Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2017

Open Access 01-12-2017 | Research

Reciprocal interactions between prostaglandin E2- and estradiol-dependent signaling pathways in the injured zebra finch brain

Authors: Alyssa L. Pedersen, Colin J. Saldanha

Published in: Journal of Neuroinflammation | Issue 1/2017

Login to get access

Abstract

Background

Astrocytic aromatization and consequent increases in estradiol are neuroprotective in the injured brain. In zebra finches, cyclooxygenase-activity is necessary for injury-induced aromatase expression, and increased central estradiol lowers neuroinflammation. The mechanisms underlying these influences are unknown. Here, we document injury-induced, cyclooxygenase-dependent increases in glial aromatase expression and replicate previous work in our lab showing increases in central prostaglandin E2 and estradiol following brain damage. Further, we describe injury-dependent changes in E-prostanoid and estrogen receptor expression and reveal the necessity of E-prostanoid and estrogen receptors in the injury-dependent, reciprocal interactions of neuroinflammatory and neurosteroidogenic pathways.

Methods

Adult male and female birds were shams or received bilateral injections of the appropriate drug or vehicle into contralateral telencephalic lobes.

Results

Injuries sustained in the presence of indomethacin (a cyclooxygenase inhibitor) had fewer aromatase-expressing reactive astrocytes relative to injuries injected with vehicle suggesting that cyclooxygenase activity is necessary for the induction of glial aromatase around the site of damage. Injured hemispheres had higher prostaglandin E2 and estradiol content relative to shams. Importantly, injured hemispheres injected with E-prostanoid- or estrogen receptor-antagonists showed elevated prostaglandin E2 and estradiol, respectively, but lower prostaglandin E2 or estradiol-dependent downstream activity (protein kinase A or phosphoinositide-3-kinase mRNA) suggesting that receptor antagonism did not affect injury-induced prostaglandin E2 or estradiol, but inhibited the effects of these ligands. Antagonism of E-prostanoid receptors 3 or 4 prevented injury-induced increases in neural estradiol in males and females, respectively, albeit this apparent sex-difference needs to be tested more stringently. Further, estrogen receptor-α, but not estrogen receptor-β antagonism, exaggerated neural prostaglandin E2 levels relative to the contralateral lobe in both sexes.

Conclusion

These data suggest injury-induced, sex-specific prostaglandin E2-dependent estradiol synthesis, and estrogen receptor-α dependent decreases in neuroinflammation in the vertebrate brain.
Literature
1.
go back to reference Foy MR, Henderson VW, Berger TW, Thompson RF. Estrogen and neural plasticity. Curr Dir Psychol Sci. 2000;9:148–52.CrossRef Foy MR, Henderson VW, Berger TW, Thompson RF. Estrogen and neural plasticity. Curr Dir Psychol Sci. 2000;9:148–52.CrossRef
2.
go back to reference Stein DG. Brain damage, sex hormones and recovery: a new role for progesterone and estrogen? Trends Neurosci. 2001;24:386–91.CrossRefPubMed Stein DG. Brain damage, sex hormones and recovery: a new role for progesterone and estrogen? Trends Neurosci. 2001;24:386–91.CrossRefPubMed
3.
go back to reference Garcia-Segura LM, Wozniak A, Azcoitia I, Rodriguez JR, Hutchison RE, Hutchison JB. Aromatase expression by astrocytes after brain injury: implications for local estrogen formation in brain repair. Neuroscience. 1999;89:567–78.CrossRefPubMed Garcia-Segura LM, Wozniak A, Azcoitia I, Rodriguez JR, Hutchison RE, Hutchison JB. Aromatase expression by astrocytes after brain injury: implications for local estrogen formation in brain repair. Neuroscience. 1999;89:567–78.CrossRefPubMed
4.
go back to reference Sohrabji F, Welsh C, Reddy D. Sex differences in neurological diseases. 2015. Sohrabji F, Welsh C, Reddy D. Sex differences in neurological diseases. 2015.
5.
go back to reference Pike CJ, Carroll JC, Rosario ER, Barron A. Protective actions of sex steroid hormones in Alzheimer’ s disease. Front Neuroendocrinol. 2010;30:239–58.CrossRef Pike CJ, Carroll JC, Rosario ER, Barron A. Protective actions of sex steroid hormones in Alzheimer’ s disease. Front Neuroendocrinol. 2010;30:239–58.CrossRef
6.
go back to reference Garcia-Segura LM, Azcoitia I, DonCarlos LL. Neuroprotection by estradiol. 2001. Garcia-Segura LM, Azcoitia I, DonCarlos LL. Neuroprotection by estradiol. 2001.
7.
go back to reference Green PS, Gridley KE, Simpkins JW. Estradiol protects against β-amyloid (25–35)-induced toxicity in SK-N-SH human neuroblastoma cells. Neurosci Lett. 1996;218:165–8.CrossRefPubMed Green PS, Gridley KE, Simpkins JW. Estradiol protects against β-amyloid (25–35)-induced toxicity in SK-N-SH human neuroblastoma cells. Neurosci Lett. 1996;218:165–8.CrossRefPubMed
8.
go back to reference Mize AL, Shapiro RA, Dorsa DM. Estrogen receptor-mediated neuroprotection from oxidative stress requires activation of the mitogen-activated protein kinase pathway. Endocrinology. 2003;144:306–12.CrossRefPubMed Mize AL, Shapiro RA, Dorsa DM. Estrogen receptor-mediated neuroprotection from oxidative stress requires activation of the mitogen-activated protein kinase pathway. Endocrinology. 2003;144:306–12.CrossRefPubMed
9.
go back to reference Zhang Q-G, Wang R, Tang H, Dong Y, Chan A, Sareddy GR, et al. Brain-derived estrogen exerts anti-inflammatory and neuroprotective actions in the rat hippocampus. Mol Cell Endocrinol. 2014;389:84–91.CrossRefPubMedPubMedCentral Zhang Q-G, Wang R, Tang H, Dong Y, Chan A, Sareddy GR, et al. Brain-derived estrogen exerts anti-inflammatory and neuroprotective actions in the rat hippocampus. Mol Cell Endocrinol. 2014;389:84–91.CrossRefPubMedPubMedCentral
10.
go back to reference Shen P, Schlinger BA, Campagnoni AT, Arnold AP. An atlas of aromatase mRNA expression in the zebra finch brain. J Comp Neurol. 1995;360:172–84.CrossRefPubMed Shen P, Schlinger BA, Campagnoni AT, Arnold AP. An atlas of aromatase mRNA expression in the zebra finch brain. J Comp Neurol. 1995;360:172–84.CrossRefPubMed
15.
go back to reference Saldanha CJ, Rohmann KN, Coomaralingam L, Wynne RD. Estrogen provision by reactive glia decreases apoptosis in the zebra finch (Taeniopygia guttata). J Neurobiol. 2005;64:192–201.CrossRefPubMed Saldanha CJ, Rohmann KN, Coomaralingam L, Wynne RD. Estrogen provision by reactive glia decreases apoptosis in the zebra finch (Taeniopygia guttata). J Neurobiol. 2005;64:192–201.CrossRefPubMed
16.
go back to reference Garcia-Segura LM, McCarthy MM. Minireview: role of glia in neuroendocrine function. Endocrinology. 2004;145:1082–6.CrossRefPubMed Garcia-Segura LM, McCarthy MM. Minireview: role of glia in neuroendocrine function. Endocrinology. 2004;145:1082–6.CrossRefPubMed
17.
go back to reference Rau SW, Dubal DB, Böttner M, Gerhold LM, Wise PM, Bottner M, et al. Estradiol attenuates programmed cell death after stroke-like injury. J Neurosci. 2003;23:11420–6.PubMed Rau SW, Dubal DB, Böttner M, Gerhold LM, Wise PM, Bottner M, et al. Estradiol attenuates programmed cell death after stroke-like injury. J Neurosci. 2003;23:11420–6.PubMed
18.
19.
go back to reference Saldanha CJ, Burstein SR, Duncan K A. Induced synthesis of oestrogens by glia in the songbird brain.: EBSCOhost J Neuroendocrinol. 2013;25:1032–1038. Saldanha CJ, Burstein SR, Duncan K A. Induced synthesis of oestrogens by glia in the songbird brain.: EBSCOhost J Neuroendocrinol. 2013;25:1032–1038.
20.
go back to reference Mehos CJ, Nelson LH, Saldanha CJ. A quantification of the injury-induced changes in central aromatase, estrogenic milieu and steroid receptor expression in the zebra finch. J Neuroendocrinol. 2015;8(2):12348. doi: 10.1111/jne.12348. Mehos CJ, Nelson LH, Saldanha CJ. A quantification of the injury-induced changes in central aromatase, estrogenic milieu and steroid receptor expression in the zebra finch. J Neuroendocrinol. 2015;8(2):12348. doi: 10.​1111/​jne.​12348.
21.
go back to reference Walters BJ, Saldanha CJ. Glial aromatization increases the expression of bone morphogenetic protein-2 in the injured zebra finch brain. J Neurochem. 2008;106:216–23.CrossRefPubMed Walters BJ, Saldanha CJ. Glial aromatization increases the expression of bone morphogenetic protein-2 in the injured zebra finch brain. J Neurochem. 2008;106:216–23.CrossRefPubMed
25.
go back to reference Pedersen AL, Brownrout JL, Saldanha CJ. Central administration of indomethacin mitigates the injury-induced upregulation of aromatase expression and estradiol content in the zebra finch brain. Endocrinology. 2017; doi: 10.1210/en.2017-00346. Pedersen AL, Brownrout JL, Saldanha CJ. Central administration of indomethacin mitigates the injury-induced upregulation of aromatase expression and estradiol content in the zebra finch brain. Endocrinology. 2017; doi: 10.​1210/​en.​2017-00346.
26.
go back to reference McCullough L. Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. J Neurosci. 2004;24:257–68.CrossRefPubMed McCullough L. Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. J Neurosci. 2004;24:257–68.CrossRefPubMed
27.
go back to reference Breyer RM, Bagdassarian CK, Myers SA, Breyer MD. Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol. 2001;41:661–90.CrossRefPubMed Breyer RM, Bagdassarian CK, Myers SA, Breyer MD. Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol. 2001;41:661–90.CrossRefPubMed
28.
go back to reference Richards JA. Prostaglandin E2 regulates aromatase activity and expression in human adipose stromal cells via two distinct receptor subtypes. J Clin Endocrinol Metab. 2003;88(6):2810–6.CrossRefPubMed Richards JA. Prostaglandin E2 regulates aromatase activity and expression in human adipose stromal cells via two distinct receptor subtypes. J Clin Endocrinol Metab. 2003;88(6):2810–6.CrossRefPubMed
29.
go back to reference Subbaramaiah K, Howe LR, Bhardwaj P, Du B, Gravaghi C, Yantiss RK, et al. Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland 3539. Cancer PrevRes(Phila). 2011;4:329–46. Subbaramaiah K, Howe LR, Bhardwaj P, Du B, Gravaghi C, Yantiss RK, et al. Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland 3539. Cancer PrevRes(Phila). 2011;4:329–46.
30.
go back to reference Dubal DB, Rau SW, Shughrue PJ, Zhu H, Yu J, Cashion AB, et al. Differential modulation of estrogen receptors (ERs) in ischemic brain injury: a role for ERalpha in estradiol-mediated protection against delayed cell death. Endocrinology. 2006;147:3076–84.CrossRefPubMed Dubal DB, Rau SW, Shughrue PJ, Zhu H, Yu J, Cashion AB, et al. Differential modulation of estrogen receptors (ERs) in ischemic brain injury: a role for ERalpha in estradiol-mediated protection against delayed cell death. Endocrinology. 2006;147:3076–84.CrossRefPubMed
31.
go back to reference Dubal DB, Zhu H, Yu J, Rau SW, Shughrue PJ, Merchenthaler I, et al. Estrogen receptor alpha, not beta, is a critical link in estradiol-mediated protection against brain injury. Proc Natl Acad Sci U S A. 2001;98:1952–7.PubMedPubMedCentral Dubal DB, Zhu H, Yu J, Rau SW, Shughrue PJ, Merchenthaler I, et al. Estrogen receptor alpha, not beta, is a critical link in estradiol-mediated protection against brain injury. Proc Natl Acad Sci U S A. 2001;98:1952–7.PubMedPubMedCentral
32.
go back to reference Zhang Q-G, Raz L, Wang R, Han D, De Sevilla L, Yang F, et al. Estrogen attenuates ischemic oxidative damage via an estrogen receptor-mediated inhibition of NADPH oxidase activation. J Neurosci. 2009;29:13823–36.CrossRefPubMedPubMedCentral Zhang Q-G, Raz L, Wang R, Han D, De Sevilla L, Yang F, et al. Estrogen attenuates ischemic oxidative damage via an estrogen receptor-mediated inhibition of NADPH oxidase activation. J Neurosci. 2009;29:13823–36.CrossRefPubMedPubMedCentral
33.
go back to reference Cordeau P, Lalancette-Hébert M, Weng YC, Kriz J. Estrogen receptors alpha mediates postischemic inflammation in chronically estrogen-deprived mice. Neurobiol Aging. 2016;40:50–60.CrossRefPubMed Cordeau P, Lalancette-Hébert M, Weng YC, Kriz J. Estrogen receptors alpha mediates postischemic inflammation in chronically estrogen-deprived mice. Neurobiol Aging. 2016;40:50–60.CrossRefPubMed
34.
go back to reference Suzuki S, Gerhold LM, Böttner M, Rau SW, Dela Cruz C, Yang E, et al. Estradiol enhances neurogenesis following ischemic stroke through estrogen receptors alpha and beta. J Comp Neurol. 2007;500:1064–75.CrossRefPubMed Suzuki S, Gerhold LM, Böttner M, Rau SW, Dela Cruz C, Yang E, et al. Estradiol enhances neurogenesis following ischemic stroke through estrogen receptors alpha and beta. J Comp Neurol. 2007;500:1064–75.CrossRefPubMed
35.
go back to reference Saldanha CJ, Tuerk MJ, Kim YH, Fernandes AO, Arnold AP, Schlinger BA. Distribution and regulation of telencephalic aromatase expression in the zebra finch revealed with a specific antibody. J Comp Neurol. 2000;423:619–30.CrossRefPubMed Saldanha CJ, Tuerk MJ, Kim YH, Fernandes AO, Arnold AP, Schlinger BA. Distribution and regulation of telencephalic aromatase expression in the zebra finch revealed with a specific antibody. J Comp Neurol. 2000;423:619–30.CrossRefPubMed
36.
go back to reference Saldanha CJ, Coomaralingam L. Overlap and co-expression of estrogen synthetic and responsive neurons in the songbird brain—a double-label immunocytochemical study. Gen Comp Endocrinol. 2005;141:66–75.CrossRefPubMed Saldanha CJ, Coomaralingam L. Overlap and co-expression of estrogen synthetic and responsive neurons in the songbird brain—a double-label immunocytochemical study. Gen Comp Endocrinol. 2005;141:66–75.CrossRefPubMed
37.
38.
go back to reference Seredynski AL, Balthazart J, Ball GF, Cornil CA. Estrogen receptor β activation rapidly modulates male sexual motivation through the transactivation of metabotropic glutamate receptor 1a. J Neurosci. 2015;35:13110–23.CrossRefPubMedPubMedCentral Seredynski AL, Balthazart J, Ball GF, Cornil CA. Estrogen receptor β activation rapidly modulates male sexual motivation through the transactivation of metabotropic glutamate receptor 1a. J Neurosci. 2015;35:13110–23.CrossRefPubMedPubMedCentral
39.
go back to reference Naderi V, Khaksari M, Abbasi R, Maghool F. Estrogen provides neuroprotection against brain edema and blood brain barrier disruption through both estrogen receptors α and β following traumatic brain injury. Iran J Basic Med Sci. 2015;18:138–44.PubMedPubMedCentral Naderi V, Khaksari M, Abbasi R, Maghool F. Estrogen provides neuroprotection against brain edema and blood brain barrier disruption through both estrogen receptors α and β following traumatic brain injury. Iran J Basic Med Sci. 2015;18:138–44.PubMedPubMedCentral
40.
go back to reference Sun J, Huang YR, Harrington WR, Sheng S, Katzenellenbogen JA, Katzenellenbogen BS. Antagonists selective for estrogen receptor alpha. Endocrinology. 2002;143:941–7.CrossRefPubMed Sun J, Huang YR, Harrington WR, Sheng S, Katzenellenbogen JA, Katzenellenbogen BS. Antagonists selective for estrogen receptor alpha. Endocrinology. 2002;143:941–7.CrossRefPubMed
41.
go back to reference Liu N-J, Chakrabarti S, Schnell S, Wessendorf M, Gintzler AR. Spinal synthesis of estrogen and concomitant signaling by membrane estrogen receptors regulate spinal κ- and μ-opioid receptor heterodimerization and female-specific spinal morphine antinociception. J Neurosci. 2011;31:11836–45.CrossRefPubMedPubMedCentral Liu N-J, Chakrabarti S, Schnell S, Wessendorf M, Gintzler AR. Spinal synthesis of estrogen and concomitant signaling by membrane estrogen receptors regulate spinal κ- and μ-opioid receptor heterodimerization and female-specific spinal morphine antinociception. J Neurosci. 2011;31:11836–45.CrossRefPubMedPubMedCentral
42.
go back to reference Clarke DL, Giembycz MA, Patel HJ, Belvisi MG. E-Ring 8- iso prostanes inhibit ACh release from parasympathetic nerves innervating guinea-pig trachea through agonism of prostanoid receptors of the EP 3 -subtype. Br J Pharmacol. 2004;141:600–9.CrossRefPubMedPubMedCentral Clarke DL, Giembycz MA, Patel HJ, Belvisi MG. E-Ring 8- iso prostanes inhibit ACh release from parasympathetic nerves innervating guinea-pig trachea through agonism of prostanoid receptors of the EP 3 -subtype. Br J Pharmacol. 2004;141:600–9.CrossRefPubMedPubMedCentral
43.
go back to reference Li T-F, Zuscik MJ, Ionescu AM, Zhang X, Rosier RN, Schwarz EM, et al. PGE2 inhibits chondrocyte differentiation through PKA and PKC signaling. 2004. Li T-F, Zuscik MJ, Ionescu AM, Zhang X, Rosier RN, Schwarz EM, et al. PGE2 inhibits chondrocyte differentiation through PKA and PKC signaling. 2004.
44.
go back to reference Cornil CA, Charlier TD. Rapid behavioural effects of oestrogens and fast regulation of their local synthesis by brain aromatase. J Neuroendocrinol. 2010;22:664–73.PubMedPubMedCentral Cornil CA, Charlier TD. Rapid behavioural effects of oestrogens and fast regulation of their local synthesis by brain aromatase. J Neuroendocrinol. 2010;22:664–73.PubMedPubMedCentral
45.
go back to reference Liao JK, Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature. 2000;407:538–41.CrossRefPubMedPubMedCentral Liao JK, Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature. 2000;407:538–41.CrossRefPubMedPubMedCentral
46.
48.
go back to reference Acarregui MJ, Brown JJ, Penisten ST. Cyclic AMP-dependent protein kinase (PKA) gene expression is developmentally regulated in fetal lung. Biochim Biophys Acta - Mol Cell Res. 1998;1402:303–12.CrossRef Acarregui MJ, Brown JJ, Penisten ST. Cyclic AMP-dependent protein kinase (PKA) gene expression is developmentally regulated in fetal lung. Biochim Biophys Acta - Mol Cell Res. 1998;1402:303–12.CrossRef
49.
go back to reference Chang A, Li PP, Warsh JJ. cAMP-Dependent protein kinase (PKA) subunit mRNA levels in postmortem brain from patients with bipolar affective disorder (BD). Brain Res Mol Brain Res. 2003;116:27–37.CrossRefPubMed Chang A, Li PP, Warsh JJ. cAMP-Dependent protein kinase (PKA) subunit mRNA levels in postmortem brain from patients with bipolar affective disorder (BD). Brain Res Mol Brain Res. 2003;116:27–37.CrossRefPubMed
50.
go back to reference Ito Y, Goto K, Kondo H. Localization of mRNA for phosphatidylinositol 3-kinase in brain of developing and mature rats. Brain Res Mol Brain Res. 1995;34:149–53.CrossRefPubMed Ito Y, Goto K, Kondo H. Localization of mRNA for phosphatidylinositol 3-kinase in brain of developing and mature rats. Brain Res Mol Brain Res. 1995;34:149–53.CrossRefPubMed
51.
go back to reference Chao A, Schlinger BA, Remage-Healey L. Combined liquid and solid-phase extraction improves quantification of brain estrogen content. Front Neuroanat. 2011;5:57.CrossRefPubMedPubMedCentral Chao A, Schlinger BA, Remage-Healey L. Combined liquid and solid-phase extraction improves quantification of brain estrogen content. Front Neuroanat. 2011;5:57.CrossRefPubMedPubMedCentral
52.
go back to reference Remage-Healey L. Brain estrogen signaling effects acute modulation of acoustic communication behaviors: a working hypothesis. BioEssays. 2012;34:1009–16.CrossRefPubMedPubMedCentral Remage-Healey L. Brain estrogen signaling effects acute modulation of acoustic communication behaviors: a working hypothesis. BioEssays. 2012;34:1009–16.CrossRefPubMedPubMedCentral
53.
54.
go back to reference Saldanha CJ, Duncan KA, Walters BJ. Neuroprotective actions of brain aromatase. Front Neuroendocrinol. 2010;30:106–18.CrossRef Saldanha CJ, Duncan KA, Walters BJ. Neuroprotective actions of brain aromatase. Front Neuroendocrinol. 2010;30:106–18.CrossRef
55.
go back to reference Garcia-Segura LM, Naftolin F, Hutchison JB, Azcoitia I, Chowen JA. Role of astroglia in estrogen regulation of synaptic plasticity and brain repair. J Neurobiol. 1999;40:574–84.CrossRefPubMed Garcia-Segura LM, Naftolin F, Hutchison JB, Azcoitia I, Chowen JA. Role of astroglia in estrogen regulation of synaptic plasticity and brain repair. J Neurobiol. 1999;40:574–84.CrossRefPubMed
56.
go back to reference Azcoitia I, Sierra A, Veiga S, Honda SI, Harada N, Garcia-Segura LM. Brain aromatase is neuroprotective. J Neurobiol. 2001;47:318–29.CrossRefPubMed Azcoitia I, Sierra A, Veiga S, Honda SI, Harada N, Garcia-Segura LM. Brain aromatase is neuroprotective. J Neurobiol. 2001;47:318–29.CrossRefPubMed
57.
go back to reference Garcia-segura LM, Veiga S, Sierra A, Melcangi RC, Azcoitia I. Aromatase: a neuroprotective enzyme. Prog Neurobiol. 2003;71:31–41.CrossRefPubMed Garcia-segura LM, Veiga S, Sierra A, Melcangi RC, Azcoitia I. Aromatase: a neuroprotective enzyme. Prog Neurobiol. 2003;71:31–41.CrossRefPubMed
59.
go back to reference Geary GG, McNeill AM, Ospina JA, Krause DN, Korach KS, Duckles SP. Selected contribution: cerebrovascular nos and cyclooxygenase are unaffected by estrogen in mice lacking estrogen receptor-alpha. J Appl Physiol. 2001;91:2391-2399-2390. Geary GG, McNeill AM, Ospina JA, Krause DN, Korach KS, Duckles SP. Selected contribution: cerebrovascular nos and cyclooxygenase are unaffected by estrogen in mice lacking estrogen receptor-alpha. J Appl Physiol. 2001;91:2391-2399-2390.
60.
go back to reference Zhang Q-G, Raz L, Wang R, Han D, De Sevilla L, Yang F, et al. Estrogen attenuates ischemic oxidative damage via an estrogen receptor alpha-mediated inhibition of NADPH oxidase activation. J Neurosci. 2009;29:13823–36.CrossRefPubMedPubMedCentral Zhang Q-G, Raz L, Wang R, Han D, De Sevilla L, Yang F, et al. Estrogen attenuates ischemic oxidative damage via an estrogen receptor alpha-mediated inhibition of NADPH oxidase activation. J Neurosci. 2009;29:13823–36.CrossRefPubMedPubMedCentral
61.
go back to reference Suzuki S, Brown CM, Dela Cruz CD, Yang E, Bridwell DA, Wise PM. Timing of estrogen therapy after ovariectomy dictates the efficacy of its neuroprotective and antiinflammatory actions. Proc Natl Acad Sci U S A. 2007;104:6013–8.CrossRefPubMedPubMedCentral Suzuki S, Brown CM, Dela Cruz CD, Yang E, Bridwell DA, Wise PM. Timing of estrogen therapy after ovariectomy dictates the efficacy of its neuroprotective and antiinflammatory actions. Proc Natl Acad Sci U S A. 2007;104:6013–8.CrossRefPubMedPubMedCentral
62.
go back to reference Vegeto E, Bonincontro C, Pollio G, Sala A, Viappiani S, Nardi F, et al. Estrogen prevents the lipopolysaccharide-induced inflammatory response in microglia. J Neurosci. 2001;21:1809–18.PubMed Vegeto E, Bonincontro C, Pollio G, Sala A, Viappiani S, Nardi F, et al. Estrogen prevents the lipopolysaccharide-induced inflammatory response in microglia. J Neurosci. 2001;21:1809–18.PubMed
63.
go back to reference W AEBVMB and JJ. Estrogen modulates microglial inflammatory mediator production via interactions with estrogen receptor β. 2004. W AEBVMB and JJ. Estrogen modulates microglial inflammatory mediator production via interactions with estrogen receptor β. 2004.
64.
go back to reference Minghetti L. Role of COX-2 in inflammatory and degenerative brain diseases. In: Inflammation in the pathogenesis of chronic diseases. Dordrecht: Springer Netherlands; 2007. p. 127–41.CrossRef Minghetti L. Role of COX-2 in inflammatory and degenerative brain diseases. In: Inflammation in the pathogenesis of chronic diseases. Dordrecht: Springer Netherlands; 2007. p. 127–41.CrossRef
65.
go back to reference Arevalo MA, Diz-Chaves Y, Santos-Galindo M, Bellini MJ, Garcia-Segura LM. Selective oestrogen receptor modulators decrease the inflammatory response of glial cells. J Neuroendocrinol. 2012;24:183–90.CrossRefPubMed Arevalo MA, Diz-Chaves Y, Santos-Galindo M, Bellini MJ, Garcia-Segura LM. Selective oestrogen receptor modulators decrease the inflammatory response of glial cells. J Neuroendocrinol. 2012;24:183–90.CrossRefPubMed
Metadata
Title
Reciprocal interactions between prostaglandin E2- and estradiol-dependent signaling pathways in the injured zebra finch brain
Authors
Alyssa L. Pedersen
Colin J. Saldanha
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2017
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-017-1040-1

Other articles of this Issue 1/2017

Journal of Neuroinflammation 1/2017 Go to the issue