pharmacol Exp Ther. 1992;263:830–9.PubMed Pieretti S, Di Giannuario A, Loizzo A, Sagratella S, Scotti de Carolis A, Capasso A, et al. Dexamethasone prevents epileptiform activity induced by morphine in in vivo and in vitro experiments. J Pharmacol Exp Ther. 1992;263:830–9.PubMed
82.
go back to reference Rojas A, Jiang J, Ganesh T, Yang M, Lelutiu N, Dingledine R. Cyclooxygenase-2 in epilepsy. Epilepsia. 2014;55:17–25.CrossRefPubMed Rojas A, Jiang J, Ganesh T, Yang M, Lelutiu N, Dingledine R. Cyclooxygenase-2 in epilepsy. Epilepsia. 2014;55:17–25.CrossRefPubMed
83.
go back to reference Laping NJ, Teter B, Nichols NR, Rozovsky I, Finch CE. Glial fibrillary acidic protein: regulation by hormones, cytokines, and growth factors. Brain Pathol. 1994;1:259–75.CrossRef Laping NJ, Teter B, Nichols NR, Rozovsky I, Finch CE. Glial fibrillary acidic protein: regulation by hormones, cytokines, and growth factors. Brain Pathol. 1994;1:259–75.CrossRef
84.
go back to reference Kim J-E, Ryu HJ, Choi SY, Kang T-C. Tumor necrosis factor-α-mediated threonine 435 phosphorylation of p65 nuclear factor-κB subunit in endothelial cells induces vasogenic edema and neutrophil infiltration in the rat piriform cortex following status epilepticus. J Neuroinflammation. 2012;9:1–13. Kim J-E, Ryu HJ, Choi SY, Kang T-C. Tumor necrosis factor-α-mediated threonine 435 phosphorylation of p65 nuclear factor-κB subunit in endothelial cells induces vasogenic edema and neutrophil infiltration in the rat piriform cortex following status epilepticus. J Neuroinflammation. 2012;9:1–13.
85.
go back to reference Hung Y-W, Lai M-T, Tseng Y-J, Chou C-C, Lin Y-Y. Monocyte chemoattractant protein-1 affects migration of hippocampal neural progenitors following status epilepticus in rats. J Neuroinflammation. 2013;10:1–11.CrossRef Hung Y-W, Lai M-T, Tseng Y-J, Chou C-C, Lin Y-Y. Monocyte chemoattractant protein-1 affects migration of hippocampal neural progenitors following status epilepticus in rats. J Neuroinflammation. 2013;10:1–11.CrossRef
Metadata
Title
Effects of dexamethasone on the Li-pilocarpine model of epilepsy: protection against hippocampal inflammation and astrogliosis
Authors
Adriana Fernanda K. Vizuete
Fernanda Hansen
Elisa Negri
Marina Concli Leite
Diogo Losch de Oliveira
Carlos-Alberto Gonçalves
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2018
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-018-1109-5

Other articles of this Issue 1/2018

Journal of Neuroinflammation 1/2018 Go to the issue