Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2017

Open Access 01-12-2017 | Research

Protease-activated receptor-1 activation by granzyme B causes neurotoxicity that is augmented by interleukin-1β

Authors: Paul R. Lee, Tory P. Johnson, Sharmilee Gnanapavan, Gavin Giovannoni, Tongguang Wang, Joseph P. Steiner, Marie Medynets, Mark J. Vaal, Valerie Gartner, Avindra Nath

Published in: Journal of Neuroinflammation | Issue 1/2017

Login to get access

Abstract

Background

The cause of neurodegeneration in progressive forms of multiple sclerosis is unknown. We investigated the impact of specific neuroinflammatory markers on human neurons to identify potential therapeutic targets for neuroprotection against chronic inflammation.

Methods

Surface immunocytochemistry directly visualized protease-activated receptor-1 (PAR1) and interleukin-1 (IL-1) receptors on neurons in human postmortem cortex in patients with and without neuroinflammatory lesions. Viability of cultured neurons was determined after exposure to cerebrospinal fluid from patients with progressive multiple sclerosis or purified granzyme B and IL-1β. Inhibitors of PAR1 activation and of PAR1-associated second messenger signaling were used to elucidate a mechanism of neurotoxicity.

Results

Immunohistochemistry of human post-mortem brain tissue demonstrated cells expressing higher amounts of PAR1 near and within subcortical lesions in patients with multiple sclerosis compared to control tissue. Human cerebrospinal fluid samples containing granzyme B and IL-1β were toxic to human neuronal cultures. Granzyme B was neurotoxic through activation of PAR1 and subsequently the phospholipase Cβ-IP3 second messenger system. Inhibition of PAR1 or IP3 prevented granzyme B toxicity. IL-1β enhanced granzyme B-mediated neurotoxicity by increasing PAR1 expression.

Conclusions

Neurons within the inflamed central nervous system are imperiled because they express more PAR1 and are exposed to a neurotoxic combination of both granzyme B and IL-1β. The effects of these inflammatory mediators may be a contributing factor in the progressive brain atrophy associated with neuroinflammatory diseases. Knowledge of how exposure to IL-1β and granzyme B act synergistically to cause neuronal death yields potential novel neuroprotective treatments for neuroinflammatory diseases.
Literature
1.
go back to reference Anderson DW, Ellenberg JH, Leventhal CM, et al. Revised estimate of the prevalence of multiple sclerosis in the United States. Ann Neurol. 1992;31:333–6.CrossRefPubMed Anderson DW, Ellenberg JH, Leventhal CM, et al. Revised estimate of the prevalence of multiple sclerosis in the United States. Ann Neurol. 1992;31:333–6.CrossRefPubMed
2.
go back to reference Rissanen E, Tuisku J, Rokka J, et al. In Vivo Detection of Diffuse Inflammation in Secondary Progressive Multiple Sclerosis Using PET Imaging and the Radioligand 11C-PK11195. J Nucl Med. 2014;55:939–44.CrossRefPubMed Rissanen E, Tuisku J, Rokka J, et al. In Vivo Detection of Diffuse Inflammation in Secondary Progressive Multiple Sclerosis Using PET Imaging and the Radioligand 11C-PK11195. J Nucl Med. 2014;55:939–44.CrossRefPubMed
3.
go back to reference Popescu V, Agosta F, Hulst HE, et al. Brain atrophy and lesion load predict long term disability in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2013;84:1082–91.CrossRefPubMed Popescu V, Agosta F, Hulst HE, et al. Brain atrophy and lesion load predict long term disability in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2013;84:1082–91.CrossRefPubMed
4.
go back to reference Fernández-Jaén A, Fernández-Mayoralas DM, Fernández-Perrone AL, et al. Cortical thickness at the time of the initial attack in two patients with paediatric relapsing-remitting multiple sclerosis. Eur J Paediatr Neurol. 2014;18:295–300. doi:10.1016/j.ejpn.2013.12.002.CrossRefPubMed Fernández-Jaén A, Fernández-Mayoralas DM, Fernández-Perrone AL, et al. Cortical thickness at the time of the initial attack in two patients with paediatric relapsing-remitting multiple sclerosis. Eur J Paediatr Neurol. 2014;18:295–300. doi:10.​1016/​j.​ejpn.​2013.​12.​002.CrossRefPubMed
5.
go back to reference De Stefano N, Giorgio A, Battaglini M, et al. Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes. Neurology. 2010;74:1868–76.CrossRefPubMed De Stefano N, Giorgio A, Battaglini M, et al. Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes. Neurology. 2010;74:1868–76.CrossRefPubMed
6.
go back to reference Calabrese M, Poretto V, Favaretto A, et al. Cortical lesion load associates with progression of disability in multiple sclerosis. Brain. 2012;135:2952–61.CrossRefPubMed Calabrese M, Poretto V, Favaretto A, et al. Cortical lesion load associates with progression of disability in multiple sclerosis. Brain. 2012;135:2952–61.CrossRefPubMed
8.
go back to reference Wang H, Reiser G. Thrombin signaling in the brain: the role of protease-activated receptors. Biol Chem. 2003;384:193–202.CrossRefPubMed Wang H, Reiser G. Thrombin signaling in the brain: the role of protease-activated receptors. Biol Chem. 2003;384:193–202.CrossRefPubMed
9.
go back to reference Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991;64:1057–68.CrossRefPubMed Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991;64:1057–68.CrossRefPubMed
11.
go back to reference Scarisbrick IA, Isackson PJ, Ciric B, Windebank AJ, Rodriguez M. MSP, a trypsin-like serine protease, is abundantly expressed in the human nervous system. J Comp Neurol. 2001;431:347–61.CrossRefPubMed Scarisbrick IA, Isackson PJ, Ciric B, Windebank AJ, Rodriguez M. MSP, a trypsin-like serine protease, is abundantly expressed in the human nervous system. J Comp Neurol. 2001;431:347–61.CrossRefPubMed
12.
go back to reference Ramachandran R, Noorbakhsh F, Defea K, Hollenberg MD. Targeting proteinase-activated receptors: therapeutic potential and challenges. Nat Rev Drug Discov. 2012;11:69–86.CrossRefPubMed Ramachandran R, Noorbakhsh F, Defea K, Hollenberg MD. Targeting proteinase-activated receptors: therapeutic potential and challenges. Nat Rev Drug Discov. 2012;11:69–86.CrossRefPubMed
13.
go back to reference Olianas MC, Dedoni S, Onali P. Proteinase-activated receptors 1 and 2 in rat olfactory system: layer-specific regulation of multiple signaling pathways in the main olfactory bulb and induction of neurite retraction in olfactory sensory neurons. Neuroscience. 2007;146:1289–301.CrossRefPubMed Olianas MC, Dedoni S, Onali P. Proteinase-activated receptors 1 and 2 in rat olfactory system: layer-specific regulation of multiple signaling pathways in the main olfactory bulb and induction of neurite retraction in olfactory sensory neurons. Neuroscience. 2007;146:1289–301.CrossRefPubMed
14.
go back to reference Olson EE, Lyuboslavsky P, Traynelis SF, McKeon RJ. PAR-1 deficiency protects against neuronal damage and neurologic deficits after unilateral cerebral hypoxia/ischemia. J Cereb Blood Flow Metab. 2004;24:964–71.CrossRefPubMed Olson EE, Lyuboslavsky P, Traynelis SF, McKeon RJ. PAR-1 deficiency protects against neuronal damage and neurologic deficits after unilateral cerebral hypoxia/ischemia. J Cereb Blood Flow Metab. 2004;24:964–71.CrossRefPubMed
15.
go back to reference Almonte AG, Qadri LH, Sultan FA, Watson JA, Mount DJ, Rumbaugh G, Sweatt JD. Protease-activated receptor-1 modulates hippocampal memory formation and synaptic plasticity. J Neurochem. 2013;124:109–22.CrossRefPubMed Almonte AG, Qadri LH, Sultan FA, Watson JA, Mount DJ, Rumbaugh G, Sweatt JD. Protease-activated receptor-1 modulates hippocampal memory formation and synaptic plasticity. J Neurochem. 2013;124:109–22.CrossRefPubMed
16.
go back to reference Acharjee S, Zhu Y, Maingat F, et al. Proteinase-activated receptor-1 mediates dorsal root ganglion neuronal degeneration in HIV/AIDS. Brain. 2011;134:3209–21.CrossRefPubMedCentralPubMed Acharjee S, Zhu Y, Maingat F, et al. Proteinase-activated receptor-1 mediates dorsal root ganglion neuronal degeneration in HIV/AIDS. Brain. 2011;134:3209–21.CrossRefPubMedCentralPubMed
17.
go back to reference Donovan FM, Pike CJ, Cotman CW, Cunningham DD. Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities. J Neurosci. 1997;17:5316–26.PubMed Donovan FM, Pike CJ, Cotman CW, Cunningham DD. Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities. J Neurosci. 1997;17:5316–26.PubMed
18.
go back to reference Wang T, Lee MH, Johnson T, et al. Activated T-cells inhibit neurogenesis by releasing granzyme B: rescue by Kv1.3 blockers. J Neurosci. 2010;30:5020–7.CrossRefPubMedCentralPubMed Wang T, Lee MH, Johnson T, et al. Activated T-cells inhibit neurogenesis by releasing granzyme B: rescue by Kv1.3 blockers. J Neurosci. 2010;30:5020–7.CrossRefPubMedCentralPubMed
19.
go back to reference Sellebjerg F, Bendtzen K, Christiansen M, Frederiksen J. Cytokines and soluble IL-4 in patients with acute optic neuritis and multiple sclerosis. Eur J Neurol. 1997;4:59–67.CrossRefPubMed Sellebjerg F, Bendtzen K, Christiansen M, Frederiksen J. Cytokines and soluble IL-4 in patients with acute optic neuritis and multiple sclerosis. Eur J Neurol. 1997;4:59–67.CrossRefPubMed
20.
go back to reference Mehta PD, Kulczycki J, Mehta SP, et al. Increased levels of interleukin-1beta and soluble intercellular adhesion molecule-1 in cerebrospinal fluid of patients with subacute sclerosing panencephalitis. J Infect Dis. 1997;175:689–92.CrossRefPubMed Mehta PD, Kulczycki J, Mehta SP, et al. Increased levels of interleukin-1beta and soluble intercellular adhesion molecule-1 in cerebrospinal fluid of patients with subacute sclerosing panencephalitis. J Infect Dis. 1997;175:689–92.CrossRefPubMed
21.
go back to reference Rossi S, Furlan R, De Chiara V, et al. Interleukin-1β causes synaptic hyperexcitability in multiple sclerosis. Ann Neurol. 2012;71:76–83.CrossRefPubMed Rossi S, Furlan R, De Chiara V, et al. Interleukin-1β causes synaptic hyperexcitability in multiple sclerosis. Ann Neurol. 2012;71:76–83.CrossRefPubMed
22.
go back to reference Seppi D, Puthenparampil M, Federle L, et al. Cerebrospinal fluid IL-1β correlates with cortical pathology load in multiple sclerosis at clinical onset. J Neuroimmunol. 2014;270:56–60.CrossRefPubMed Seppi D, Puthenparampil M, Federle L, et al. Cerebrospinal fluid IL-1β correlates with cortical pathology load in multiple sclerosis at clinical onset. J Neuroimmunol. 2014;270:56–60.CrossRefPubMed
23.
go back to reference Takahashi Y, Mine J, Kubota Y, Yamazaki E, Fujiwara T. A substantial number of Rasmussen syndrome patients have increased IgG, CD4+ T cells, TNFalpha, and Granzyme B in CSF. Epilepsia. 2009;50:1419–31.CrossRefPubMed Takahashi Y, Mine J, Kubota Y, Yamazaki E, Fujiwara T. A substantial number of Rasmussen syndrome patients have increased IgG, CD4+ T cells, TNFalpha, and Granzyme B in CSF. Epilepsia. 2009;50:1419–31.CrossRefPubMed
25.
go back to reference Jia Y, Wu T, Jelinek CA, et al. Development of protein biomarkers in cerebrospinal fluid for secondary progressive multiple sclerosis using selected reaction monitoring mass spectrometry (SRM-MS). Clin Proteomics. 2012. doi:10.1186/1559-0275-9-9.PubMedCentralPubMed Jia Y, Wu T, Jelinek CA, et al. Development of protein biomarkers in cerebrospinal fluid for secondary progressive multiple sclerosis using selected reaction monitoring mass spectrometry (SRM-MS). Clin Proteomics. 2012. doi:10.​1186/​1559-0275-9-9.PubMedCentralPubMed
26.
go back to reference Shimormura N, Sasho M, Kayano A, inventors; Esai Co., Ltd., assignee, et al. Methods for producing cyclic benzamidine derivatives, United States patent US CA2515715 A1. 2004. Shimormura N, Sasho M, Kayano A, inventors; Esai Co., Ltd., assignee, et al. Methods for producing cyclic benzamidine derivatives, United States patent US CA2515715 A1. 2004.
27.
go back to reference Hedreen JC. What was wrong with the Abercrombie and empirical cell counting methods? A review. Anat Rec. 1998;250:373–80.CrossRefPubMed Hedreen JC. What was wrong with the Abercrombie and empirical cell counting methods? A review. Anat Rec. 1998;250:373–80.CrossRefPubMed
28.
29.
go back to reference Wang T, Allie R, Conant K, et al. Granzyme B mediates neurotoxicity through a G-protein-coupled receptor. FASEB J. 2006;20:1209–11.CrossRefPubMed Wang T, Allie R, Conant K, et al. Granzyme B mediates neurotoxicity through a G-protein-coupled receptor. FASEB J. 2006;20:1209–11.CrossRefPubMed
30.
go back to reference Cacabelos R, Barquero M, García P, et al. Cerebrospinal fluid interleukin-1 beta (IL-1 beta) in Alzheimer's disease and neurological disorders. Methods Find Exp Clin Pharmacol. 1991;13:455–8.PubMed Cacabelos R, Barquero M, García P, et al. Cerebrospinal fluid interleukin-1 beta (IL-1 beta) in Alzheimer's disease and neurological disorders. Methods Find Exp Clin Pharmacol. 1991;13:455–8.PubMed
31.
go back to reference Vercellino M, Plano F, Votta B, et al. Grey matter pathology in multiple sclerosis. J Neuropathol Exp Neurol. 2005;64:1101–7.CrossRefPubMed Vercellino M, Plano F, Votta B, et al. Grey matter pathology in multiple sclerosis. J Neuropathol Exp Neurol. 2005;64:1101–7.CrossRefPubMed
32.
go back to reference Junge CE, Lee CJ, Hubbard KB, et al. Protease-activated receptor-1 in human brain: localization and functional expression in astrocytes. Exp Neurol. 2004;188:94–103.CrossRefPubMed Junge CE, Lee CJ, Hubbard KB, et al. Protease-activated receptor-1 in human brain: localization and functional expression in astrocytes. Exp Neurol. 2004;188:94–103.CrossRefPubMed
33.
go back to reference Bush WS, McCauley JL, DeJager PL, et al. A knowledge-driven interaction analysis reveals potential neurodegenerative mechanism of multiple sclerosis susceptibility. Genes Immun. 2011;12:335–40.CrossRefPubMedCentralPubMed Bush WS, McCauley JL, DeJager PL, et al. A knowledge-driven interaction analysis reveals potential neurodegenerative mechanism of multiple sclerosis susceptibility. Genes Immun. 2011;12:335–40.CrossRefPubMedCentralPubMed
34.
go back to reference Di Prisco S, Merega E, Milanese M, et al. CCL5-glutamate interaction in central nervous system: Early and acute presynaptic defects in EAE mice. Neuropharmacology. 2013;75:337–46.CrossRefPubMed Di Prisco S, Merega E, Milanese M, et al. CCL5-glutamate interaction in central nervous system: Early and acute presynaptic defects in EAE mice. Neuropharmacology. 2013;75:337–46.CrossRefPubMed
35.
go back to reference Evans J, Ko Y, Mata W, et al. Arachidonic acid induces brain endothelial cell apoptosis via p38-MAPK and intracellular calcium signaling. Microvasc Res. 2015;98:145–58.CrossRefPubMed Evans J, Ko Y, Mata W, et al. Arachidonic acid induces brain endothelial cell apoptosis via p38-MAPK and intracellular calcium signaling. Microvasc Res. 2015;98:145–58.CrossRefPubMed
36.
go back to reference Xue M, Hollenberg MD, Demchuk A, Yong VW. Relative importance of proteinase-activated receptor-1 versus matrix metalloproteinases in intracerebral hemorrhage-mediated neurotoxicity in mice. Stroke. 2009;40:2199–204.CrossRefPubMed Xue M, Hollenberg MD, Demchuk A, Yong VW. Relative importance of proteinase-activated receptor-1 versus matrix metalloproteinases in intracerebral hemorrhage-mediated neurotoxicity in mice. Stroke. 2009;40:2199–204.CrossRefPubMed
37.
38.
go back to reference da Lee Y, Park KW, Jin BK. Thrombin induces neurodegeneration and microglial activation in the cortex in vivo and in vitro: proteolytic and non-proteolytic actions. Biochem Biophys Res Commun. 2006;346:727–38.CrossRefPubMed da Lee Y, Park KW, Jin BK. Thrombin induces neurodegeneration and microglial activation in the cortex in vivo and in vitro: proteolytic and non-proteolytic actions. Biochem Biophys Res Commun. 2006;346:727–38.CrossRefPubMed
39.
go back to reference Shaygannejad V, Janghorbani M, Ashtari F, Zakeri H. Comparison of the effect of aspirin and amantadine for the treatment of fatigue in multiple sclerosis: a randomized, blinded, crossover study. Neurol Res. 2012;34(9):854–8.CrossRefPubMed Shaygannejad V, Janghorbani M, Ashtari F, Zakeri H. Comparison of the effect of aspirin and amantadine for the treatment of fatigue in multiple sclerosis: a randomized, blinded, crossover study. Neurol Res. 2012;34(9):854–8.CrossRefPubMed
40.
go back to reference Wingerchuk DM, Benarroch EE, O'Brien PC, et al. A randomized controlled crossover trial of aspirin for fatigue in multiple sclerosis. Neurology. 2005;64:1267–9.CrossRefPubMed Wingerchuk DM, Benarroch EE, O'Brien PC, et al. A randomized controlled crossover trial of aspirin for fatigue in multiple sclerosis. Neurology. 2005;64:1267–9.CrossRefPubMed
41.
go back to reference Alberelli MA, De Candia E. Functional role of protease activated receptors in vascular biology. Vascul Pharmacol. 2014;62:72–81.CrossRefPubMed Alberelli MA, De Candia E. Functional role of protease activated receptors in vascular biology. Vascul Pharmacol. 2014;62:72–81.CrossRefPubMed
42.
go back to reference Kai Y, Hirano K, Maeda Y, et al. Prevention of the hypercontractile response to thrombin by proteinase-activated receptor-1 antagonist in subarachnoid hemorrhage. Stroke. 2007;38:3259–65.CrossRefPubMed Kai Y, Hirano K, Maeda Y, et al. Prevention of the hypercontractile response to thrombin by proteinase-activated receptor-1 antagonist in subarachnoid hemorrhage. Stroke. 2007;38:3259–65.CrossRefPubMed
43.
go back to reference Rossi S, Studer V, Motta C, et al. Cerebrospinal fluid detection of interleukin-1β in phase of remission predicts disease progression in multiple sclerosis. J Neuroinflammation. 2014;11:32.CrossRefPubMedCentralPubMed Rossi S, Studer V, Motta C, et al. Cerebrospinal fluid detection of interleukin-1β in phase of remission predicts disease progression in multiple sclerosis. J Neuroinflammation. 2014;11:32.CrossRefPubMedCentralPubMed
44.
go back to reference Galea J, Ogungbenro K, Hulme S, et al. Intravenous anakinra can achieve experimentally effective concentrations in the central nervous system within a therapeutic time window: results of a dose-ranging study. J Cereb Blood Flow Metab. 2011;31:439–47.CrossRefPubMed Galea J, Ogungbenro K, Hulme S, et al. Intravenous anakinra can achieve experimentally effective concentrations in the central nervous system within a therapeutic time window: results of a dose-ranging study. J Cereb Blood Flow Metab. 2011;31:439–47.CrossRefPubMed
45.
go back to reference Dujmovic I, Mangano K, Pekmezovic T, et al. The analysis of IL-1 beta and its naturally occurring inhibitors in multiple sclerosis: The elevation of IL-1 receptor antagonist and IL-1 receptor type II after steroid therapy. J Neuroimmunol. 2009;207:101–6.CrossRefPubMed Dujmovic I, Mangano K, Pekmezovic T, et al. The analysis of IL-1 beta and its naturally occurring inhibitors in multiple sclerosis: The elevation of IL-1 receptor antagonist and IL-1 receptor type II after steroid therapy. J Neuroimmunol. 2009;207:101–6.CrossRefPubMed
46.
go back to reference Voltz R, Hartmann M, Spuler S, et al. Multiple sclerosis: longitudinal measurement of interleukin-1 receptor antagonist. J Neurol Neurosurg Psychiatry. 1997;62:200–1.CrossRefPubMedCentralPubMed Voltz R, Hartmann M, Spuler S, et al. Multiple sclerosis: longitudinal measurement of interleukin-1 receptor antagonist. J Neurol Neurosurg Psychiatry. 1997;62:200–1.CrossRefPubMedCentralPubMed
47.
go back to reference Takahashi JL, Giuliani F, Power C, et al. Interleukin-1beta promotes oligodendrocyte death through glutamate excitotoxicity. Ann Neurol. 2003;53:588–95.CrossRefPubMed Takahashi JL, Giuliani F, Power C, et al. Interleukin-1beta promotes oligodendrocyte death through glutamate excitotoxicity. Ann Neurol. 2003;53:588–95.CrossRefPubMed
48.
go back to reference Kroner A, Ip CW, Thalhammer J, et al. Ectopic T-cell specificity and absence of perforin and granzyme B alleviate neural damage in oligodendrocyte mutant mice. Am J Pathol. 2010;176:549–55.CrossRefPubMedCentralPubMed Kroner A, Ip CW, Thalhammer J, et al. Ectopic T-cell specificity and absence of perforin and granzyme B alleviate neural damage in oligodendrocyte mutant mice. Am J Pathol. 2010;176:549–55.CrossRefPubMedCentralPubMed
49.
go back to reference Romme Christensen J, Börnsen L, Ratzer R, et al. Systemic inflammation in progressive multiple sclerosis involves follicular T-helper, Th17- and activated B-cells and correlates with progression. PLoS One. 2013;8:e57820.CrossRefPubMed Romme Christensen J, Börnsen L, Ratzer R, et al. Systemic inflammation in progressive multiple sclerosis involves follicular T-helper, Th17- and activated B-cells and correlates with progression. PLoS One. 2013;8:e57820.CrossRefPubMed
50.
go back to reference De Biasi S, Simone AM, Nasi M, et al. iNKT Cells in Secondary Progressive Multiple Sclerosis Patients Display Pro-inflammatory Profiles. Front Immunol. 2016;7:555.CrossRefPubMedCentralPubMed De Biasi S, Simone AM, Nasi M, et al. iNKT Cells in Secondary Progressive Multiple Sclerosis Patients Display Pro-inflammatory Profiles. Front Immunol. 2016;7:555.CrossRefPubMedCentralPubMed
Metadata
Title
Protease-activated receptor-1 activation by granzyme B causes neurotoxicity that is augmented by interleukin-1β
Authors
Paul R. Lee
Tory P. Johnson
Sharmilee Gnanapavan
Gavin Giovannoni
Tongguang Wang
Joseph P. Steiner
Marie Medynets
Mark J. Vaal
Valerie Gartner
Avindra Nath
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2017
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-017-0901-y

Other articles of this Issue 1/2017

Journal of Neuroinflammation 1/2017 Go to the issue