Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2017

Open Access 01-12-2017 | Research

αVβ3 Integrin regulates astrocyte reactivity

Authors: Raúl Lagos-Cabré, Alvaro Alvarez, Milene Kong, Francesca Burgos-Bravo, Areli Cárdenas, Edgardo Rojas-Mancilla, Ramón Pérez-Nuñez, Rodrigo Herrera-Molina, Fabiola Rojas, Pascal Schneider, Mario Herrera-Marschitz, Andrew F. G. Quest, Brigitte van Zundert, Lisette Leyton

Published in: Journal of Neuroinflammation | Issue 1/2017

Login to get access

Abstract

Background

Neuroinflammation involves cytokine release, astrocyte reactivity and migration. Neuronal Thy-1 promotes DITNC1 astrocyte migration by engaging αVβ3 Integrin and Syndecan-4. Primary astrocytes express low levels of these receptors and are unresponsive to Thy-1; thus, inflammation and astrocyte reactivity might be necessary for Thy-1-induced responses.

Methods

Wild-type rat astrocytes (TNF-activated) or from human SOD1G93A transgenic mice (a neurodegenerative disease model) were used to evaluate cell migration, Thy-1 receptor levels, signaling molecules, and reactivity markers.

Results

Thy-1 induced astrocyte migration only after TNF priming. Increased expression of αVβ3 Integrin, Syndecan-4, P2X7R, Pannexin-1, Connexin-43, GFAP, and iNOS were observed in TNF-treated astrocytes. Silencing of β3 Integrin prior to TNF treatment prevented Thy-1-induced migration, while β3 Integrin over-expression was sufficient to induce astrocyte reactivity and allow Thy-1-induced migration. Finally, hSOD1G93A astrocytes behave as TNF-treated astrocytes since they were reactive and responsive to Thy-1.

Conclusions

Therefore, inflammation induces expression of αVβ3 Integrin and other proteins, astrocyte reactivity, and Thy-1 responsiveness. Importantly, ectopic control of β3 Integrin levels modulates these responses regardless of inflammation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Apolloni S, et al. Ablation of P2X7 receptor exacerbates gliosis and motoneuron death in the SOD1-G93A mouse model of amyotrophic lateral sclerosis. Hum Mol Genet. 2013;22(20):4102–16.CrossRefPubMed Apolloni S, et al. Ablation of P2X7 receptor exacerbates gliosis and motoneuron death in the SOD1-G93A mouse model of amyotrophic lateral sclerosis. Hum Mol Genet. 2013;22(20):4102–16.CrossRefPubMed
2.
go back to reference Villarreal A, et al. Isolation and characterization of ischemia-derived astrocytes (IDAs) with ability to transactivate quiescent astrocytes. Front Cell Neurosci. 2016;10:139.CrossRefPubMedPubMedCentral Villarreal A, et al. Isolation and characterization of ischemia-derived astrocytes (IDAs) with ability to transactivate quiescent astrocytes. Front Cell Neurosci. 2016;10:139.CrossRefPubMedPubMedCentral
3.
go back to reference Almad AA, et al. Connexin 43 in astrocytes contributes to motor neuron toxicity in amyotrophic lateral sclerosis. Glia. 2016;64(7):1154–69.CrossRefPubMed Almad AA, et al. Connexin 43 in astrocytes contributes to motor neuron toxicity in amyotrophic lateral sclerosis. Glia. 2016;64(7):1154–69.CrossRefPubMed
4.
go back to reference Avendano BC, et al. Prenatal exposure to inflammatory conditions increases Cx43 and Panx1 unopposed channel opening and activation of astrocytes in the offspring effect on neuronal survival. Glia. 2015;63:2058–72. Avendano BC, et al. Prenatal exposure to inflammatory conditions increases Cx43 and Panx1 unopposed channel opening and activation of astrocytes in the offspring effect on neuronal survival. Glia. 2015;63:2058–72.
5.
go back to reference Hung CC, et al. Astrocytic GAP43 induced by the TLR4/NF-kappaB/STAT3 axis attenuates astrogliosis-mediated microglial activation and neurotoxicity. J Neurosci. 2016;36(6):2027–43.CrossRefPubMed Hung CC, et al. Astrocytic GAP43 induced by the TLR4/NF-kappaB/STAT3 axis attenuates astrogliosis-mediated microglial activation and neurotoxicity. J Neurosci. 2016;36(6):2027–43.CrossRefPubMed
6.
go back to reference Sofroniew MV. Reactive astrocytes in neural repair and protection. Neuroscientist. 2005;11(5):400–7.CrossRefPubMed Sofroniew MV. Reactive astrocytes in neural repair and protection. Neuroscientist. 2005;11(5):400–7.CrossRefPubMed
7.
go back to reference Osborn LM, et al. Astrogliosis: An integral player in the pathogenesis of Alzheimer’s disease. Prog Neurobiol. 2016;144:121–41.CrossRefPubMed Osborn LM, et al. Astrogliosis: An integral player in the pathogenesis of Alzheimer’s disease. Prog Neurobiol. 2016;144:121–41.CrossRefPubMed
8.
go back to reference Rolls A, Shechter R, Schwartz M. The bright side of the glial scar in CNS repair. Nat Rev Neurosci. 2009;10(3):235–41.CrossRefPubMed Rolls A, Shechter R, Schwartz M. The bright side of the glial scar in CNS repair. Nat Rev Neurosci. 2009;10(3):235–41.CrossRefPubMed
9.
go back to reference Buffo A, Rolando C, Ceruti S. Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential. Biochem Pharmacol. 2010;79(2):77–89.CrossRefPubMed Buffo A, Rolando C, Ceruti S. Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential. Biochem Pharmacol. 2010;79(2):77–89.CrossRefPubMed
10.
go back to reference Faulkner JR, et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci. 2004;24(9):2143–55.CrossRefPubMed Faulkner JR, et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci. 2004;24(9):2143–55.CrossRefPubMed
11.
go back to reference Welser-Alves JV, Milner R. Microglia are the major source of TNF-alpha and TGF-beta1 in postnatal glial cultures; regulation by cytokines, lipopolysaccharide, and vitronectin. Neurochem Int. 2013;63(1):47–53.CrossRefPubMed Welser-Alves JV, Milner R. Microglia are the major source of TNF-alpha and TGF-beta1 in postnatal glial cultures; regulation by cytokines, lipopolysaccharide, and vitronectin. Neurochem Int. 2013;63(1):47–53.CrossRefPubMed
12.
go back to reference Balasingam V, et al. Reactive astrogliosis in the neonatal mouse brain and its modulation by cytokines. J Neurosci. 1994;14(2):846–56.PubMed Balasingam V, et al. Reactive astrogliosis in the neonatal mouse brain and its modulation by cytokines. J Neurosci. 1994;14(2):846–56.PubMed
13.
go back to reference Hennessy E, Griffin EW, Cunningham C. Astrocytes are primed by chronic neurodegeneration to produce exaggerated chemokine and cell infiltration responses to acute stimulation with the cytokines IL-1beta and TNF-alpha. J Neurosci. 2015;35(22):8411–22.CrossRefPubMedPubMedCentral Hennessy E, Griffin EW, Cunningham C. Astrocytes are primed by chronic neurodegeneration to produce exaggerated chemokine and cell infiltration responses to acute stimulation with the cytokines IL-1beta and TNF-alpha. J Neurosci. 2015;35(22):8411–22.CrossRefPubMedPubMedCentral
14.
go back to reference Bardehle S, et al. Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat Neurosci. 2013;16(5):580–6.CrossRefPubMed Bardehle S, et al. Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat Neurosci. 2013;16(5):580–6.CrossRefPubMed
16.
go back to reference Sirko S, et al. Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog. [corrected]. Cell Stem Cell. 2013;12(4):426–39.CrossRefPubMed Sirko S, et al. Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog. [corrected]. Cell Stem Cell. 2013;12(4):426–39.CrossRefPubMed
17.
go back to reference Bush TG, et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron. 1999;23(2):297–308.CrossRefPubMed Bush TG, et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron. 1999;23(2):297–308.CrossRefPubMed
18.
go back to reference Ellison JA, Barone FC, Feuerstein GZ. Matrix remodeling after stroke. De novo expression of matrix proteins and integrin receptors. Ann N Y Acad Sci. 1999;890:204–22.CrossRefPubMed Ellison JA, Barone FC, Feuerstein GZ. Matrix remodeling after stroke. De novo expression of matrix proteins and integrin receptors. Ann N Y Acad Sci. 1999;890:204–22.CrossRefPubMed
19.
go back to reference Wang X, et al. Delayed expression of osteopontin after focal stroke in the rat. J Neurosci. 1998;18(6):2075–83.PubMed Wang X, et al. Delayed expression of osteopontin after focal stroke in the rat. J Neurosci. 1998;18(6):2075–83.PubMed
20.
go back to reference Grygorowicz T, Welniak-Kaminska M, Struzynska L. Early P2X7R-related astrogliosis in autoimmune encephalomyelitis. Mol Cell Neurosci. 2016;74:1–9.CrossRefPubMed Grygorowicz T, Welniak-Kaminska M, Struzynska L. Early P2X7R-related astrogliosis in autoimmune encephalomyelitis. Mol Cell Neurosci. 2016;74:1–9.CrossRefPubMed
21.
go back to reference Alvarez A, et al. Integrin-mediated transactivation of P2X7R via hemichannel-dependent ATP release stimulates astrocyte migration. Biochim Biophys Acta. 2016;1863(9):2175–88.CrossRefPubMed Alvarez A, et al. Integrin-mediated transactivation of P2X7R via hemichannel-dependent ATP release stimulates astrocyte migration. Biochim Biophys Acta. 2016;1863(9):2175–88.CrossRefPubMed
22.
go back to reference Henriquez M, et al. ATP release due to Thy-1-integrin binding induces P2X7-mediated calcium entry required for focal adhesion formation. J Cell Sci. 2011;124(Pt 9):1581–8.CrossRefPubMedPubMedCentral Henriquez M, et al. ATP release due to Thy-1-integrin binding induces P2X7-mediated calcium entry required for focal adhesion formation. J Cell Sci. 2011;124(Pt 9):1581–8.CrossRefPubMedPubMedCentral
23.
go back to reference Avalos AM, et al. Aggregation of integrins and RhoA activation are required for Thy-1-induced morphological changes in astrocytes. J Biol Chem. 2004;279(37):39139–45.CrossRefPubMed Avalos AM, et al. Aggregation of integrins and RhoA activation are required for Thy-1-induced morphological changes in astrocytes. J Biol Chem. 2004;279(37):39139–45.CrossRefPubMed
24.
go back to reference Avalos AM, et al. Signaling triggered by Thy-1 interaction with beta 3 integrin on astrocytes is an essential step towards unraveling neuronal Thy-1 function. Biol Res. 2002;35(2):231–8.CrossRefPubMed Avalos AM, et al. Signaling triggered by Thy-1 interaction with beta 3 integrin on astrocytes is an essential step towards unraveling neuronal Thy-1 function. Biol Res. 2002;35(2):231–8.CrossRefPubMed
25.
go back to reference Avalos AM, et al. Neuronal Thy-1 induces astrocyte adhesion by engaging syndecan-4 in a cooperative interaction with alphavbeta3 integrin that activates PKCalpha and RhoA. J Cell Sci. 2009;122(Pt 19):3462–71.CrossRefPubMedPubMedCentral Avalos AM, et al. Neuronal Thy-1 induces astrocyte adhesion by engaging syndecan-4 in a cooperative interaction with alphavbeta3 integrin that activates PKCalpha and RhoA. J Cell Sci. 2009;122(Pt 19):3462–71.CrossRefPubMedPubMedCentral
26.
go back to reference Kong M, et al. Thy-1-mediated cell-cell contact induces astrocyte migration through the engagement of alphaVbeta3 integrin and syndecan-4. Biochim Biophys Acta. 2013;1833(6):1409–20.CrossRefPubMedPubMedCentral Kong M, et al. Thy-1-mediated cell-cell contact induces astrocyte migration through the engagement of alphaVbeta3 integrin and syndecan-4. Biochim Biophys Acta. 2013;1833(6):1409–20.CrossRefPubMedPubMedCentral
27.
go back to reference Hermosilla T, et al. Direct Thy-1/alphaVbeta3 integrin interaction mediates neuron to astrocyte communication. Biochim Biophys Acta. 2008;1783(6):1111–20.CrossRefPubMedPubMedCentral Hermosilla T, et al. Direct Thy-1/alphaVbeta3 integrin interaction mediates neuron to astrocyte communication. Biochim Biophys Acta. 2008;1783(6):1111–20.CrossRefPubMedPubMedCentral
28.
go back to reference Leyton L, et al. Thy-1 binds to integrin beta(3) on astrocytes and triggers formation of focal contact sites. Curr Biol. 2001;11(13):1028–38.CrossRefPubMed Leyton L, et al. Thy-1 binds to integrin beta(3) on astrocytes and triggers formation of focal contact sites. Curr Biol. 2001;11(13):1028–38.CrossRefPubMed
29.
go back to reference Ellison JA, et al. Osteopontin and its integrin receptor alpha(v)beta3 are upregulated during formation of the glial scar after focal stroke. Stroke. 1998;29(8):1698–706. discussion 1707CrossRefPubMed Ellison JA, et al. Osteopontin and its integrin receptor alpha(v)beta3 are upregulated during formation of the glial scar after focal stroke. Stroke. 1998;29(8):1698–706. discussion 1707CrossRefPubMed
30.
go back to reference Iseki K, et al. Increased syndecan expression by pleiotrophin and FGF receptor-expressing astrocytes in injured brain tissue. Glia. 2002;39(1):1–9.CrossRefPubMed Iseki K, et al. Increased syndecan expression by pleiotrophin and FGF receptor-expressing astrocytes in injured brain tissue. Glia. 2002;39(1):1–9.CrossRefPubMed
32.
go back to reference Geevasinga N, et al. Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nat Rev Neurol. 2016;12(11):651–61.CrossRefPubMed Geevasinga N, et al. Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nat Rev Neurol. 2016;12(11):651–61.CrossRefPubMed
33.
go back to reference van Zundert B, et al. Early pathogenesis in the adult-onset neurodegenerative disease amyotrophic lateral sclerosis. J Cell Biochem. 2012;113(11):3301–12.CrossRefPubMed van Zundert B, et al. Early pathogenesis in the adult-onset neurodegenerative disease amyotrophic lateral sclerosis. J Cell Biochem. 2012;113(11):3301–12.CrossRefPubMed
34.
go back to reference Vucic S, Rothstein JD, Kiernan MC. Advances in treating amyotrophic lateral sclerosis: insights from pathophysiological studies. Trends Neurosci. 2014;37(8):433–42.CrossRefPubMed Vucic S, Rothstein JD, Kiernan MC. Advances in treating amyotrophic lateral sclerosis: insights from pathophysiological studies. Trends Neurosci. 2014;37(8):433–42.CrossRefPubMed
35.
go back to reference Kushner PD, Stephenson DT, Wright S. Reactive astrogliosis is widespread in the subcortical white matter of amyotrophic lateral sclerosis brain. J Neuropath Exp Neurol. 1991;50(3):263–77.CrossRefPubMed Kushner PD, Stephenson DT, Wright S. Reactive astrogliosis is widespread in the subcortical white matter of amyotrophic lateral sclerosis brain. J Neuropath Exp Neurol. 1991;50(3):263–77.CrossRefPubMed
36.
37.
go back to reference Hall ED, Oostveen JA, Gurney ME. Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. Glia. 1998;23(2):249–56.CrossRefPubMed Hall ED, Oostveen JA, Gurney ME. Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. Glia. 1998;23(2):249–56.CrossRefPubMed
38.
39.
go back to reference Fritz E, et al. Mutant SOD1-expressing astrocytes release toxic factors that trigger motoneuron death by inducing hyperexcitability. J Neurophysiol. 2013;109(11):2803–14.CrossRefPubMedPubMedCentral Fritz E, et al. Mutant SOD1-expressing astrocytes release toxic factors that trigger motoneuron death by inducing hyperexcitability. J Neurophysiol. 2013;109(11):2803–14.CrossRefPubMedPubMedCentral
40.
41.
go back to reference Rojas F, et al. Astrocytes expressing mutant SOD1 and TDP43 trigger motoneuron death that is mediated via sodium channels and nitroxidative stress. Front Cell Neurosci. 2014;8:24.CrossRefPubMedPubMedCentral Rojas F, et al. Astrocytes expressing mutant SOD1 and TDP43 trigger motoneuron death that is mediated via sodium channels and nitroxidative stress. Front Cell Neurosci. 2014;8:24.CrossRefPubMedPubMedCentral
42.
go back to reference Rojas F, et al. Reactive oxygen species trigger motoneuron death in non-cell-autonomous models of ALS through activation of c-Abl signaling. Front Cell Neurosci. 2015;9:203.CrossRefPubMedPubMedCentral Rojas F, et al. Reactive oxygen species trigger motoneuron death in non-cell-autonomous models of ALS through activation of c-Abl signaling. Front Cell Neurosci. 2015;9:203.CrossRefPubMedPubMedCentral
43.
go back to reference Apolloni S, et al. Actions of the antihistaminergic clemastine on presymptomatic SOD1-G93A mice ameliorate ALS disease progression. J Neuroinflammation. 2016;13(1):191.CrossRefPubMedPubMedCentral Apolloni S, et al. Actions of the antihistaminergic clemastine on presymptomatic SOD1-G93A mice ameliorate ALS disease progression. J Neuroinflammation. 2016;13(1):191.CrossRefPubMedPubMedCentral
44.
go back to reference Gao B, Saba TM, Tsan MF. Role of alpha(v)beta(3)-integrin in TNF-alpha-induced endothelial cell migration. Am J Physiol Cell Physiol. 2002;283(4):C1196–205.CrossRefPubMed Gao B, Saba TM, Tsan MF. Role of alpha(v)beta(3)-integrin in TNF-alpha-induced endothelial cell migration. Am J Physiol Cell Physiol. 2002;283(4):C1196–205.CrossRefPubMed
45.
go back to reference Shao N, et al. Interleukin-8 upregulates integrin beta3 expression and promotes estrogen receptor-negative breast cancer cell invasion by activating the PI3K/Akt/NF-kappaB pathway. Cancer Lett. 2015;364(2):165–72.CrossRefPubMed Shao N, et al. Interleukin-8 upregulates integrin beta3 expression and promotes estrogen receptor-negative breast cancer cell invasion by activating the PI3K/Akt/NF-kappaB pathway. Cancer Lett. 2015;364(2):165–72.CrossRefPubMed
46.
go back to reference Foletti A, et al. Isolated integrin beta3 subunit cytoplasmic domains require membrane anchorage and the NPXY motif to recruit to adhesion complexes but do not discriminate between beta1- and beta3-positive complexes. Thromb Haemost. 2005;94(1):155–66.PubMed Foletti A, et al. Isolated integrin beta3 subunit cytoplasmic domains require membrane anchorage and the NPXY motif to recruit to adhesion complexes but do not discriminate between beta1- and beta3-positive complexes. Thromb Haemost. 2005;94(1):155–66.PubMed
47.
go back to reference Fiore VF, et al. Conformational coupling of integrin and Thy-1 regulates Fyn priming and fibroblast mechanotransduction. J Cell Biol. 2015;211(1):173–90.CrossRefPubMedPubMedCentral Fiore VF, et al. Conformational coupling of integrin and Thy-1 regulates Fyn priming and fibroblast mechanotransduction. J Cell Biol. 2015;211(1):173–90.CrossRefPubMedPubMedCentral
48.
go back to reference Schmidt M, et al. Thy-1/beta3 integrin interaction-induced apoptosis of dermal fibroblasts is mediated by up-regulation of FasL expression. J Invest Dermatol. 2016;136(2):526–9.CrossRefPubMed Schmidt M, et al. Thy-1/beta3 integrin interaction-induced apoptosis of dermal fibroblasts is mediated by up-regulation of FasL expression. J Invest Dermatol. 2016;136(2):526–9.CrossRefPubMed
49.
go back to reference Saalbach A, et al. Interaction of human Thy-1 (CD 90) with the integrin alphavbeta3 (CD51/CD61): an important mechanism mediating melanoma cell adhesion to activated endothelium. Oncogene. 2005;24(29):4710–20.CrossRefPubMed Saalbach A, et al. Interaction of human Thy-1 (CD 90) with the integrin alphavbeta3 (CD51/CD61): an important mechanism mediating melanoma cell adhesion to activated endothelium. Oncogene. 2005;24(29):4710–20.CrossRefPubMed
50.
go back to reference Barbeito LH, et al. A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis. Brain Res Brain Res Rev. 2004;47(1–3):263–74.CrossRefPubMed Barbeito LH, et al. A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis. Brain Res Brain Res Rev. 2004;47(1–3):263–74.CrossRefPubMed
51.
go back to reference Maragakis NJ, Rothstein JD. Mechanisms of Disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol. 2006;2(12):679–89.CrossRefPubMed Maragakis NJ, Rothstein JD. Mechanisms of Disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol. 2006;2(12):679–89.CrossRefPubMed
52.
go back to reference Renner NA, et al. Transient acidification and subsequent proinflammatory cytokine stimulation of astrocytes induce distinct activation phenotypes. J Cell Physiol. 2013;228(6):1284–94.CrossRefPubMedPubMedCentral Renner NA, et al. Transient acidification and subsequent proinflammatory cytokine stimulation of astrocytes induce distinct activation phenotypes. J Cell Physiol. 2013;228(6):1284–94.CrossRefPubMedPubMedCentral
53.
go back to reference Herrera-Molina R, et al. Thy-1-interacting molecules and cellular signaling in cis and trans. Int Rev Cell Mol Biol. 2013;305:163–216.CrossRefPubMed Herrera-Molina R, et al. Thy-1-interacting molecules and cellular signaling in cis and trans. Int Rev Cell Mol Biol. 2013;305:163–216.CrossRefPubMed
54.
go back to reference Leyton L, Hagood JS. Thy-1 modulates neurological cell-cell and cell-matrix interactions through multiple molecular interactions. Adv Neurobiol. 2014;8:3–20.CrossRefPubMed Leyton L, Hagood JS. Thy-1 modulates neurological cell-cell and cell-matrix interactions through multiple molecular interactions. Adv Neurobiol. 2014;8:3–20.CrossRefPubMed
55.
go back to reference Aloisi F, et al. Astrocyte cultures from human embryonic brain: characterization and modulation of surface molecules by inflammatory cytokines. J Neurosci Res. 1992;32(4):494–506.CrossRefPubMed Aloisi F, et al. Astrocyte cultures from human embryonic brain: characterization and modulation of surface molecules by inflammatory cytokines. J Neurosci Res. 1992;32(4):494–506.CrossRefPubMed
56.
go back to reference Shrikant P, et al. Regulation of intercellular adhesion molecule-1 gene expression by tumor necrosis factor-alpha, interleukin-1 beta, and interferon-gamma in astrocytes. J Neuroimmunol. 1994;51(2):209–20.CrossRefPubMed Shrikant P, et al. Regulation of intercellular adhesion molecule-1 gene expression by tumor necrosis factor-alpha, interleukin-1 beta, and interferon-gamma in astrocytes. J Neuroimmunol. 1994;51(2):209–20.CrossRefPubMed
57.
go back to reference Hurwitz AA, et al. Tumor necrosis factor alpha induces adhesion molecule expression on human fetal astrocytes. J Exp Med. 1992;176(6):1631–6.CrossRefPubMed Hurwitz AA, et al. Tumor necrosis factor alpha induces adhesion molecule expression on human fetal astrocytes. J Exp Med. 1992;176(6):1631–6.CrossRefPubMed
58.
go back to reference Cardenas A, et al. Signaling pathways involved in neuron-astrocyte adhesion and migration. Curr Mol Med. 2014;14(2):275–90.CrossRefPubMed Cardenas A, et al. Signaling pathways involved in neuron-astrocyte adhesion and migration. Curr Mol Med. 2014;14(2):275–90.CrossRefPubMed
59.
go back to reference Froger N, et al. Inhibition of cytokine-induced connexin43 hemichannel activity in astrocytes is neuroprotective. Mol Cell Neurosci. 2010;45(1):37–46.CrossRefPubMed Froger N, et al. Inhibition of cytokine-induced connexin43 hemichannel activity in astrocytes is neuroprotective. Mol Cell Neurosci. 2010;45(1):37–46.CrossRefPubMed
60.
go back to reference Chen G, et al. Connexin-43 induces chemokine release from spinal cord astrocytes to maintain late-phase neuropathic pain in mice. Brain. 2014;137(Pt 8):2193–209.CrossRefPubMedPubMedCentral Chen G, et al. Connexin-43 induces chemokine release from spinal cord astrocytes to maintain late-phase neuropathic pain in mice. Brain. 2014;137(Pt 8):2193–209.CrossRefPubMedPubMedCentral
61.
go back to reference Xu P, et al. Extracellular ATP enhances radiation-induced brain injury through microglial activation and paracrine signaling via P2X7 receptor. Brain Behav Immun. 2015;50:87–100.CrossRefPubMed Xu P, et al. Extracellular ATP enhances radiation-induced brain injury through microglial activation and paracrine signaling via P2X7 receptor. Brain Behav Immun. 2015;50:87–100.CrossRefPubMed
62.
63.
go back to reference Monif M, et al. The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore. J Neurosci. 2009;29(12):3781–91.CrossRefPubMed Monif M, et al. The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore. J Neurosci. 2009;29(12):3781–91.CrossRefPubMed
64.
65.
go back to reference Furger KA, et al. Beta(3) integrin expression increases breast carcinoma cell responsiveness to the malignancy-enhancing effects of osteopontin. Mol Cancer Res. 2003;1(11):810–9.PubMed Furger KA, et al. Beta(3) integrin expression increases breast carcinoma cell responsiveness to the malignancy-enhancing effects of osteopontin. Mol Cancer Res. 2003;1(11):810–9.PubMed
66.
go back to reference Gianni T, Leoni V, Campadelli-Fiume G. Type I interferon and NF-kappaB activation elicited by herpes simplex virus gH/gL via alphavbeta3 integrin in epithelial and neuronal cell lines. J Virol. 2013;87(24):13911–6.CrossRefPubMedPubMedCentral Gianni T, Leoni V, Campadelli-Fiume G. Type I interferon and NF-kappaB activation elicited by herpes simplex virus gH/gL via alphavbeta3 integrin in epithelial and neuronal cell lines. J Virol. 2013;87(24):13911–6.CrossRefPubMedPubMedCentral
67.
go back to reference Cao L, et al. Osteopontin promotes a cancer stem cell-like phenotype in hepatocellular carcinoma cells via an integrin-NF-kappaB-HIF-1alpha pathway. Oncotarget. 2015;6(9):6627–40.CrossRefPubMedPubMedCentral Cao L, et al. Osteopontin promotes a cancer stem cell-like phenotype in hepatocellular carcinoma cells via an integrin-NF-kappaB-HIF-1alpha pathway. Oncotarget. 2015;6(9):6627–40.CrossRefPubMedPubMedCentral
68.
go back to reference Courter DL, et al. Src kinase activity is required for integrin alphaVbeta3-mediated activation of nuclear factor-kappaB. J Biol Chem. 2005;280(13):12145–51.CrossRefPubMed Courter DL, et al. Src kinase activity is required for integrin alphaVbeta3-mediated activation of nuclear factor-kappaB. J Biol Chem. 2005;280(13):12145–51.CrossRefPubMed
69.
go back to reference Okuyama E, et al. Molecular mechanisms of syndecan-4 upregulation by TNF-alpha in the endothelium-like EAhy926 cells. J Biochem. 2013;154(1):41–50.CrossRefPubMed Okuyama E, et al. Molecular mechanisms of syndecan-4 upregulation by TNF-alpha in the endothelium-like EAhy926 cells. J Biochem. 2013;154(1):41–50.CrossRefPubMed
70.
go back to reference Balasubramaniyan V, et al. Importance of Connexin-43 based gap junction in cirrhosis and acute-on-chronic liver failure. J Hepatol. 2013;58(6):1194–200.CrossRefPubMed Balasubramaniyan V, et al. Importance of Connexin-43 based gap junction in cirrhosis and acute-on-chronic liver failure. J Hepatol. 2013;58(6):1194–200.CrossRefPubMed
71.
go back to reference Alonso F, et al. An angiotensin II- and NF-kappaB-dependent mechanism increases connexin 43 in murine arteries targeted by renin-dependent hypertension. Cardiovasc Res. 2010;87(1):166–76.CrossRefPubMedPubMedCentral Alonso F, et al. An angiotensin II- and NF-kappaB-dependent mechanism increases connexin 43 in murine arteries targeted by renin-dependent hypertension. Cardiovasc Res. 2010;87(1):166–76.CrossRefPubMedPubMedCentral
72.
go back to reference Ritchie CK, Giordano A, Khalili K. Integrin involvement in glioblastoma multiforme: possible regulation by NF-kappaB. J Cell Physiol. 2000;184(2):214–21.CrossRefPubMed Ritchie CK, Giordano A, Khalili K. Integrin involvement in glioblastoma multiforme: possible regulation by NF-kappaB. J Cell Physiol. 2000;184(2):214–21.CrossRefPubMed
Metadata
Title
αVβ3 Integrin regulates astrocyte reactivity
Authors
Raúl Lagos-Cabré
Alvaro Alvarez
Milene Kong
Francesca Burgos-Bravo
Areli Cárdenas
Edgardo Rojas-Mancilla
Ramón Pérez-Nuñez
Rodrigo Herrera-Molina
Fabiola Rojas
Pascal Schneider
Mario Herrera-Marschitz
Andrew F. G. Quest
Brigitte van Zundert
Lisette Leyton
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2017
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-017-0968-5

Other articles of this Issue 1/2017

Journal of Neuroinflammation 1/2017 Go to the issue