Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2016

Open Access 01-12-2016 | Research

Impairment of toll-like receptors 2 and 4 leads to compensatory mechanisms after sciatic nerve axotomy

Authors: C. M. Freria, D. Bernardes, G. L. Almeida, G. F. Simões, G. O. Barbosa, A. L. R. Oliveira

Published in: Journal of Neuroinflammation | Issue 1/2016

Login to get access

Abstract

Background

Peripheral nerve injury results in retrograde cell body-related changes in the spinal motoneurons that will contribute to the regenerative response of their axons. Successful functional recovery also depends on molecular events mediated by innate immune response during Wallerian degeneration in the nerve microenvironment. A previous study in our lab demonstrated that TLR 2 and 4 develop opposite effects on synaptic stability in the spinal cord after peripheral nerve injury. Therefore, we suggested that the better preservation of spinal cord microenvironment would positively influence distal axonal regrowth. In this context, the present work aimed to investigate the influence of TLR2 and TLR4 on regeneration and functional recovery after peripheral nerve injury.

Methods

Eighty-eight mice were anesthetized and subjected to unilateral sciatic nerve crush (C3H/HeJ, n = 22, C3H/HePas, n = 22; C57Bl6/J, n = 22 and TLR2−/−, n = 22). After the appropriate survival times (3, 7, 14 days, and 5 weeks), all mice were killed and the sciatic nerves and tibialis cranialis muscles were processed for immunohistochemistry and transmission electron microscopy (TEM). Gait analysis, after sciatic nerve crushing, was performed in another set of mice (minimum of n = 8 per group), by using the walking track test (CatWalk system).

Results

TLR4 mutant mice presented greater functional recovery as well as an enhanced p75NTR and neurofilament protein expression as compared to the wild-type strain. Moreover, the better functional recovery in mutant mice was correlated to a greater number of nerve terminal sprouts. Knockout mice for TLR2 exhibited 30 % greater number of degenerated axons in the distal stump of the sciatic nerve and a decreased p75NTR and neurofilament protein expression compared to the wild type. However, the absence of TLR2 receptor did not influence the overall functional recovery. End-point equivalent functional recovery in transgenic mice may be a result of enhanced axonal diameter found at 2 weeks after lesion.

Conclusions

Altogether, the present results indicate that the lack of TLR2 or the absence of functional TLR4 does affect the nerve regeneration process; however, such changes are minimized through different compensatory mechanisms, resulting in similar motor function recovery, as compared to wild-type mice. These findings contribute to the concept that innate immune-related molecules influence peripheral nerve regeneration by concurrently participating in processes taking place both at the CNS and PNS.
Appendix
Available only for authorised users
Literature
2.
go back to reference Stoll G, Griffin JW, Li CY, Trapp BD. Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation. J Neurocytol. 1989;18:671–83.CrossRefPubMed Stoll G, Griffin JW, Li CY, Trapp BD. Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation. J Neurocytol. 1989;18:671–83.CrossRefPubMed
3.
go back to reference Shi XQ, Zekki H, Zhang J. The role of TLR2 in nerve injury-induced neuropathic pain is essentially mediated through macrophages in peripheral inflammatory response. Glia. 2011;59:231–41.CrossRefPubMed Shi XQ, Zekki H, Zhang J. The role of TLR2 in nerve injury-induced neuropathic pain is essentially mediated through macrophages in peripheral inflammatory response. Glia. 2011;59:231–41.CrossRefPubMed
4.
go back to reference Goethals S, Ydens E, Timmerman V, Janssens S. Toll-like receptor expression in the peripheral nerve. Glia. 2010;58:1701–9.CrossRefPubMed Goethals S, Ydens E, Timmerman V, Janssens S. Toll-like receptor expression in the peripheral nerve. Glia. 2010;58:1701–9.CrossRefPubMed
5.
go back to reference Martini R, Fischer S, López-Vales R, David S. Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease. Glia. 2008;56:1566–77.CrossRefPubMed Martini R, Fischer S, López-Vales R, David S. Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease. Glia. 2008;56:1566–77.CrossRefPubMed
6.
go back to reference Shamash S, Reichert F, Rotshenker S. The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J Neurosci. 2002;22:3052–60.PubMed Shamash S, Reichert F, Rotshenker S. The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J Neurosci. 2002;22:3052–60.PubMed
7.
go back to reference Lee H, Jo E-K, Choi S-Y, Oh SB, Park K, Kim JS, et al. Necrotic neuronal cells induce inflammatory Schwann cell activation via TLR2 and TLR3: implication in Wallerian degeneration. Biochem Biophys Res Commun. 2006;350:742–7.CrossRefPubMed Lee H, Jo E-K, Choi S-Y, Oh SB, Park K, Kim JS, et al. Necrotic neuronal cells induce inflammatory Schwann cell activation via TLR2 and TLR3: implication in Wallerian degeneration. Biochem Biophys Res Commun. 2006;350:742–7.CrossRefPubMed
9.
go back to reference Lee SJ, Lee S. Toll-like receptors and inflammation in the CNS. Curr Drug Targets Inflamm Allergy. 2002;1:181–91.CrossRefPubMed Lee SJ, Lee S. Toll-like receptors and inflammation in the CNS. Curr Drug Targets Inflamm Allergy. 2002;1:181–91.CrossRefPubMed
10.
11.
go back to reference Boivin A, Pineau I, Barrette B, Filali M, Vallières N, Rivest S, et al. Toll-like receptor signaling is critical for Wallerian degeneration and functional recovery after peripheral nerve injury. J Neurosci. 2007;27:12565–76.CrossRefPubMed Boivin A, Pineau I, Barrette B, Filali M, Vallières N, Rivest S, et al. Toll-like receptor signaling is critical for Wallerian degeneration and functional recovery after peripheral nerve injury. J Neurosci. 2007;27:12565–76.CrossRefPubMed
12.
go back to reference Freria CM, Velloso LA, Oliveira AL. Opposing effects of Toll-like receptors 2 and 4 on synaptic stability in the spinal cord after peripheral nerve injury. J Neuroinflammation. 2012;9:240.CrossRefPubMedPubMedCentral Freria CM, Velloso LA, Oliveira AL. Opposing effects of Toll-like receptors 2 and 4 on synaptic stability in the spinal cord after peripheral nerve injury. J Neuroinflammation. 2012;9:240.CrossRefPubMedPubMedCentral
13.
go back to reference Oliveira ALR, Thams S, Lidman O, Piehl F, Hökfelt T, Kärre K, et al. A role for MHC class I molecules in synaptic plasticity and regeneration of neurons after axotomy. Proc Natl Acad Sci U S A. 2004;101:17843–8.CrossRefPubMedPubMedCentral Oliveira ALR, Thams S, Lidman O, Piehl F, Hökfelt T, Kärre K, et al. A role for MHC class I molecules in synaptic plasticity and regeneration of neurons after axotomy. Proc Natl Acad Sci U S A. 2004;101:17843–8.CrossRefPubMedPubMedCentral
14.
go back to reference Xin L, Richardson PM, Gervais F, Skamene E. A deficiency of axonal regeneration in C57BL/6J mice. Brain Res. 1990;510:144–6.CrossRefPubMed Xin L, Richardson PM, Gervais F, Skamene E. A deficiency of axonal regeneration in C57BL/6J mice. Brain Res. 1990;510:144–6.CrossRefPubMed
15.
go back to reference Mayhew TM, Sharma AK. Sampling schemes for estimating nerve fibre size. I. Methods for nerve trunks of mixed fascicularity. J Anat. 1984;139(Pt 1):45–58.PubMedPubMedCentral Mayhew TM, Sharma AK. Sampling schemes for estimating nerve fibre size. I. Methods for nerve trunks of mixed fascicularity. J Anat. 1984;139(Pt 1):45–58.PubMedPubMedCentral
16.
go back to reference Inserra MM, Bloch DA, Terris DJ. Functional indices for sciatic, peroneal, and posterior tibial nerve lesions in the mouse. Microsurgery. 1998;18:119–24.CrossRefPubMed Inserra MM, Bloch DA, Terris DJ. Functional indices for sciatic, peroneal, and posterior tibial nerve lesions in the mouse. Microsurgery. 1998;18:119–24.CrossRefPubMed
17.
go back to reference Lee H, Lee S, Cho I-H, Lee SJ. Toll-like receptors: sensor molecules for detecting damage to the nervous system. Curr Protein Pept Sci. 2013;14:33–42.CrossRefPubMed Lee H, Lee S, Cho I-H, Lee SJ. Toll-like receptors: sensor molecules for detecting damage to the nervous system. Curr Protein Pept Sci. 2013;14:33–42.CrossRefPubMed
18.
go back to reference Garcia N, Tomàs M, Santafe MM, Lanuza MA, Besalduch N, Tomàs J. Blocking p75 (NTR) receptors alters polyinnervationz of neuromuscular synapses during development. J Neurosci Res. 2011;89:1331–41.CrossRefPubMed Garcia N, Tomàs M, Santafe MM, Lanuza MA, Besalduch N, Tomàs J. Blocking p75 (NTR) receptors alters polyinnervationz of neuromuscular synapses during development. J Neurosci Res. 2011;89:1331–41.CrossRefPubMed
19.
go back to reference Tomita K, Kubo T, Matsuda K, Fujiwara T, Yano K, Winograd JM, et al. The neurotrophin receptor p75NTR in Schwann cells is implicated in remyelination and motor recovery after peripheral nerve injury. Glia. 2007;55:1199–208.CrossRefPubMed Tomita K, Kubo T, Matsuda K, Fujiwara T, Yano K, Winograd JM, et al. The neurotrophin receptor p75NTR in Schwann cells is implicated in remyelination and motor recovery after peripheral nerve injury. Glia. 2007;55:1199–208.CrossRefPubMed
20.
go back to reference Huh GS, Boulanger LM, Du H, Riquelme PA, Brotz TM, Shatz CJ. Functional requirement for class I MHC in CNS development and plasticity. Science. 2000;290:2155–9.CrossRefPubMedPubMedCentral Huh GS, Boulanger LM, Du H, Riquelme PA, Brotz TM, Shatz CJ. Functional requirement for class I MHC in CNS development and plasticity. Science. 2000;290:2155–9.CrossRefPubMedPubMedCentral
21.
go back to reference Oliveira ALR, Hydling F, Olsson E, Shi T, Edwards RH, Fujiyama F, et al. Cellular localization of three vesicular glutamate transporter mRNAs and proteins in rat spinal cord and dorsal root ganglia. Synapse. 2003;50:117–29.CrossRefPubMed Oliveira ALR, Hydling F, Olsson E, Shi T, Edwards RH, Fujiyama F, et al. Cellular localization of three vesicular glutamate transporter mRNAs and proteins in rat spinal cord and dorsal root ganglia. Synapse. 2003;50:117–29.CrossRefPubMed
22.
go back to reference Zanon RG, Oliveira ALR. MHC I upregulation influences astroglial reaction and synaptic plasticity in the spinal cord after sciatic nerve transection. Exp Neurol. 2006;200:521–31.CrossRefPubMed Zanon RG, Oliveira ALR. MHC I upregulation influences astroglial reaction and synaptic plasticity in the spinal cord after sciatic nerve transection. Exp Neurol. 2006;200:521–31.CrossRefPubMed
23.
go back to reference Escande-Beillard N, Washburn L, Zekzer D, Wu Z-P, Eitan S, Ivkovic S, et al. Neurons preferentially respond to self-MHC class I allele products regardless of peptide presented. J Immunol. 2010;184:816–23.CrossRefPubMedPubMedCentral Escande-Beillard N, Washburn L, Zekzer D, Wu Z-P, Eitan S, Ivkovic S, et al. Neurons preferentially respond to self-MHC class I allele products regardless of peptide presented. J Immunol. 2010;184:816–23.CrossRefPubMedPubMedCentral
24.
go back to reference Wu S-C, Rau C-S, Lu T-H, Wu C-J, Wu Y-C, Tzeng S-L, et al. Knockout of TLR4 and TLR2 impair the nerve regeneration by delayed demyelination but not remyelination. J Biomed Sci. 2013;20:62–2.CrossRefPubMedPubMedCentral Wu S-C, Rau C-S, Lu T-H, Wu C-J, Wu Y-C, Tzeng S-L, et al. Knockout of TLR4 and TLR2 impair the nerve regeneration by delayed demyelination but not remyelination. J Biomed Sci. 2013;20:62–2.CrossRefPubMedPubMedCentral
25.
go back to reference Hoffman PN. Expression of GAP-43, a rapidly transported growth-associated protein, and class II beta tubulin, a slowly transported cytoskeletal protein, are coordinated in regenerating neurons. J Neurosci. 1989;9:893–7.PubMed Hoffman PN. Expression of GAP-43, a rapidly transported growth-associated protein, and class II beta tubulin, a slowly transported cytoskeletal protein, are coordinated in regenerating neurons. J Neurosci. 1989;9:893–7.PubMed
26.
go back to reference MacLennan AJ, Devlin BK, Neitzel KL, McLaurin DL, Anderson KJ, Lee N. Regulation of ciliary neurotrophic factor receptor alpha in sciatic motor neurons following axotomy. Neuroscience. 1999;91:1401–13.CrossRefPubMed MacLennan AJ, Devlin BK, Neitzel KL, McLaurin DL, Anderson KJ, Lee N. Regulation of ciliary neurotrophic factor receptor alpha in sciatic motor neurons following axotomy. Neuroscience. 1999;91:1401–13.CrossRefPubMed
28.
go back to reference Huang J, Zhang Y, Lu L, Hu X, Luo Z. Electrical stimulation accelerates nerve regeneration and functional recovery in delayed peripheral nerve injury in rats. Eur J Neurosci. 2013;38:3691–701.CrossRefPubMed Huang J, Zhang Y, Lu L, Hu X, Luo Z. Electrical stimulation accelerates nerve regeneration and functional recovery in delayed peripheral nerve injury in rats. Eur J Neurosci. 2013;38:3691–701.CrossRefPubMed
29.
go back to reference Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science. 2014;344:1252304–4.CrossRefPubMedPubMedCentral Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science. 2014;344:1252304–4.CrossRefPubMedPubMedCentral
Metadata
Title
Impairment of toll-like receptors 2 and 4 leads to compensatory mechanisms after sciatic nerve axotomy
Authors
C. M. Freria
D. Bernardes
G. L. Almeida
G. F. Simões
G. O. Barbosa
A. L. R. Oliveira
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2016
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-016-0579-6

Other articles of this Issue 1/2016

Journal of Neuroinflammation 1/2016 Go to the issue