Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2016

Open Access 01-12-2016 | Research

Rice bran derivatives alleviate microglia activation: possible involvement of MAPK pathway

Authors: Harsharan S. Bhatia, Julian Baron, Stephanie Hagl, Gunter P. Eckert, Bernd L. Fiebich

Published in: Journal of Neuroinflammation | Issue 1/2016

Login to get access

Abstract

Background

Hyperactivation of microglia is considered to be a key hallmark of brain inflammation and plays a critical role in regulating neuroinflammatory events. Neuroinflammatory responses in microglia represent one of the major risk factors for various neurodegenerative diseases. One of the strategies to protect the brain and slow down the progression of these neurodegenerative diseases is by consuming diet enriched in anti-oxidants and polyphenols. Therefore, the present study aimed to evaluate the anti-inflammatory effects of rice bran extract (RBE), one of the rich sources of vitamin E forms (tocopherols and tocotrienols) and gamma-oryzanols, in primary rat microglia.

Methods

The vitamin E profile of the RBE was quantified by high-performance liquid chromatography (HPLC). Microglia were stimulated with lipopolysaccharide (LPS) in the presence or absence of RBE. Release of prostaglandins (prostaglandin (PG) E2, 8-iso-prostaglandin F (8-iso-PGF)) were determined with enzyme immunoassay (EIA). Protein levels and genes related to PGE2 synthesis (Cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-1 (mPGES-1)) and various pro- and anti-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-10), were assessed by western blot, ELISA, and quantitative real-time PCR. Furthermore, to elucidate the molecular targets of RBE, the phosphorylated state of various mitogen-activated protein kinase (MAPK) signaling molecules (p38 MAPK, ERK 1/2, and JNK) and activation of NF-kB pathway was studied.

Results

RBE significantly inhibited the release of PGE2 and free radical formation (8-iso-PGF) in LPS-activated primary microglia. Inhibition of PGE2 by RBE was dependent on reduced COX-2 and mPGES-1 immunoreactivity in microglia. Interestingly, treatment of activated microglia with RBE further enhanced the gene expression of the microglial M2 marker IL-10 and reduced the expression of pro-inflammatory M1 markers (TNF-α, IL-1β). Further mechanistic studies showed that RBE inhibits microglial activation by interfering with important steps of MAPK signaling pathway. Additionally, microglia activation with LPS leads to IkB-α degradation which was not affected by the pre-treatment of RBE.

Conclusions

Taken together, our data demonstrate that RBE is able to affect microglial activation by interfering in important inflammatory pathway. These in vitro findings further demonstrate the potential value of RBE as a nutraceutical for the prevention of microglial dysfunction related to neuroinflammatory diseases, including Alzheimer’s disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bénardais K, Gudi V, Gai L, Neßler J, Singh V, Prajeeth CK, et al. Long-term impact of neonatal inflammation on demyelination and remyelination in the central nervous system: Neonatal Insult Impacts Microglia Functions. Glia. 2014;62:1659–70.CrossRefPubMed Bénardais K, Gudi V, Gai L, Neßler J, Singh V, Prajeeth CK, et al. Long-term impact of neonatal inflammation on demyelination and remyelination in the central nervous system: Neonatal Insult Impacts Microglia Functions. Glia. 2014;62:1659–70.CrossRefPubMed
3.
go back to reference Philips T, Robberecht W. Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol. 2011;10:253–63.CrossRefPubMed Philips T, Robberecht W. Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol. 2011;10:253–63.CrossRefPubMed
4.
go back to reference Heneka MT, Carson MJ, Khoury JE, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405.CrossRefPubMed Heneka MT, Carson MJ, Khoury JE, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405.CrossRefPubMed
5.
go back to reference Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. Nat Rev Immunol. 2014;14:463–77.CrossRefPubMed Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. Nat Rev Immunol. 2014;14:463–77.CrossRefPubMed
6.
7.
go back to reference Barichello T, Generoso JS, Goularte JA, Collodel A, Pitcher MRR, Simões RP, et al. Does infection-induced immune activation contribute to dementia? Aging Dis. 2015;6:342.CrossRefPubMedPubMedCentral Barichello T, Generoso JS, Goularte JA, Collodel A, Pitcher MRR, Simões RP, et al. Does infection-induced immune activation contribute to dementia? Aging Dis. 2015;6:342.CrossRefPubMedPubMedCentral
8.
go back to reference Loane DJ, Kumar A. Microglia in the TBI brain: the good, the bad, and the dysregulated. Exp Neurol. 2016;275:316–27.CrossRefPubMed Loane DJ, Kumar A. Microglia in the TBI brain: the good, the bad, and the dysregulated. Exp Neurol. 2016;275:316–27.CrossRefPubMed
10.
go back to reference Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med 2004;10:S18–25. Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med 2004;10:S18–25.
11.
go back to reference Kumar A, Bhatia HS, de Oliveira ACP, Fiebich BL. microRNA-26a modulates inflammatory response induced by toll-like receptor 4 stimulation in microglia. J Neurochem. 2015;135:1189–202.CrossRefPubMed Kumar A, Bhatia HS, de Oliveira ACP, Fiebich BL. microRNA-26a modulates inflammatory response induced by toll-like receptor 4 stimulation in microglia. J Neurochem. 2015;135:1189–202.CrossRefPubMed
12.
go back to reference Fiebich BL, Akter S, Akundi RS. The two-hit hypothesis for neuroinflammation: role of exogenous ATP in modulating inflammation in the brain. Front Cell Neurosci. 2014;8:260.CrossRefPubMedPubMedCentral Fiebich BL, Akter S, Akundi RS. The two-hit hypothesis for neuroinflammation: role of exogenous ATP in modulating inflammation in the brain. Front Cell Neurosci. 2014;8:260.CrossRefPubMedPubMedCentral
13.
go back to reference Lima IV De A, Bastos LFS, Limborço-Filho M, Fiebich BL, De Oliveira ACP. Role of prostaglandins in neuroinflammatory and neurodegenerative diseases. Mediators Inflamm. 2012;2012:1–13. Lima IV De A, Bastos LFS, Limborço-Filho M, Fiebich BL, De Oliveira ACP. Role of prostaglandins in neuroinflammatory and neurodegenerative diseases. Mediators Inflamm. 2012;2012:1–13.
14.
go back to reference Thameem Dheen S, Kaur C, Ling E-A. Microglial activation and its implications in the brain diseases. Curr Med Chem. 2007;14:1189–97.CrossRefPubMed Thameem Dheen S, Kaur C, Ling E-A. Microglial activation and its implications in the brain diseases. Curr Med Chem. 2007;14:1189–97.CrossRefPubMed
15.
go back to reference Akundi RS, Candelario-Jalil E, Hess S, Hüll M, Lieb K, Gebicke-Haerter PJ, et al. Signal transduction pathways regulating cyclooxygenase-2 in lipopolysaccharide-activated primary rat microglia. Glia. 2005;51:199–208.CrossRefPubMed Akundi RS, Candelario-Jalil E, Hess S, Hüll M, Lieb K, Gebicke-Haerter PJ, et al. Signal transduction pathways regulating cyclooxygenase-2 in lipopolysaccharide-activated primary rat microglia. Glia. 2005;51:199–208.CrossRefPubMed
16.
go back to reference Jakobsson PJ, Thorén S, Morgenstern R, Samuelsson B. Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Natl Acad Sci U S A. 1999;96:7220–5.CrossRefPubMedPubMedCentral Jakobsson PJ, Thorén S, Morgenstern R, Samuelsson B. Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Natl Acad Sci U S A. 1999;96:7220–5.CrossRefPubMedPubMedCentral
17.
go back to reference Tanikawa N, Ohmiya Y, Ohkubo H, Hashimoto K, Kangawa K, Kojima M, et al. Identification and characterization of a novel type of membrane-associated prostaglandin E synthase. Biochem Biophys Res Commun. 2002;291:884–9.CrossRefPubMed Tanikawa N, Ohmiya Y, Ohkubo H, Hashimoto K, Kangawa K, Kojima M, et al. Identification and characterization of a novel type of membrane-associated prostaglandin E synthase. Biochem Biophys Res Commun. 2002;291:884–9.CrossRefPubMed
18.
go back to reference de Oliveira ACP, Candelario-Jalil E, Bhatia HS, Lieb K, Hüll M, Fiebich BL. Regulation of prostaglandin E2 synthase expression in activated primary rat microglia: evidence for uncoupled regulation of mPGES-1 and COX-2. Glia. 2008;56:844–55.CrossRefPubMed de Oliveira ACP, Candelario-Jalil E, Bhatia HS, Lieb K, Hüll M, Fiebich BL. Regulation of prostaglandin E2 synthase expression in activated primary rat microglia: evidence for uncoupled regulation of mPGES-1 and COX-2. Glia. 2008;56:844–55.CrossRefPubMed
19.
go back to reference Sun A, Liu M, Nguyen XV, Bing G. P38 MAP kinase is activated at early stages in Alzheimer’s disease brain. Exp Neurol. 2003;183:394–405.CrossRefPubMed Sun A, Liu M, Nguyen XV, Bing G. P38 MAP kinase is activated at early stages in Alzheimer’s disease brain. Exp Neurol. 2003;183:394–405.CrossRefPubMed
20.
go back to reference Xie Z, Smith CJ, Van Eldik LJ. Activated glia induce neuron death via MAP kinase signaling pathways involving JNK and p38. Glia. 2004;45:170–9.CrossRefPubMed Xie Z, Smith CJ, Van Eldik LJ. Activated glia induce neuron death via MAP kinase signaling pathways involving JNK and p38. Glia. 2004;45:170–9.CrossRefPubMed
21.
go back to reference Munoz L, Ammit AJ. Targeting p38 MAPK pathway for the treatment of Alzheimer’s disease. Neuropharmacology. 2010;58:561–8.CrossRefPubMed Munoz L, Ammit AJ. Targeting p38 MAPK pathway for the treatment of Alzheimer’s disease. Neuropharmacology. 2010;58:561–8.CrossRefPubMed
22.
go back to reference Kim HG, Oh MS. Nutraceuticals and prevention of neurodegeneration herbal medicines for the prevention and treatment of Alzheimer’s disease. Curr Pharm Des. 2012;18:57–75.CrossRefPubMed Kim HG, Oh MS. Nutraceuticals and prevention of neurodegeneration herbal medicines for the prevention and treatment of Alzheimer’s disease. Curr Pharm Des. 2012;18:57–75.CrossRefPubMed
23.
go back to reference Barnard ND, Bush AI, Ceccarelli A, Cooper J, de Jager CA, Erickson KI, et al. Dietary and lifestyle guidelines for the prevention of Alzheimer’s disease. Neurobiol Aging. 2014;35(S2):S74–8.CrossRefPubMed Barnard ND, Bush AI, Ceccarelli A, Cooper J, de Jager CA, Erickson KI, et al. Dietary and lifestyle guidelines for the prevention of Alzheimer’s disease. Neurobiol Aging. 2014;35(S2):S74–8.CrossRefPubMed
24.
go back to reference Magrone T, Marzulli G, Jirillo E. Immunopathogenesis of neurodegenerative diseases: current therapeutic models of neuroprotection with special reference to natural products. Curr Pharm Des. 2012;18:34–42.CrossRefPubMed Magrone T, Marzulli G, Jirillo E. Immunopathogenesis of neurodegenerative diseases: current therapeutic models of neuroprotection with special reference to natural products. Curr Pharm Des. 2012;18:34–42.CrossRefPubMed
25.
go back to reference Virmani A, Pinto L, Binienda Z, Ali S. Food, nutrigenomics, and neurodegeneration—neuroprotection by what you eat! Mol Neurobiol. 2013;48:353–62.CrossRefPubMed Virmani A, Pinto L, Binienda Z, Ali S. Food, nutrigenomics, and neurodegeneration—neuroprotection by what you eat! Mol Neurobiol. 2013;48:353–62.CrossRefPubMed
26.
go back to reference Cicero AF, Gaddi A. Rice bran oil and gamma-oryzanol in the treatment of hyperlipoproteinaemias and other conditions. Phytother Res PTR. 2001;15:277–89.CrossRefPubMed Cicero AF, Gaddi A. Rice bran oil and gamma-oryzanol in the treatment of hyperlipoproteinaemias and other conditions. Phytother Res PTR. 2001;15:277–89.CrossRefPubMed
27.
go back to reference Henderson AJ, Kumar A, Barnett B, Dow SW, Ryan EP. Consumption of rice bran increases mucosal immunoglobulin A concentrations and numbers of intestinal Lactobacillus spp. J Med Food. 2012;15:469–75.CrossRefPubMedPubMedCentral Henderson AJ, Kumar A, Barnett B, Dow SW, Ryan EP. Consumption of rice bran increases mucosal immunoglobulin A concentrations and numbers of intestinal Lactobacillus spp. J Med Food. 2012;15:469–75.CrossRefPubMedPubMedCentral
28.
go back to reference Justo ML, Claro C, Zeyda M, Stulnig TM, Herrera MD, Rodríguez-Rodríguez R. Rice bran prevents high-fat diet-induced inflammation and macrophage content in adipose tissue. Eur. J. Nutr. 2015;1-9 Justo ML, Claro C, Zeyda M, Stulnig TM, Herrera MD, Rodríguez-Rodríguez R. Rice bran prevents high-fat diet-induced inflammation and macrophage content in adipose tissue. Eur. J. Nutr. 2015;1-9
29.
go back to reference Ghatak SB, Panchal SJ. Investigation of the immunomodulatory potential of oryzanol isolated from crude rice bran oil in experimental animal models. Phytother Res PTR. 2012;26:1701–8.CrossRefPubMed Ghatak SB, Panchal SJ. Investigation of the immunomodulatory potential of oryzanol isolated from crude rice bran oil in experimental animal models. Phytother Res PTR. 2012;26:1701–8.CrossRefPubMed
30.
go back to reference Hagl S, Berressem D, Bruns B, Sus N, Frank J, Eckert GP. Beneficial effects of ethanolic and hexanic rice bran extract on mitochondrial function in PC12 cells and the search for bioactive components. Molecules. 2015;20:16524–39.CrossRefPubMed Hagl S, Berressem D, Bruns B, Sus N, Frank J, Eckert GP. Beneficial effects of ethanolic and hexanic rice bran extract on mitochondrial function in PC12 cells and the search for bioactive components. Molecules. 2015;20:16524–39.CrossRefPubMed
31.
go back to reference Hagl S, Berressem D, Grewal R, Sus N, Frank J, Eckert GP. Rice bran extract improves mitochondrial dysfunction in brains of aged NMRI mice. Nutr Neurosci. 2015;19:1–10.CrossRefPubMed Hagl S, Berressem D, Grewal R, Sus N, Frank J, Eckert GP. Rice bran extract improves mitochondrial dysfunction in brains of aged NMRI mice. Nutr Neurosci. 2015;19:1–10.CrossRefPubMed
32.
go back to reference Hagl S, Grewal R, Ciobanu I, Helal A, Khayyal MT, Muller WE, et al. Rice bran extract compensates mitochondrial dysfunction in a cellular model of early Alzheimer’s disease. J Alzheimers Dis JAD. 2015;43:927–38.PubMed Hagl S, Grewal R, Ciobanu I, Helal A, Khayyal MT, Muller WE, et al. Rice bran extract compensates mitochondrial dysfunction in a cellular model of early Alzheimer’s disease. J Alzheimers Dis JAD. 2015;43:927–38.PubMed
33.
go back to reference Candiracci M, Justo ML, Castaño A, Rodriguez-Rodriguez R, Herrera MD. Rice bran enzymatic extract-supplemented diets modulate adipose tissue inflammation markers in Zucker rats. Nutrition. 2014;4:466–72.CrossRef Candiracci M, Justo ML, Castaño A, Rodriguez-Rodriguez R, Herrera MD. Rice bran enzymatic extract-supplemented diets modulate adipose tissue inflammation markers in Zucker rats. Nutrition. 2014;4:466–72.CrossRef
34.
go back to reference Grebenstein N, Frank J. Rapid baseline-separation of all eight tocopherols and tocotrienols by reversed-phase liquid-chromatography with a solid-core pentafluorophenyl column and their sensitive quantification in plasma and liver. J Chromatogr A. 2012;1243:39–46.CrossRefPubMed Grebenstein N, Frank J. Rapid baseline-separation of all eight tocopherols and tocotrienols by reversed-phase liquid-chromatography with a solid-core pentafluorophenyl column and their sensitive quantification in plasma and liver. J Chromatogr A. 2012;1243:39–46.CrossRefPubMed
35.
go back to reference Singh V, Bhatia HS, Kumar A, de Oliveira ACP, Fiebich BL. Histone deacetylase inhibitors valproic acid and sodium butyrate enhance prostaglandins release in lipopolysaccharide-activated primary microglia. Neuroscience. 2014;265:147–57.CrossRefPubMed Singh V, Bhatia HS, Kumar A, de Oliveira ACP, Fiebich BL. Histone deacetylase inhibitors valproic acid and sodium butyrate enhance prostaglandins release in lipopolysaccharide-activated primary microglia. Neuroscience. 2014;265:147–57.CrossRefPubMed
36.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.CrossRefPubMed
37.
go back to reference Bianco F, Ceruti S, Colombo A, Fumagalli M, Ferrari D, Pizzirani C, et al. A role for P2X7 in microglial proliferation. J Neurochem. 2006;99:745–58.CrossRefPubMed Bianco F, Ceruti S, Colombo A, Fumagalli M, Ferrari D, Pizzirani C, et al. A role for P2X7 in microglial proliferation. J Neurochem. 2006;99:745–58.CrossRefPubMed
38.
go back to reference Flanary BE, Streit WJ. Alpha-tocopherol (vitamin E) induces rapid, nonsustained proliferation in cultured rat microglia. Glia. 2006;53:669–74.CrossRefPubMed Flanary BE, Streit WJ. Alpha-tocopherol (vitamin E) induces rapid, nonsustained proliferation in cultured rat microglia. Glia. 2006;53:669–74.CrossRefPubMed
39.
go back to reference Wang Y-X, Li Y, Sun A-M, Wang F-J, Yu G-P. Hypolipidemic and antioxidative effects of aqueous enzymatic extract from rice bran in rats fed a high-fat and -cholesterol diet. Nutrients. 2014;6:3696–710.CrossRefPubMedPubMedCentral Wang Y-X, Li Y, Sun A-M, Wang F-J, Yu G-P. Hypolipidemic and antioxidative effects of aqueous enzymatic extract from rice bran in rats fed a high-fat and -cholesterol diet. Nutrients. 2014;6:3696–710.CrossRefPubMedPubMedCentral
40.
go back to reference Praticò D, Barry OP, Lawson JA, Adiyaman M, Hwang SW, Khanapure SP, et al. IPF2alpha-I: an index of lipid peroxidation in humans. Proc Natl Acad Sci U S A. 1998;95:3449–54.CrossRefPubMedPubMedCentral Praticò D, Barry OP, Lawson JA, Adiyaman M, Hwang SW, Khanapure SP, et al. IPF2alpha-I: an index of lipid peroxidation in humans. Proc Natl Acad Sci U S A. 1998;95:3449–54.CrossRefPubMedPubMedCentral
41.
go back to reference Bhatia HS, Candelario-Jalil E, de Oliveira ACP, Olajide OA, Martínez-Sánchez G, Fiebich BL. Mangiferin inhibits cyclooxygenase-2 expression and prostaglandin E2 production in activated rat microglial cells. Arch Biochem Biophys. 2008;477:253–8.CrossRefPubMed Bhatia HS, Candelario-Jalil E, de Oliveira ACP, Olajide OA, Martínez-Sánchez G, Fiebich BL. Mangiferin inhibits cyclooxygenase-2 expression and prostaglandin E2 production in activated rat microglial cells. Arch Biochem Biophys. 2008;477:253–8.CrossRefPubMed
42.
go back to reference Fiebich BL, Lieb K, Engels S, Heinrich M. Inhibition of LPS-induced p42/44 MAP kinase activation and iNOS/NO synthesis by parthenolide in rat primary microglial cells. J Neuroimmunol. 2002;132:18–24.CrossRefPubMed Fiebich BL, Lieb K, Engels S, Heinrich M. Inhibition of LPS-induced p42/44 MAP kinase activation and iNOS/NO synthesis by parthenolide in rat primary microglial cells. J Neuroimmunol. 2002;132:18–24.CrossRefPubMed
43.
go back to reference Olajide OA, Bhatia HS, de Oliveira ACP, Wright CW, Fiebich BL. Inhibition of neuroinflammation in LPS-activated microglia by cryptolepine. Evid-Based Complement Altern Med ECAM. 2013;2013:459723. Olajide OA, Bhatia HS, de Oliveira ACP, Wright CW, Fiebich BL. Inhibition of neuroinflammation in LPS-activated microglia by cryptolepine. Evid-Based Complement Altern Med ECAM. 2013;2013:459723.
45.
go back to reference Kanarek N, Ben-Neriah Y. Regulation of NF-kB by ubiquitination and degradation of the IkBs. Immunol Rev. 2012;246:77–94.CrossRefPubMed Kanarek N, Ben-Neriah Y. Regulation of NF-kB by ubiquitination and degradation of the IkBs. Immunol Rev. 2012;246:77–94.CrossRefPubMed
46.
go back to reference Choi SP, Kim SP, Kang MY, Nam SH, Friedman M. Protective effects of black rice bran against chemically-induced inflammation of mouse skin. J Agric Food Chem. 2010;58:10007–15.CrossRefPubMed Choi SP, Kim SP, Kang MY, Nam SH, Friedman M. Protective effects of black rice bran against chemically-induced inflammation of mouse skin. J Agric Food Chem. 2010;58:10007–15.CrossRefPubMed
47.
go back to reference Hernández-Aguilera A, Rull A, Rodríguez-Gallego E, Riera-Borrull M, Luciano-Mateo F, Camps J, et al. Mitochondrial dysfunction: a basic mechanism in inflammation-related non-communicable diseases and therapeutic opportunities. Mediators Inflamm. 2013;2013:135698.CrossRefPubMedPubMedCentral Hernández-Aguilera A, Rull A, Rodríguez-Gallego E, Riera-Borrull M, Luciano-Mateo F, Camps J, et al. Mitochondrial dysfunction: a basic mechanism in inflammation-related non-communicable diseases and therapeutic opportunities. Mediators Inflamm. 2013;2013:135698.CrossRefPubMedPubMedCentral
48.
go back to reference Revilla E, Santa-María C, Miramontes E, Candiracci M, Rodríguez-Morgado B, Carballo M, et al. Antiproliferative and immunoactivatory ability of an enzymatic extract from rice bran. Food Chem. 2013;136:526–31.CrossRefPubMed Revilla E, Santa-María C, Miramontes E, Candiracci M, Rodríguez-Morgado B, Carballo M, et al. Antiproliferative and immunoactivatory ability of an enzymatic extract from rice bran. Food Chem. 2013;136:526–31.CrossRefPubMed
49.
go back to reference Okai Y, Okada T, Higashi-Okai K, Kasahara E, Inoue M, Yamashita U. Immunomodulating activities in bran extracts of Japanese red, black and brown rices. J UOEH. 2009;31:231–42.PubMed Okai Y, Okada T, Higashi-Okai K, Kasahara E, Inoue M, Yamashita U. Immunomodulating activities in bran extracts of Japanese red, black and brown rices. J UOEH. 2009;31:231–42.PubMed
50.
go back to reference Ren Z, Pae M, Dao MC, Smith D, Meydani SN, Wu D. Dietary supplementation with tocotrienols enhances immune function in C57BL/6 mice. J Nutr. 2010;140:1335–41.CrossRefPubMed Ren Z, Pae M, Dao MC, Smith D, Meydani SN, Wu D. Dietary supplementation with tocotrienols enhances immune function in C57BL/6 mice. J Nutr. 2010;140:1335–41.CrossRefPubMed
51.
go back to reference Montine TJ, Montine KS, McMahan W, Markesbery WR, Quinn JF, Morrow JD. F2-isoprostanes in Alzheimer and other neurodegenerative diseases. Antioxid Redox Signal. 2005;7:269–75.CrossRefPubMed Montine TJ, Montine KS, McMahan W, Markesbery WR, Quinn JF, Morrow JD. F2-isoprostanes in Alzheimer and other neurodegenerative diseases. Antioxid Redox Signal. 2005;7:269–75.CrossRefPubMed
52.
go back to reference Montine TJ, Beal MF, Cudkowicz ME, O’Donnell H, Margolin RA, McFarland L, et al. Increased CSF F2-isoprostane concentration in probable AD. Neurology. 1999;52:562–5.CrossRefPubMed Montine TJ, Beal MF, Cudkowicz ME, O’Donnell H, Margolin RA, McFarland L, et al. Increased CSF F2-isoprostane concentration in probable AD. Neurology. 1999;52:562–5.CrossRefPubMed
53.
go back to reference Candelario-Jalil E, de Oliveira ACP, Gräf S, Bhatia HS, Hüll M, Muñoz E, et al. Resveratrol potently reduces prostaglandin E2 production and free radical formation in lipopolysaccharide-activated primary rat microglia. J Neuroinflammation. 2007;4:25.CrossRefPubMedPubMedCentral Candelario-Jalil E, de Oliveira ACP, Gräf S, Bhatia HS, Hüll M, Muñoz E, et al. Resveratrol potently reduces prostaglandin E2 production and free radical formation in lipopolysaccharide-activated primary rat microglia. J Neuroinflammation. 2007;4:25.CrossRefPubMedPubMedCentral
54.
go back to reference Roschek B, Fink RC, Li D, McMichael M, Tower CM, Smith RD, et al. Pro-inflammatory enzymes, cyclooxygenase 1, cyclooxygenase 2, and 5-lipooxygenase, inhibited by stabilized rice bran extracts. J Med Food. 2009;12:615–23.CrossRefPubMed Roschek B, Fink RC, Li D, McMichael M, Tower CM, Smith RD, et al. Pro-inflammatory enzymes, cyclooxygenase 1, cyclooxygenase 2, and 5-lipooxygenase, inhibited by stabilized rice bran extracts. J Med Food. 2009;12:615–23.CrossRefPubMed
55.
go back to reference Egger T, Schuligoi R, Wintersperger A, Amann R, Malle E, Sattler W. Vitamin E (alpha-tocopherol) attenuates cyclo-oxygenase 2 transcription and synthesis in immortalized murine BV-2 microglia. Biochem J. 2003;370:459–67.CrossRefPubMedPubMedCentral Egger T, Schuligoi R, Wintersperger A, Amann R, Malle E, Sattler W. Vitamin E (alpha-tocopherol) attenuates cyclo-oxygenase 2 transcription and synthesis in immortalized murine BV-2 microglia. Biochem J. 2003;370:459–67.CrossRefPubMedPubMedCentral
56.
go back to reference Bales KR, Du Y, Dodel RC, Yan GM, Hamilton-Byrd E, Paul SM. The NF-kappaB/Rel family of proteins mediates Abeta-induced neurotoxicity and glial activation. Brain Res Mol Brain Res. 1998;57:63–72.CrossRefPubMed Bales KR, Du Y, Dodel RC, Yan GM, Hamilton-Byrd E, Paul SM. The NF-kappaB/Rel family of proteins mediates Abeta-induced neurotoxicity and glial activation. Brain Res Mol Brain Res. 1998;57:63–72.CrossRefPubMed
57.
go back to reference Baldwin AS. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 1996;14:649–83.CrossRefPubMed Baldwin AS. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 1996;14:649–83.CrossRefPubMed
58.
go back to reference Hagl S, Kocher A, Schiborr C, Eckert SH, Ciobanu I, Birringer M, et al. Rice bran extract protects from mitochondrial dysfunction in guinea pig brains. Pharmacol Res. 2013;76:17–27.CrossRefPubMed Hagl S, Kocher A, Schiborr C, Eckert SH, Ciobanu I, Birringer M, et al. Rice bran extract protects from mitochondrial dysfunction in guinea pig brains. Pharmacol Res. 2013;76:17–27.CrossRefPubMed
60.
go back to reference Bazinet RP, Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci. 2014;15:771–85.CrossRefPubMed Bazinet RP, Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci. 2014;15:771–85.CrossRefPubMed
Metadata
Title
Rice bran derivatives alleviate microglia activation: possible involvement of MAPK pathway
Authors
Harsharan S. Bhatia
Julian Baron
Stephanie Hagl
Gunter P. Eckert
Bernd L. Fiebich
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2016
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-016-0615-6

Other articles of this Issue 1/2016

Journal of Neuroinflammation 1/2016 Go to the issue