Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2017

Open Access 01-12-2017 | Research

Monocyte-derived tissue transglutaminase in multiple sclerosis patients: reflecting an anti-inflammatory status and function of the cells?

Authors: Claudia Sestito, John J. P. Brevé, Marja C. J. A. van Eggermond, Joep Killestein, Charlotte E. Teunissen, Joram van Rossum, Micha M. M. Wilhelmus, Benjamin Drukarch, Peter J. van den Elsen, Anne-Marie van Dam

Published in: Journal of Neuroinflammation | Issue 1/2017

Login to get access

Abstract

Background

Leukocyte infiltration into the central nervous system is an important feature of multiple sclerosis (MS) pathology. Among the infiltrating cells, monocytes comprise the largest population and are considered to play a dual role in the course of the disease. The enzyme tissue transglutaminase (TG2), produced by monocytes, plays a central role in monocyte adhesion/migration in animal models of MS. In the present study, we questioned whether TG2 expression is altered in monocytes from MS patients compared to healthy control (HC) subjects. Moreover, we determined the inflammatory status of these TG2-expressing monocytes, what inflammatory factor regulates TG2 expression, and whether TG2 can functionally contribute to their adhesion/migration processes.

Methods

Primary human monocytes from MS patients and HC subjects were collected, RNA isolated and subjected to qPCR analysis. Human THP-1 monocytes were lentivirally transduced with TG2 siRNA or control and treated with various cytokines. Subsequently, mRNA levels of inflammatory factors, adhesion properties, and activity of RhoA were analyzed in interleukin (IL)-4-treated monocytes.

Results

TG2 mRNA levels are significantly increased in monocytes derived from MS patients compared to HC subjects. In addition, correlation analyses indicated that TG2-expressing cells display a more anti-inflammatory, migratory profile in MS patients. Using THP-1 monocytes, we observed that IL-4 is a major trigger of TG2 expression in these cells. Furthermore, knockdown of TG2 expression leads to a pro-inflammatory profile and reduced adhesion/migration properties of IL-4-treated monocytes.

Conclusions

TG2-expressing monocytes in MS patients have a more anti-inflammatory profile. Furthermore, TG2 mediates IL-4-induced anti-inflammatory status in THP-1 monocytes, adhesion, and cytoskeletal rearrangement in vitro. We thus propose that IL-4 upregulates TG2 expression in monocytes of MS patients, driving them into an anti-inflammatory status.
Appendix
Available only for authorised users
Literature
1.
go back to reference Koch-Henriksen N, Sorensen PS. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 2010;9:520–32.CrossRefPubMed Koch-Henriksen N, Sorensen PS. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 2010;9:520–32.CrossRefPubMed
2.
go back to reference Noseworthy J, Lucchinetti C, Rodriguez M, Weinshenker B. Multiple sclerosis. N Engl J Med. 2000;343:938–52.CrossRefPubMed Noseworthy J, Lucchinetti C, Rodriguez M, Weinshenker B. Multiple sclerosis. N Engl J Med. 2000;343:938–52.CrossRefPubMed
3.
go back to reference Lassmann H, van Horssen J. The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett. 2011;585:3715–23.CrossRefPubMed Lassmann H, van Horssen J. The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett. 2011;585:3715–23.CrossRefPubMed
4.
go back to reference Chigaev A, Zwartz G, Graves SW, Dwyer DC, Tsuji H, Foutz TD, et al. alpha4beta1 integrin affinity changes govern cell adhesion. J Biol Chem. 2003;278:38174–82.CrossRefPubMed Chigaev A, Zwartz G, Graves SW, Dwyer DC, Tsuji H, Foutz TD, et al. alpha4beta1 integrin affinity changes govern cell adhesion. J Biol Chem. 2003;278:38174–82.CrossRefPubMed
5.
go back to reference Shamri R, Grabovsky V, Gauguet JM, Feigelson S, Manevich E, Kolanus W, et al. Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat Immunol. 2005;6:497–506.CrossRefPubMed Shamri R, Grabovsky V, Gauguet JM, Feigelson S, Manevich E, Kolanus W, et al. Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat Immunol. 2005;6:497–506.CrossRefPubMed
6.
go back to reference Adams CWM, Poston RN, Buk SJ. Pathology, histochemistry and immunocytochemistry of lesions in acute multiple sclerosis. J Neurol Sci. 1989;92:291–306.CrossRefPubMed Adams CWM, Poston RN, Buk SJ. Pathology, histochemistry and immunocytochemistry of lesions in acute multiple sclerosis. J Neurol Sci. 1989;92:291–306.CrossRefPubMed
7.
go back to reference Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci. 2011;14:1142–9.CrossRefPubMed Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci. 2011;14:1142–9.CrossRefPubMed
8.
go back to reference Brück W, Porada P, Poser S, Rieckmann P, Hanefeld F, Kretzschmarch HA, et al. Monocyte/macrophage differentiation in early multiple sclerosis lesions. Ann Neurol. 1995;38:788–96.CrossRefPubMed Brück W, Porada P, Poser S, Rieckmann P, Hanefeld F, Kretzschmarch HA, et al. Monocyte/macrophage differentiation in early multiple sclerosis lesions. Ann Neurol. 1995;38:788–96.CrossRefPubMed
9.
go back to reference Hauser SL, Bhan AK, Gilles F, Kemp M, Kerr C, Weiner HL. Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann Neurol. 1986;19:578–87.CrossRefPubMed Hauser SL, Bhan AK, Gilles F, Kemp M, Kerr C, Weiner HL. Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann Neurol. 1986;19:578–87.CrossRefPubMed
10.
go back to reference Huitinga I, Van Rooijen N, De Groot CJ, Uitdehaag BM, Dijkstra CD. Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med. 1990;172:1025–33.CrossRefPubMed Huitinga I, Van Rooijen N, De Groot CJ, Uitdehaag BM, Dijkstra CD. Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med. 1990;172:1025–33.CrossRefPubMed
11.
go back to reference Tran EH, Hoekstra K, van Rooijen N, Dijkstra CD, Owens T. Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol. 1998;161:3767–75.PubMed Tran EH, Hoekstra K, van Rooijen N, Dijkstra CD, Owens T. Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol. 1998;161:3767–75.PubMed
12.
go back to reference McQualter JL, Bernard CC. Multiple sclerosis: a battle between destruction and repair. J Neurochem. 2007;100:295–306.CrossRefPubMed McQualter JL, Bernard CC. Multiple sclerosis: a battle between destruction and repair. J Neurochem. 2007;100:295–306.CrossRefPubMed
13.
go back to reference Miller E. Multiple Sclerosis. In: Ahmad S, editor. Neurodegenerative diseases. US: Springer; 2012. p. 222–38.CrossRef Miller E. Multiple Sclerosis. In: Ahmad S, editor. Neurodegenerative diseases. US: Springer; 2012. p. 222–38.CrossRef
14.
go back to reference Boven LA, Van Meurs M, Van Zwam M, Wierenga-Wolf A, Hintzen RQ, Boot RG, et al. Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain. 2006;129:517–26.CrossRefPubMed Boven LA, Van Meurs M, Van Zwam M, Wierenga-Wolf A, Hintzen RQ, Boot RG, et al. Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain. 2006;129:517–26.CrossRefPubMed
15.
go back to reference Elkabes S, DiCicco-Bloom EM, Black IB. Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci. 1996;16:2508–21.PubMed Elkabes S, DiCicco-Bloom EM, Black IB. Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci. 1996;16:2508–21.PubMed
17.
go back to reference Denney L, Kok WL, Cole SL, Sanderson S, McMichael AJ, Ho LP. Activation of invariant NKT cells in early phase of experimental autoimmune encephalomyelitis results in differentiation of Ly6Chi inflammatory monocyte to M2 macrophages and improved outcome. J Immunol. 2012;189:551–7.CrossRefPubMed Denney L, Kok WL, Cole SL, Sanderson S, McMichael AJ, Ho LP. Activation of invariant NKT cells in early phase of experimental autoimmune encephalomyelitis results in differentiation of Ly6Chi inflammatory monocyte to M2 macrophages and improved outcome. J Immunol. 2012;189:551–7.CrossRefPubMed
18.
go back to reference Mikita J, Dubourdieu-Cassagno N, Deloire MS, Vekris A, Biran M, Raffard G, et al. Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult Scler. 2011;17:2–15.CrossRefPubMed Mikita J, Dubourdieu-Cassagno N, Deloire MS, Vekris A, Biran M, Raffard G, et al. Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult Scler. 2011;17:2–15.CrossRefPubMed
19.
go back to reference Vaknin I, Kunis G, Miller O, Butovsky O, Bukshpan S, Beers DR, et al. Excess circulating alternatively activated myeloid (M2) cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis. PLoS One. 2011;6:e26921.CrossRefPubMedPubMedCentral Vaknin I, Kunis G, Miller O, Butovsky O, Bukshpan S, Beers DR, et al. Excess circulating alternatively activated myeloid (M2) cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis. PLoS One. 2011;6:e26921.CrossRefPubMedPubMedCentral
20.
go back to reference Bayardo M, Punzi F, Bondar C, Chopita N, Chirdo F. Transglutaminase 2 expression is enhanced synergistically by interferon-gamma and tumour necrosis factor-alpha in human small intestine. Clin Exp Immunol. 2012;168:95–104.CrossRefPubMedPubMedCentral Bayardo M, Punzi F, Bondar C, Chopita N, Chirdo F. Transglutaminase 2 expression is enhanced synergistically by interferon-gamma and tumour necrosis factor-alpha in human small intestine. Clin Exp Immunol. 2012;168:95–104.CrossRefPubMedPubMedCentral
21.
go back to reference Kim SY, Jeong EJ, Steinert PM. IFN-gamma induces transglutaminase 2 expression in rat small intestinal cells. J Interf Cytok Res. 2002;22:677–82.CrossRef Kim SY, Jeong EJ, Steinert PM. IFN-gamma induces transglutaminase 2 expression in rat small intestinal cells. J Interf Cytok Res. 2002;22:677–82.CrossRef
22.
go back to reference Shin DM, Jeon JH, Kim CW, Cho SY, Lee HJ, Jang GY, et al. TGF-beta mediates activation of transglutaminase 2 in response to oxidative stress that leads to protein aggregation. FASEB J. 2008;22:2498–507.CrossRefPubMed Shin DM, Jeon JH, Kim CW, Cho SY, Lee HJ, Jang GY, et al. TGF-beta mediates activation of transglutaminase 2 in response to oxidative stress that leads to protein aggregation. FASEB J. 2008;22:2498–507.CrossRefPubMed
23.
go back to reference Yanagawa Y, Hiraide S, Matsumoto M, Shimamura K, Togashi H. Enhanced transglutaminase 2 expression in response to stress-related catecholamines in macrophages. Immunobiology. 2014;219:680–6.CrossRefPubMed Yanagawa Y, Hiraide S, Matsumoto M, Shimamura K, Togashi H. Enhanced transglutaminase 2 expression in response to stress-related catecholamines in macrophages. Immunobiology. 2014;219:680–6.CrossRefPubMed
24.
go back to reference van Strien ME, de Vries HE, Chrobok NL, Bol JG, Breve JJ, van der Pol SM, et al. Tissue transglutaminase contributes to experimental multiple sclerosis pathogenesis and clinical outcome by promoting macrophage migration. Brain Behav Immun. 2015;50:141–54.CrossRefPubMed van Strien ME, de Vries HE, Chrobok NL, Bol JG, Breve JJ, van der Pol SM, et al. Tissue transglutaminase contributes to experimental multiple sclerosis pathogenesis and clinical outcome by promoting macrophage migration. Brain Behav Immun. 2015;50:141–54.CrossRefPubMed
25.
go back to reference Akimov SS, Belkin AM. Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin. Blood. 2001;98:1567–76.CrossRefPubMed Akimov SS, Belkin AM. Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin. Blood. 2001;98:1567–76.CrossRefPubMed
26.
go back to reference Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69:292–302.CrossRefPubMedPubMedCentral Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69:292–302.CrossRefPubMedPubMedCentral
27.
go back to reference van Strien ME, Breve JJ, Fratantoni S, Schreurs MW, Bol JG, Jongenelen CA, et al. Astrocyte-derived tissue transglutaminase interacts with fibronectin: a role in astrocyte adhesion and migration? PLoS One. 2011;6:e25037.CrossRefPubMedPubMedCentral van Strien ME, Breve JJ, Fratantoni S, Schreurs MW, Bol JG, Jongenelen CA, et al. Astrocyte-derived tissue transglutaminase interacts with fibronectin: a role in astrocyte adhesion and migration? PLoS One. 2011;6:e25037.CrossRefPubMedPubMedCentral
28.
go back to reference Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, Van den Hoff MJB, et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009;36:e45.CrossRef Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, Van den Hoff MJB, et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009;36:e45.CrossRef
29.
go back to reference Chanput W, Mes J, Vreeburg RA, Savelkoul HF, Wichers HJ. Transcription profiles of LPS-stimulated THP-1 monocytes and macrophages: a tool to study inflammation modulating effects of food-derived compounds. Food Funct. 2010;1:254–61.CrossRefPubMed Chanput W, Mes J, Vreeburg RA, Savelkoul HF, Wichers HJ. Transcription profiles of LPS-stimulated THP-1 monocytes and macrophages: a tool to study inflammation modulating effects of food-derived compounds. Food Funct. 2010;1:254–61.CrossRefPubMed
30.
go back to reference Graesser D, Mahooti S, Haas T, Davis S, Clark RB, Madri JA. The interrelationship of alpha4 integrin and matrix metalloproteinase-2 in the pathogenesis of experimental autoimmune encephalomyelitis. Lab Investig. 1998;78:1445–58.PubMed Graesser D, Mahooti S, Haas T, Davis S, Clark RB, Madri JA. The interrelationship of alpha4 integrin and matrix metalloproteinase-2 in the pathogenesis of experimental autoimmune encephalomyelitis. Lab Investig. 1998;78:1445–58.PubMed
31.
go back to reference Yang L, Zheng Z, Zhou Q, Bai X, Fan L, Yang C, et al. miR-155 promotes cutaneous wound healing through enhanced keratinocytes migration by MMP-2. J Mol Histol. 2017;48:147–55.CrossRefPubMed Yang L, Zheng Z, Zhou Q, Bai X, Fan L, Yang C, et al. miR-155 promotes cutaneous wound healing through enhanced keratinocytes migration by MMP-2. J Mol Histol. 2017;48:147–55.CrossRefPubMed
32.
go back to reference Wilhelmus MM, de Jager M, Bakker EN, Drukarch B. Tissue transglutaminase in Alzheimer’s disease: involvement in pathogenesis and its potential as a therapeutic target. J Alzheimers Dis. 2014;42(Suppl 3):S289–303.PubMed Wilhelmus MM, de Jager M, Bakker EN, Drukarch B. Tissue transglutaminase in Alzheimer’s disease: involvement in pathogenesis and its potential as a therapeutic target. J Alzheimers Dis. 2014;42(Suppl 3):S289–303.PubMed
33.
go back to reference Rauhavirta T, Hietikko M, Salmi T, Lindfors K. Transglutaminase 2 and transglutaminase 2 autoantibodies in celiac disease: a review. Clin Rev Allergy Immunol. 2016; doi:10.1007/s12016-016-8557-4. Rauhavirta T, Hietikko M, Salmi T, Lindfors K. Transglutaminase 2 and transglutaminase 2 autoantibodies in celiac disease: a review. Clin Rev Allergy Immunol. 2016; doi:10.​1007/​s12016-016-8557-4.
34.
go back to reference Agnihotri N, Mehta K. Transglutaminase-2: evolution from pedestrian protein to a promising therapeutic target. Amino Acids. 2017;49:425–39.CrossRefPubMed Agnihotri N, Mehta K. Transglutaminase-2: evolution from pedestrian protein to a promising therapeutic target. Amino Acids. 2017;49:425–39.CrossRefPubMed
35.
go back to reference Curro M, Ferlazzo N, Risitano R, Condello S, Vecchio M, Caccamo D, et al. Transglutaminase 2 and phospholipase A(2) interactions in the inflammatory response in human Thp-1 monocytes. Amino Acids. 2014;46:759–66.CrossRefPubMed Curro M, Ferlazzo N, Risitano R, Condello S, Vecchio M, Caccamo D, et al. Transglutaminase 2 and phospholipase A(2) interactions in the inflammatory response in human Thp-1 monocytes. Amino Acids. 2014;46:759–66.CrossRefPubMed
36.
go back to reference Frisdal E, Lesnik P, Olivier M, Robillard P, Chapman MJ, Huby T, et al. Interleukin-6 protects human macrophages from cellular cholesterol accumulation and attenuates the proinflammatory response. J Biol Chem. 2011;286:30926–36.CrossRefPubMedPubMedCentral Frisdal E, Lesnik P, Olivier M, Robillard P, Chapman MJ, Huby T, et al. Interleukin-6 protects human macrophages from cellular cholesterol accumulation and attenuates the proinflammatory response. J Biol Chem. 2011;286:30926–36.CrossRefPubMedPubMedCentral
37.
go back to reference Hodrea J, Demeny MA, Majai G, Sarang Z, Korponay-Szabo IR, Fesus L. Transglutaminase 2 is expressed and active on the surface of human monocyte-derived dendritic cells and macrophages. Immunol Lett. 2010;130:74–81.CrossRefPubMed Hodrea J, Demeny MA, Majai G, Sarang Z, Korponay-Szabo IR, Fesus L. Transglutaminase 2 is expressed and active on the surface of human monocyte-derived dendritic cells and macrophages. Immunol Lett. 2010;130:74–81.CrossRefPubMed
38.
go back to reference Murtaugh MP, Arend WP, Davies PJ. Induction of tissue transglutaminase in human peripheral blood monocytes. J Exp Med. 1984;159:114–25.CrossRefPubMed Murtaugh MP, Arend WP, Davies PJ. Induction of tissue transglutaminase in human peripheral blood monocytes. J Exp Med. 1984;159:114–25.CrossRefPubMed
39.
go back to reference Boisvert WA, Rose DM, Boullier A, Quehenberger O, Sydlaske A, Johnson KA, et al. Leukocyte transglutaminase 2 expression limits atherosclerotic lesion size. Arterioscler Thromb Vasc Biol. 2006;26:563–9.CrossRefPubMed Boisvert WA, Rose DM, Boullier A, Quehenberger O, Sydlaske A, Johnson KA, et al. Leukocyte transglutaminase 2 expression limits atherosclerotic lesion size. Arterioscler Thromb Vasc Biol. 2006;26:563–9.CrossRefPubMed
40.
go back to reference Vogel DY, Vereyken EJ, Glim JE, Heijnen PD, Moeton M, van der Valk P, et al. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflamm. 2013;10:35.CrossRef Vogel DY, Vereyken EJ, Glim JE, Heijnen PD, Moeton M, van der Valk P, et al. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflamm. 2013;10:35.CrossRef
41.
go back to reference Brilha S, Wysoczanski R, Whittington AM, Friedland JS, Porter JC. Monocyte adhesion, migration, and extracellular matrix breakdown is regulated by integrin alphaVbeta3 in mycobacterium tuberculosis infection. J Immunol. 2017;199:982–91. Brilha S, Wysoczanski R, Whittington AM, Friedland JS, Porter JC. Monocyte adhesion, migration, and extracellular matrix breakdown is regulated by integrin alphaVbeta3 in mycobacterium tuberculosis infection. J Immunol. 2017;199:982–91.
42.
go back to reference Leavesley DI, Schwartz MA, Rosenfeld M, Cheresh DA. Integrin beta1-and beta3-mediated endothelial cell migration is triggered through distinct signaling mechanisms. J Cell Biol. 1993;121:163–70.CrossRefPubMed Leavesley DI, Schwartz MA, Rosenfeld M, Cheresh DA. Integrin beta1-and beta3-mediated endothelial cell migration is triggered through distinct signaling mechanisms. J Cell Biol. 1993;121:163–70.CrossRefPubMed
43.
go back to reference Kawabe K, Takano K, Moriyama M, Nakamura Y. Lipopolysaccharide-Stimulated Transglutaminase 2 Expression Enhances Endocytosis Activity in the Mouse Microglial Cell Line BV-2. Neuroimmunomodulation. 2015;22:243-9. Kawabe K, Takano K, Moriyama M, Nakamura Y. Lipopolysaccharide-Stimulated Transglutaminase 2 Expression Enhances Endocytosis Activity in the Mouse Microglial Cell Line BV-2. Neuroimmunomodulation. 2015;22:243-9.
44.
go back to reference Johnson K, Hashimoto S, Lotz M, Pritzker K, Terkeltaub R. Interleukin-1 induces pro-mineralizing activity of cartilage tissue transglutaminase and factor XIIIa. Am J Pathol. 2001;159:149–63.CrossRefPubMedPubMedCentral Johnson K, Hashimoto S, Lotz M, Pritzker K, Terkeltaub R. Interleukin-1 induces pro-mineralizing activity of cartilage tissue transglutaminase and factor XIIIa. Am J Pathol. 2001;159:149–63.CrossRefPubMedPubMedCentral
45.
go back to reference Gundemir S, Colak G, Tucholski J, Johnson GV. Transglutaminase 2: a molecular Swiss army knife. Biochim Biophys Acta. 2012;1823:406–19.CrossRefPubMed Gundemir S, Colak G, Tucholski J, Johnson GV. Transglutaminase 2: a molecular Swiss army knife. Biochim Biophys Acta. 2012;1823:406–19.CrossRefPubMed
46.
go back to reference Krakauer T, Oppenheim JJ. IL-1 and tumor necrosis factor-alpha each up-regulate both the expression of IFN-gamma receptors and enhance IFN-gamma-induced HLA-DR expression on human monocytes and a human monocytic cell line (THP-1). J Immunol. 1993;150:1205–11. Krakauer T, Oppenheim JJ. IL-1 and tumor necrosis factor-alpha each up-regulate both the expression of IFN-gamma receptors and enhance IFN-gamma-induced HLA-DR expression on human monocytes and a human monocytic cell line (THP-1). J Immunol. 1993;150:1205–11.
47.
go back to reference Murthy PK, Dennis VA, Lasater BL, Philipp MT. Interleukin-10 modulates proinflammatory cytokines in the human monocytic cell line THP-1 stimulated with Borrelia burgdorferi lipoproteins. Infect Immunol. 2000;68:6663–9.CrossRef Murthy PK, Dennis VA, Lasater BL, Philipp MT. Interleukin-10 modulates proinflammatory cytokines in the human monocytic cell line THP-1 stimulated with Borrelia burgdorferi lipoproteins. Infect Immunol. 2000;68:6663–9.CrossRef
48.
go back to reference Hohnoki K, Inoue A, Koh CS. Elevated serum levels of IFN-gamma, IL-4 and TNF-alpha/unelevated serum levels of IL-10 in patients with demyelinating diseases during the acute stage. J Neuroimmunol. 1998;87:27–32.CrossRefPubMed Hohnoki K, Inoue A, Koh CS. Elevated serum levels of IFN-gamma, IL-4 and TNF-alpha/unelevated serum levels of IL-10 in patients with demyelinating diseases during the acute stage. J Neuroimmunol. 1998;87:27–32.CrossRefPubMed
49.
go back to reference Kallaur AP, Oliveira SR, Colado Simao AN, Delicato de Almeida ER, Kaminami Morimoto H, Lopes J, et al. Cytokine profile in relapsingremitting multiple sclerosis patients and the association between progression and activity of the disease. Mol Med Rep. 2013;7:1010–20.CrossRefPubMed Kallaur AP, Oliveira SR, Colado Simao AN, Delicato de Almeida ER, Kaminami Morimoto H, Lopes J, et al. Cytokine profile in relapsingremitting multiple sclerosis patients and the association between progression and activity of the disease. Mol Med Rep. 2013;7:1010–20.CrossRefPubMed
50.
go back to reference CZ L, Jensen MA, Arnason BG. Interferon gamma- and interleukin-4-secreting cells in multiple sclerosis. J Neuroimmunol. 1993;46:123–8.CrossRef CZ L, Jensen MA, Arnason BG. Interferon gamma- and interleukin-4-secreting cells in multiple sclerosis. J Neuroimmunol. 1993;46:123–8.CrossRef
51.
go back to reference Soderstrom M, Hillert J, Link J, Navikas V, Fredrikson S, Link H. Expression of IFN-gamma, IL-4, and TGF-beta in multiple sclerosis in relation to HLA-Dw2 phenotype and stage of disease. Mult Scler. 1995;1:173–80.CrossRefPubMed Soderstrom M, Hillert J, Link J, Navikas V, Fredrikson S, Link H. Expression of IFN-gamma, IL-4, and TGF-beta in multiple sclerosis in relation to HLA-Dw2 phenotype and stage of disease. Mult Scler. 1995;1:173–80.CrossRefPubMed
52.
go back to reference Martinez FO, Helming L, Milde R, Varin A, Melgert BN, Draijer C, et al. Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood. 2013;121:e57–69.CrossRefPubMed Martinez FO, Helming L, Milde R, Varin A, Melgert BN, Draijer C, et al. Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood. 2013;121:e57–69.CrossRefPubMed
53.
go back to reference Chiba Y, Todoroki M, Misawa M. Interleukin-4 upregulates RhoA protein via an activation of STAT6 in cultured human bronchial smooth muscle cells. Pharmacol Res. 2010;61:188–92.CrossRefPubMed Chiba Y, Todoroki M, Misawa M. Interleukin-4 upregulates RhoA protein via an activation of STAT6 in cultured human bronchial smooth muscle cells. Pharmacol Res. 2010;61:188–92.CrossRefPubMed
54.
go back to reference Elenstrom-Magnusson C, Chen W, Clinchy B, Obrink B, Severison E. IL-4-induced B cell migration involves transient interactions between beta 1 integrins and extracellular matrix components. Int Immunol. 1995;7:567–73.CrossRefPubMed Elenstrom-Magnusson C, Chen W, Clinchy B, Obrink B, Severison E. IL-4-induced B cell migration involves transient interactions between beta 1 integrins and extracellular matrix components. Int Immunol. 1995;7:567–73.CrossRefPubMed
Metadata
Title
Monocyte-derived tissue transglutaminase in multiple sclerosis patients: reflecting an anti-inflammatory status and function of the cells?
Authors
Claudia Sestito
John J. P. Brevé
Marja C. J. A. van Eggermond
Joep Killestein
Charlotte E. Teunissen
Joram van Rossum
Micha M. M. Wilhelmus
Benjamin Drukarch
Peter J. van den Elsen
Anne-Marie van Dam
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2017
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-017-1035-y

Other articles of this Issue 1/2017

Journal of Neuroinflammation 1/2017 Go to the issue