Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2017

Open Access 01-12-2017 | Research

Cerebrospinal fluid cell-free mitochondrial DNA is associated with HIV replication, iron transport, and mild HIV-associated neurocognitive impairment

Authors: Sanjay R. Mehta, Josué Pérez-Santiago, Todd Hulgan, Tyler R. C. Day, Jill Barnholtz-Sloan, Haley Gittleman, Scott Letendre, Ronald Ellis, Robert Heaton, Stephanie Patton, Jesse D. Suben, Donald Franklin, Debralee Rosario, David B. Clifford, Ann C. Collier, Christina M. Marra, Benjamin B. Gelman, Justin McArthur, Allen McCutchan, Susan Morgello, David Simpson, James Connor, Igor Grant, Asha Kallianpur

Published in: Journal of Neuroinflammation | Issue 1/2017

Login to get access

Abstract

Background

Mitochondria are abundant organelles critical for energy metabolism and brain function. Mitochondrial DNA (mtDNA), released during cellular injury and as part of the innate immune response to viral pathogens, contains CpG motifs that act as TLR-9 ligands. We investigated relationships between cerebrospinal fluid (CSF) cell-free mtDNA levels and HIV viral load (VL), biomarkers of inflammation and iron transport, and neurocognitive (NC) function in the CNS HIV Antiretroviral Therapy Effects Research (CHARTER) cohort.

Methods

We quantified cell-free mtDNA in CSF by droplet digital PCR in 332 CHARTER participants who underwent comprehensive neuropsychiatric evaluation. NC performance was assessed using the global deficit score (GDS) as either a continuous or a binary measure (GDS ≥ 0.5, impaired vs. GDS < 0.5, unimpaired). CSF, clinical, and biomarker data from the earliest available time point were analyzed. Cell-free mtDNA associations with CSF inflammation and iron-related biomarkers [CXCL10, IL-6, IL-8, TNF-a, transferrin (TF), ceruloplasmin (CP), and vascular endothelial growth factor (VEGF)], VL, and GDS were evaluated by multivariable regression.

Results

CSF cell-free mtDNA levels were significantly lower in participants with undetectable (vs. detectable) VL in either plasma (p < 0.001) or CSF (p < 0.001) and in those on antiretroviral therapy (ART; p < 0.001). Participants on ART with undetectable VL in both CSF and plasma had lower mtDNA levels than those with detectable VL in both compartments (p = 0.001). Higher mtDNA levels were observed in participants in the highest vs. lowest tertile (T3 vs. T1) of CSF CXCL10 (T3 vs. T1, p < 0.001) and TNF-a (T3 vs. T1, p < 0.05) in unadjusted analyses. MtDNA levels also correlated with CSF leukocyte count. After adjusting for CSF leukocyte count and VL, mtDNA levels were also associated with other inflammation- and iron-related biomarkers in CSF, including TF (T3 vs. T1, p < 0.05) and CP (T3 vs. T1, p < 0.05). With additional correction for ART use, mtDNA was also negatively associated with CSF VEGF (p < 0.05) and IL-6 (p = 0.05). We observed no associations of CSF mtDNA levels with age or GDS-defined NC impairment.

Conclusions

CSF cell-free mtDNA levels were associated with HIV RNA and ART status, as well as with biomarkers of iron transport and VEGF, a growth factor with known effects on mitochondrial integrity and autophagy. CSF mtDNA may be a biomarker of iron dysregulation and/or neuroinflammation during HIV infection.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chen MF, Gill AJ, Kolson DL. Neuropathogenesis of HIV-associated neurocognitive disorders: roles for immune activation, HIV blipping and viral tropism. Curr Opin HIV AIDS. 2014;9:559–64.CrossRefPubMedPubMedCentral Chen MF, Gill AJ, Kolson DL. Neuropathogenesis of HIV-associated neurocognitive disorders: roles for immune activation, HIV blipping and viral tropism. Curr Opin HIV AIDS. 2014;9:559–64.CrossRefPubMedPubMedCentral
2.
go back to reference Williams DW, Veenstra M, Gaskill PJ, Morgello S, Calderon TM, Berman JW. Monocytes mediate HIV neuropathogenesis: mechanisms that contribute to HIV associated neurocognitive disorders. Curr HIV Res. 2014;12:85–96.CrossRefPubMedPubMedCentral Williams DW, Veenstra M, Gaskill PJ, Morgello S, Calderon TM, Berman JW. Monocytes mediate HIV neuropathogenesis: mechanisms that contribute to HIV associated neurocognitive disorders. Curr HIV Res. 2014;12:85–96.CrossRefPubMedPubMedCentral
3.
go back to reference McCutchan JA, Marquie-Beck JA, Fitzsimons CA, Letendre SL, Ellis RJ, Heaton RK, et al. Role of obesity, metabolic variables, and diabetes in HIV-associated neurocognitive disorder. Neurology. 2012;78:485–92.CrossRefPubMedPubMedCentral McCutchan JA, Marquie-Beck JA, Fitzsimons CA, Letendre SL, Ellis RJ, Heaton RK, et al. Role of obesity, metabolic variables, and diabetes in HIV-associated neurocognitive disorder. Neurology. 2012;78:485–92.CrossRefPubMedPubMedCentral
4.
go back to reference Lane RK, Hilsabeck T, Rea SL. The role of mitochondrial dysfunction in age-related diseases. Biochim Biophys Acta. 1847;2015:1387–400. Lane RK, Hilsabeck T, Rea SL. The role of mitochondrial dysfunction in age-related diseases. Biochim Biophys Acta. 1847;2015:1387–400.
5.
go back to reference Berdanier CD, Everts HB. Mitochondrial DNA in aging and degenerative disease. Mutat Res. 2001;475:169–83.CrossRefPubMed Berdanier CD, Everts HB. Mitochondrial DNA in aging and degenerative disease. Mutat Res. 2001;475:169–83.CrossRefPubMed
6.
go back to reference Xie YM, Jin L, Chen XJ, He MN, Wang Y, Liu R, et al. Quantitative changes in mitochondrial DNA copy number in various tissues of pigs during growth. Genet Mol Res GMR. 2015;14:1662–70.CrossRefPubMed Xie YM, Jin L, Chen XJ, He MN, Wang Y, Liu R, et al. Quantitative changes in mitochondrial DNA copy number in various tissues of pigs during growth. Genet Mol Res GMR. 2015;14:1662–70.CrossRefPubMed
7.
go back to reference West AP, Koblansky AA, Ghosh S. Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol. 2006;22:409–37.CrossRefPubMed West AP, Koblansky AA, Ghosh S. Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol. 2006;22:409–37.CrossRefPubMed
8.
go back to reference Pinto M, Moraes CT. Mitochondrial genome changes and neurodegenerative diseases. Biochim Biophys Acta. 1842;2014:1198–207. Pinto M, Moraes CT. Mitochondrial genome changes and neurodegenerative diseases. Biochim Biophys Acta. 1842;2014:1198–207.
10.
go back to reference Var SR, Day TRC, Vitomirov A, Smith DM, Soontornniyomkij V, Moore DJ, et al. Mitochondrial injury and cognitive function in HIV infection and methamphetamine use. AIDS Lond Engl. 2016;30:839–48.CrossRef Var SR, Day TRC, Vitomirov A, Smith DM, Soontornniyomkij V, Moore DJ, et al. Mitochondrial injury and cognitive function in HIV infection and methamphetamine use. AIDS Lond Engl. 2016;30:839–48.CrossRef
11.
go back to reference Coskun P, Wyrembak J, Schriner SE, Chen H-W, Marciniack C, LaFerla F, et al. A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim Biophys Acta BBA - Gen Subj. 1820;2012:553–64. Coskun P, Wyrembak J, Schriner SE, Chen H-W, Marciniack C, LaFerla F, et al. A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim Biophys Acta BBA - Gen Subj. 1820;2012:553–64.
12.
go back to reference Walko TD, Bola RA, Hong JD, Au AK, Bell MJ, Kochanek PM, et al. Cerebrospinal fluid mitochondrial DNA: a novel DAMP in pediatric traumatic brain injury. Shock. 2014;41:499–503.CrossRefPubMedPubMedCentral Walko TD, Bola RA, Hong JD, Au AK, Bell MJ, Kochanek PM, et al. Cerebrospinal fluid mitochondrial DNA: a novel DAMP in pediatric traumatic brain injury. Shock. 2014;41:499–503.CrossRefPubMedPubMedCentral
13.
go back to reference Podlesniy P, Figueiro-Silva J, Llado A, Antonell A, Sanchez-Valle R, Alcolea D, et al. Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease. Ann Neurol. 2013;74:655–68.CrossRefPubMed Podlesniy P, Figueiro-Silva J, Llado A, Antonell A, Sanchez-Valle R, Alcolea D, et al. Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease. Ann Neurol. 2013;74:655–68.CrossRefPubMed
14.
go back to reference Pyle A, Brennan R, Kurzawa-Akanbi M, Yarnall A, Thouin A, Mollenhauer B, et al. Reduced cerebrospinal fluid mitochondrial DNA is a biomarker for early-stage Parkinson’s disease. Ann Neurol. 2015;78:1000–4.CrossRefPubMed Pyle A, Brennan R, Kurzawa-Akanbi M, Yarnall A, Thouin A, Mollenhauer B, et al. Reduced cerebrospinal fluid mitochondrial DNA is a biomarker for early-stage Parkinson’s disease. Ann Neurol. 2015;78:1000–4.CrossRefPubMed
15.
go back to reference Crespo ÂC, Silva B, Marques L, Marcelino E, Maruta C, Costa S, et al. Genetic and biochemical markers in patients with Alzheimer’s disease support a concerted systemic iron homeostasis dysregulation. Neurobiol Aging. 2014;35:777–85.CrossRefPubMed Crespo ÂC, Silva B, Marques L, Marcelino E, Maruta C, Costa S, et al. Genetic and biochemical markers in patients with Alzheimer’s disease support a concerted systemic iron homeostasis dysregulation. Neurobiol Aging. 2014;35:777–85.CrossRefPubMed
16.
go back to reference Medeiros MS, Schumacher-Schuh A, Cardoso AM, Bochi GV, Baldissarelli J, Kegler A, et al. Iron and oxidative stress in Parkinson’s disease: an observational study of injury biomarkers. PLoS ONE. 2016;11:e0146129.CrossRefPubMedPubMedCentral Medeiros MS, Schumacher-Schuh A, Cardoso AM, Bochi GV, Baldissarelli J, Kegler A, et al. Iron and oxidative stress in Parkinson’s disease: an observational study of injury biomarkers. PLoS ONE. 2016;11:e0146129.CrossRefPubMedPubMedCentral
17.
go back to reference Ringman JM, Schulman H, Becker C, Jones T, Bai Y, Immermann F, et al. Proteomic changes in cerebrospinal fluid of presymptomatic and affected persons carrying familial Alzheimer disease mutations. Arch Neurol. 2012;69:96–104.CrossRefPubMedPubMedCentral Ringman JM, Schulman H, Becker C, Jones T, Bai Y, Immermann F, et al. Proteomic changes in cerebrospinal fluid of presymptomatic and affected persons carrying familial Alzheimer disease mutations. Arch Neurol. 2012;69:96–104.CrossRefPubMedPubMedCentral
18.
go back to reference Rensvold JW, Ong S-E, Jeevananthan A, Carr SA, Mootha VK, Pagliarini DJ. Complementary RNA and protein profiling identifies iron as a key regulator of mitochondrial biogenesis. Cell Rep. 2013;3:237–45.CrossRefPubMed Rensvold JW, Ong S-E, Jeevananthan A, Carr SA, Mootha VK, Pagliarini DJ. Complementary RNA and protein profiling identifies iron as a key regulator of mitochondrial biogenesis. Cell Rep. 2013;3:237–45.CrossRefPubMed
20.
go back to reference Andersen HH, Johnsen KB, Moos T. Iron deposits in the chronically inflamed central nervous system and contributes to neurodegeneration. Cell Mol Life Sci CMLS. 2014;71:1607–22.CrossRefPubMed Andersen HH, Johnsen KB, Moos T. Iron deposits in the chronically inflamed central nervous system and contributes to neurodegeneration. Cell Mol Life Sci CMLS. 2014;71:1607–22.CrossRefPubMed
21.
go back to reference Wen X, Wu J, Wang F, Liu B, Huang C, Wei Y. Deconvoluting the role of reactive oxygen species and autophagy in human diseases. Free Radic Biol Med. 2013;65:402–10.CrossRefPubMed Wen X, Wu J, Wang F, Liu B, Huang C, Wei Y. Deconvoluting the role of reactive oxygen species and autophagy in human diseases. Free Radic Biol Med. 2013;65:402–10.CrossRefPubMed
22.
go back to reference Schiavi A, Maglioni S, Palikaras K, Shaik A, Strappazzon F, Brinkmann V, et al. Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans. Curr Biol CB. 2015;25:1810–22.CrossRefPubMed Schiavi A, Maglioni S, Palikaras K, Shaik A, Strappazzon F, Brinkmann V, et al. Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans. Curr Biol CB. 2015;25:1810–22.CrossRefPubMed
23.
go back to reference Heaton RK, Clifford DB, Franklin DR, Woods SP, Ake C, Vaida F, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology. 2010;75:2087–96.CrossRefPubMedPubMedCentral Heaton RK, Clifford DB, Franklin DR, Woods SP, Ake C, Vaida F, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology. 2010;75:2087–96.CrossRefPubMedPubMedCentral
24.
go back to reference Heaton RK, Franklin DR, Deutsch R, Letendre S, Ellis RJ, Casaletto K, et al. Neurocognitive change in the era of HIV combination antiretroviral therapy: the longitudinal CHARTER study. Clin Infect Dis Off Publ Infect Dis Soc Am. 2015;60:473–80.CrossRef Heaton RK, Franklin DR, Deutsch R, Letendre S, Ellis RJ, Casaletto K, et al. Neurocognitive change in the era of HIV combination antiretroviral therapy: the longitudinal CHARTER study. Clin Infect Dis Off Publ Infect Dis Soc Am. 2015;60:473–80.CrossRef
25.
go back to reference Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69:1789–99.CrossRefPubMedPubMedCentral Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69:1789–99.CrossRefPubMedPubMedCentral
26.
go back to reference Blackstone K, Moore DJ, Franklin DR, Clifford DB, Collier AC, Marra CM, et al. Defining neurocognitive impairment in HIV: deficit scores versus clinical ratings. Clin Neuropsychol. 2012;26:894–908.CrossRefPubMed Blackstone K, Moore DJ, Franklin DR, Clifford DB, Collier AC, Marra CM, et al. Defining neurocognitive impairment in HIV: deficit scores versus clinical ratings. Clin Neuropsychol. 2012;26:894–908.CrossRefPubMed
27.
go back to reference Ellis RJ, Hsia K, Spector SA, Nelson JA, Heaton RK, Wallace MR, et al. Cerebrospinal fluid human immunodeficiency virus type 1 RNA levels are elevated in neurocognitively impaired individuals with acquired immunodeficiency syndrome. HIV Neurobehavioral Research Center Group. Ann Neurol. 1997;42:679–88.CrossRefPubMed Ellis RJ, Hsia K, Spector SA, Nelson JA, Heaton RK, Wallace MR, et al. Cerebrospinal fluid human immunodeficiency virus type 1 RNA levels are elevated in neurocognitively impaired individuals with acquired immunodeficiency syndrome. HIV Neurobehavioral Research Center Group. Ann Neurol. 1997;42:679–88.CrossRefPubMed
28.
go back to reference Ellis RJ, Badiee J, Vaida F, Letendre S, Heaton RK, Clifford D, et al. CD4 nadir is a predictor of HIV neurocognitive impairment in the era of combination antiretroviral therapy. AIDS Lond Engl. 2011;25:1747–51.CrossRef Ellis RJ, Badiee J, Vaida F, Letendre S, Heaton RK, Clifford D, et al. CD4 nadir is a predictor of HIV neurocognitive impairment in the era of combination antiretroviral therapy. AIDS Lond Engl. 2011;25:1747–51.CrossRef
30.
go back to reference Arnalich F, Codoceo R, López-Collazo E, Montiel C. Circulating cell-free mitochondrial DNA: a better early prognostic marker in patients with out-of-hospital cardiac arrest. Resuscitation. 2012;83:e162–3.CrossRefPubMed Arnalich F, Codoceo R, López-Collazo E, Montiel C. Circulating cell-free mitochondrial DNA: a better early prognostic marker in patients with out-of-hospital cardiac arrest. Resuscitation. 2012;83:e162–3.CrossRefPubMed
31.
go back to reference Alvarado-Vásquez N. Circulating cell-free mitochondrial DNA as the probable inducer of early endothelial dysfunction in the prediabetic patient. Exp Gerontol. 2015;69:70–8.CrossRefPubMed Alvarado-Vásquez N. Circulating cell-free mitochondrial DNA as the probable inducer of early endothelial dysfunction in the prediabetic patient. Exp Gerontol. 2015;69:70–8.CrossRefPubMed
32.
go back to reference Lu H, Busch J, Jung M, Rabenhorst S, Ralla B, Kilic E, et al. Diagnostic and prognostic potential of circulating cell-free genomic and mitochondrial DNA fragments in clear cell renal cell carcinoma patients. Clin Chim Acta Int J Clin Chem. 2016;452:109–19.CrossRef Lu H, Busch J, Jung M, Rabenhorst S, Ralla B, Kilic E, et al. Diagnostic and prognostic potential of circulating cell-free genomic and mitochondrial DNA fragments in clear cell renal cell carcinoma patients. Clin Chim Acta Int J Clin Chem. 2016;452:109–19.CrossRef
33.
go back to reference Yu M. Circulating cell-free mitochondrial DNA as a novel cancer biomarker: opportunities and challenges. Mitochondrial DNA. 2012;23:329–32.CrossRefPubMed Yu M. Circulating cell-free mitochondrial DNA as a novel cancer biomarker: opportunities and challenges. Mitochondrial DNA. 2012;23:329–32.CrossRefPubMed
34.
go back to reference Liu J, Cai X, Xie L, Tang Y, Cheng J, Wang J, et al. Circulating cell free mitochondrial DNA is a biomarker in the development of coronary heart disease in the patients with type 2 diabetes. Clin Lab. 2015;61:661–7.PubMed Liu J, Cai X, Xie L, Tang Y, Cheng J, Wang J, et al. Circulating cell free mitochondrial DNA is a biomarker in the development of coronary heart disease in the patients with type 2 diabetes. Clin Lab. 2015;61:661–7.PubMed
35.
go back to reference Sudakov NP, Popkova TP, Katyshev AI, Goldberg OA, Nikiforov SB, Pushkarev BG, et al. Level of Blood Cell-Free Circulating Mitochondrial DNA as a Novel Biomarker of Acute Myocardial Ischemia. Biochem. 2015;80:1387–92. Sudakov NP, Popkova TP, Katyshev AI, Goldberg OA, Nikiforov SB, Pushkarev BG, et al. Level of Blood Cell-Free Circulating Mitochondrial DNA as a Novel Biomarker of Acute Myocardial Ischemia. Biochem. 2015;80:1387–92.
36.
go back to reference Pérez-Santiago J, Schrier RD, de Oliveira MF, Gianella S, Var SR, Day TRC, et al. Cell-free mitochondrial DNA in CSF is associated with early viral rebound, inflammation, and severity of neurocognitive deficits in HIV infection. J Neurovirol. 2015;22(2):191-200. Pérez-Santiago J, Schrier RD, de Oliveira MF, Gianella S, Var SR, Day TRC, et al. Cell-free mitochondrial DNA in CSF is associated with early viral rebound, inflammation, and severity of neurocognitive deficits in HIV infection. J Neurovirol. 2015;22(2):191-200.
37.
38.
go back to reference Kallianpur AR, Wang Q, Jia P, Hulgan T, Zhao Z, Letendre SL, et al. Anemia and red blood cell indices predict HIV-associated neurocognitive impairment in the highly active antiretroviral therapy era. J Infect Dis. 2016;213:1065–73.CrossRefPubMed Kallianpur AR, Wang Q, Jia P, Hulgan T, Zhao Z, Letendre SL, et al. Anemia and red blood cell indices predict HIV-associated neurocognitive impairment in the highly active antiretroviral therapy era. J Infect Dis. 2016;213:1065–73.CrossRefPubMed
39.
go back to reference Jayson GC, Kerbel R, Ellis LM, Harris AL. Antiangiogenic therapy in oncology: current status and future directions. Lancet Lond Engl. 2016;388(10043):518-29. Jayson GC, Kerbel R, Ellis LM, Harris AL. Antiangiogenic therapy in oncology: current status and future directions. Lancet Lond Engl. 2016;388(10043):518-29.
40.
go back to reference Lowndes SA, Harris AL. Copper chelation as an antiangiogenic therapy. Oncol Res. 2004;14:529–39.PubMed Lowndes SA, Harris AL. Copper chelation as an antiangiogenic therapy. Oncol Res. 2004;14:529–39.PubMed
41.
go back to reference Burkhart A, Skjørringe T, Johnsen KB, Siupka P, Thomsen LB, Nielsen MS, et al. Expression of iron-related proteins at the neurovascular unit supports reduction and reoxidation of iron for transport through the blood-brain barrier. Mol Neurobiol. 2016;53(10):7237-53. Burkhart A, Skjørringe T, Johnsen KB, Siupka P, Thomsen LB, Nielsen MS, et al. Expression of iron-related proteins at the neurovascular unit supports reduction and reoxidation of iron for transport through the blood-brain barrier. Mol Neurobiol. 2016;53(10):7237-53.
42.
go back to reference Arber CE, Li A, Houlden H, Wray S. Insights into molecular mechanisms of disease in neurodegeneration with brain iron accumulation: unifying theories. Neuropathol Appl Neurobiol. 2015;42(3):220-41. Arber CE, Li A, Houlden H, Wray S. Insights into molecular mechanisms of disease in neurodegeneration with brain iron accumulation: unifying theories. Neuropathol Appl Neurobiol. 2015;42(3):220-41.
43.
go back to reference Kumar S, Guru SK, Pathania AS, Kumar A, Bhushan S, Malik F. Autophagy triggered by magnolol derivative negatively regulates angiogenesis. Cell Death Dis. 2013;4:e889.CrossRefPubMedPubMedCentral Kumar S, Guru SK, Pathania AS, Kumar A, Bhushan S, Malik F. Autophagy triggered by magnolol derivative negatively regulates angiogenesis. Cell Death Dis. 2013;4:e889.CrossRefPubMedPubMedCentral
44.
go back to reference Simpson IA, Ponnuru P, Klinger ME, Myers RL, Devraj K, Coe CL, et al. A novel model for brain iron uptake: introducing the concept of regulation. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2015;35:48–57.CrossRef Simpson IA, Ponnuru P, Klinger ME, Myers RL, Devraj K, Coe CL, et al. A novel model for brain iron uptake: introducing the concept of regulation. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2015;35:48–57.CrossRef
46.
go back to reference Ho EL, Ronquillo R, Altmeppen H, Spudich SS, Price RW, Sinclair E. Cellular composition of cerebrospinal fluid in HIV-1 infected and uninfected subjects. PLoS ONE. 2013;8:e66188.CrossRefPubMedPubMedCentral Ho EL, Ronquillo R, Altmeppen H, Spudich SS, Price RW, Sinclair E. Cellular composition of cerebrospinal fluid in HIV-1 infected and uninfected subjects. PLoS ONE. 2013;8:e66188.CrossRefPubMedPubMedCentral
47.
go back to reference Tiraboschi JM, Muñoz-Moreno JA, Puertas MC, Alonso-Villaverde C, Prats A, Ferrer E, et al. Viral and inflammatory markers in cerebrospinal fluid of patients with HIV-1-associated neurocognitive impairment during antiretroviral treatment switch. HIV Med. 2015;16:388–92.CrossRefPubMed Tiraboschi JM, Muñoz-Moreno JA, Puertas MC, Alonso-Villaverde C, Prats A, Ferrer E, et al. Viral and inflammatory markers in cerebrospinal fluid of patients with HIV-1-associated neurocognitive impairment during antiretroviral treatment switch. HIV Med. 2015;16:388–92.CrossRefPubMed
48.
go back to reference Marra CM, Maxwell CL, Collier AC, Robertson KR, Imrie A. Interpreting cerebrospinal fluid pleocytosis in HIV in the era of potent antiretroviral therapy. BMC Infect Dis. 2007;7:37.CrossRefPubMedPubMedCentral Marra CM, Maxwell CL, Collier AC, Robertson KR, Imrie A. Interpreting cerebrospinal fluid pleocytosis in HIV in the era of potent antiretroviral therapy. BMC Infect Dis. 2007;7:37.CrossRefPubMedPubMedCentral
49.
go back to reference McIlroy DJ, Jarnicki AG, Au GG, Lott N, Smith DW, Hansbro PM, et al. Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery. J Crit Care. 2014;29:1133.e1–5.CrossRef McIlroy DJ, Jarnicki AG, Au GG, Lott N, Smith DW, Hansbro PM, et al. Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery. J Crit Care. 2014;29:1133.e1–5.CrossRef
50.
go back to reference Davis CO, Kim K-Y, Bushong EA, Mills EA, Boassa D, Shih T, et al. Transcellular degradation of axonal mitochondria. Proc Natl Acad Sci U S A. 2014;111:9633–8.CrossRefPubMedPubMedCentral Davis CO, Kim K-Y, Bushong EA, Mills EA, Boassa D, Shih T, et al. Transcellular degradation of axonal mitochondria. Proc Natl Acad Sci U S A. 2014;111:9633–8.CrossRefPubMedPubMedCentral
51.
go back to reference Borgmann K, Ghorpade A. HIV-1, methamphetamine and astrocytes at neuroinflammatory Crossroads. Front Microbiol. 2015;6:1143. Borgmann K, Ghorpade A. HIV-1, methamphetamine and astrocytes at neuroinflammatory Crossroads. Front Microbiol. 2015;6:1143.
52.
go back to reference Dickens AM, Anthony DC, Deutsch R, Mielke MM, Claridge TDW, Grant I, et al. Cerebrospinal fluid metabolomics implicate bioenergetic adaptation as a neural mechanism regulating shifts in cognitive states of HIV-infected patients. AIDS Lond Engl. 2015;29:559–69. Dickens AM, Anthony DC, Deutsch R, Mielke MM, Claridge TDW, Grant I, et al. Cerebrospinal fluid metabolomics implicate bioenergetic adaptation as a neural mechanism regulating shifts in cognitive states of HIV-infected patients. AIDS Lond Engl. 2015;29:559–69.
53.
go back to reference Zhao L, Hadziahmetovic M, Wang C, Xu X, Song Y, Jinnah HA, et al. Cp/Heph mutant mice have iron-induced neurodegeneration diminished by deferiprone. J Neurochem. 2015;135:958–74.CrossRefPubMedPubMedCentral Zhao L, Hadziahmetovic M, Wang C, Xu X, Song Y, Jinnah HA, et al. Cp/Heph mutant mice have iron-induced neurodegeneration diminished by deferiprone. J Neurochem. 2015;135:958–74.CrossRefPubMedPubMedCentral
54.
go back to reference Singh N, Haldar S, Tripathi AK, Horback K, Wong J, Sharma D, et al. Brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. Antioxid Redox Signal. 2014;20:1324–63.CrossRefPubMedPubMedCentral Singh N, Haldar S, Tripathi AK, Horback K, Wong J, Sharma D, et al. Brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. Antioxid Redox Signal. 2014;20:1324–63.CrossRefPubMedPubMedCentral
Metadata
Title
Cerebrospinal fluid cell-free mitochondrial DNA is associated with HIV replication, iron transport, and mild HIV-associated neurocognitive impairment
Authors
Sanjay R. Mehta
Josué Pérez-Santiago
Todd Hulgan
Tyler R. C. Day
Jill Barnholtz-Sloan
Haley Gittleman
Scott Letendre
Ronald Ellis
Robert Heaton
Stephanie Patton
Jesse D. Suben
Donald Franklin
Debralee Rosario
David B. Clifford
Ann C. Collier
Christina M. Marra
Benjamin B. Gelman
Justin McArthur
Allen McCutchan
Susan Morgello
David Simpson
James Connor
Igor Grant
Asha Kallianpur
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2017
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-017-0848-z

Other articles of this Issue 1/2017

Journal of Neuroinflammation 1/2017 Go to the issue