Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2019

Open Access 01-12-2019 | Case report

Nutritional strategies in an elite wheelchair marathoner at 3900 m altitude: a case report

Authors: Santiago Sanz-Quinto, Manuel Moya-Ramón, Gabriel Brizuela, Ian Rice, Tomás Urbán, Raúl López-Grueso

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2019

Login to get access

Abstract

Background

Altitude training is a common practice among middle-distance and marathon runners. During acclimatization, sympathetic drive may increase resting metabolic rate (RMR), therefore implementation of targeted nutritional interventions based on training demands and environmental conditions becomes paramount. This single case study represents the first nutritional intervention performed under hypobaric hypoxic conditions (3900 m) in Paralympic sport. These results may elucidate the unique nutritional requirements of upper body endurance athletes training at altitude.

Case presentation

This case study examined the effects of a nutritional intervention on the body mass of a 36-year-old professional wheelchair athlete (silver medalist at the Paralympic Games and 106 victories in assorted road events) during a five-week altitude training camp, divided into pre-altitude at sea level (BN), acclimatization to altitude (Puno, 3860 m) (BH), specific training (W1,2,3,4) and return to sea level (Post) phases. Energy intake (kcal) and body mass (kg) were recorded daily. Results demonstrated significant decrease in body mass between BN and BH (52.6 ± 0.4 vs 50.7 ± 0.5 kg, P < 0.001) which returned to pre-altitude values, upon returning to sea level at Post (52.1 ± 0.5 kg). A greater daily intake was observed during BH (2899 ± 670 kcal) and W1,2,3 (3037 ± 490; 3116 ± 170; 3101 ± 385 kcal) compared to BN (2397 ± 242 kcal, P < 0.01) and Post (2411 ± 137 kcal, P < 0.01). No differences were reported between W4 (2786 ± 375 kcal), BN and Post. The amount of carbohydrates ingested (g · kg− 1) was greater in W1,2,3, (9.6 ± 2.1; 9.9 ± 1.2; 9.6 ± 1.2) than in BN (7.1 ± 1.2) and Post (6.3 ± 0.8, P < 0.001). Effect sizes (Cohen’s d) for all variables relative to BN (all time points) exceed a large effect (d > 0.80).

Conclusions

These results suggest an elite wheelchair marathoner training at 3860 m required increased nutrient requirements as well as the systematic control needed to re-adapt a nutritional program. Moreover, our findings highlight training and nutritional prescription optimization of elite wheelchair athletes, under challenging environmental conditions.
Literature
1.
go back to reference Heikura IA, Burke LM, Bergland D, Uusitalo ALT, Mero AA, Stellingwerff T. Impact of energy availability, health and sex on hemoglobin-mass responses following live-high-train-high altitude training in elite female and male distance athletes. Int J Sports Physiol Perform. 2018;13:1090–6.PubMedCrossRef Heikura IA, Burke LM, Bergland D, Uusitalo ALT, Mero AA, Stellingwerff T. Impact of energy availability, health and sex on hemoglobin-mass responses following live-high-train-high altitude training in elite female and male distance athletes. Int J Sports Physiol Perform. 2018;13:1090–6.PubMedCrossRef
2.
go back to reference Woods AL, Sharma AP, Garvican-Lewis LA, Saunders P, Rice T, Thompson KG. Four weeks of classical altitude training increases resting metabolic rate in highly trained middle-distance runners. Int J Sport Nutr Exerc Metab. 2016;27:83–90.PubMedCrossRef Woods AL, Sharma AP, Garvican-Lewis LA, Saunders P, Rice T, Thompson KG. Four weeks of classical altitude training increases resting metabolic rate in highly trained middle-distance runners. Int J Sport Nutr Exerc Metab. 2016;27:83–90.PubMedCrossRef
3.
go back to reference Brooks GA, Butterfield GE, Wolfe RR, Groves BM, Mazzeo RS, Sutton JR, Wolfel EE, Reeves JT. Increased dependence on blood glucose after acclimatization to 4300 m. J Appl Physiol. 1991;70:919–27.PubMedCrossRef Brooks GA, Butterfield GE, Wolfe RR, Groves BM, Mazzeo RS, Sutton JR, Wolfel EE, Reeves JT. Increased dependence on blood glucose after acclimatization to 4300 m. J Appl Physiol. 1991;70:919–27.PubMedCrossRef
4.
go back to reference Fulco CS, Kambis KW, Friedlander AL, Rock PB, Muza SR, Cymerman A. Carbohydrate supplementation improves time-trial cycle performance during energy deficit at 4300-m altitude. J Appl Physiol. 2005;99:867–76.PubMedCrossRef Fulco CS, Kambis KW, Friedlander AL, Rock PB, Muza SR, Cymerman A. Carbohydrate supplementation improves time-trial cycle performance during energy deficit at 4300-m altitude. J Appl Physiol. 2005;99:867–76.PubMedCrossRef
5.
go back to reference Sergi G, Imoscopi A, Sarti S, Perissinotto E, Coin A, Inelmen EM, Zambon S, Busetto L, Seresin C, Manzato E. Changes in total body and limb composition and muscle strength after a 6-8 weeks sojourn at extreme altitude (5000-8000m). J Sports Med Phys Fitness. 2010;50:450–5.PubMed Sergi G, Imoscopi A, Sarti S, Perissinotto E, Coin A, Inelmen EM, Zambon S, Busetto L, Seresin C, Manzato E. Changes in total body and limb composition and muscle strength after a 6-8 weeks sojourn at extreme altitude (5000-8000m). J Sports Med Phys Fitness. 2010;50:450–5.PubMed
6.
go back to reference Hoyt RW, Durkot MJ, Kamimori GH, Schoeller DA, Cymerman A. Chronic altitude exposure (4300 m) decreases intracellular and total body water in humans. In: Sutton JR, Coats G, Houston CS, editors. Hypoxia and mountain medicine. Burlington: Queen City printers; 1992. p. 306. Hoyt RW, Durkot MJ, Kamimori GH, Schoeller DA, Cymerman A. Chronic altitude exposure (4300 m) decreases intracellular and total body water in humans. In: Sutton JR, Coats G, Houston CS, editors. Hypoxia and mountain medicine. Burlington: Queen City printers; 1992. p. 306.
7.
go back to reference Roberts AC, Butterfield GE, Cymerman A, Reeves JT, Wolfel EE, Brooks GA. Acclimatization to 4300-m altitude decreases reliance on fat as a substrate. J Appl Physiol. 1996;81:1762–71.PubMedCrossRef Roberts AC, Butterfield GE, Cymerman A, Reeves JT, Wolfel EE, Brooks GA. Acclimatization to 4300-m altitude decreases reliance on fat as a substrate. J Appl Physiol. 1996;81:1762–71.PubMedCrossRef
8.
go back to reference Roberts AC, Reeves JT, Butterfield GE, Mazzeo RS, Sutton JR, Wolfel EE, Brooks GA. Altitude and beta-blockade augment glucose utilization during submaximal exercise. J Appl Physiol. 1996;80:605–15.PubMedCrossRef Roberts AC, Reeves JT, Butterfield GE, Mazzeo RS, Sutton JR, Wolfel EE, Brooks GA. Altitude and beta-blockade augment glucose utilization during submaximal exercise. J Appl Physiol. 1996;80:605–15.PubMedCrossRef
9.
go back to reference Young AJ, Berryman CE, Kenefick RW, Derosier EN, Margolis LM, Wilson MA, Carrigan CT, Murphy NE, Carbone JW, Rood JC, Pasiakos SM. Altitude acclimatization alleviates the hypoxia-induced suppression of exogenous glucose oxidation during steady-state aerobic exercise. Front Physiol. 2018;9:830.PubMedPubMedCentralCrossRef Young AJ, Berryman CE, Kenefick RW, Derosier EN, Margolis LM, Wilson MA, Carrigan CT, Murphy NE, Carbone JW, Rood JC, Pasiakos SM. Altitude acclimatization alleviates the hypoxia-induced suppression of exogenous glucose oxidation during steady-state aerobic exercise. Front Physiol. 2018;9:830.PubMedPubMedCentralCrossRef
10.
go back to reference Buskirk ER, Kollias J, Akers RF, Prokop EK, Reategui EP. Maximal performance at altitude and on return from altitude in conditioned runners. J Appl Physiol. 1967;23:259–66.PubMedCrossRef Buskirk ER, Kollias J, Akers RF, Prokop EK, Reategui EP. Maximal performance at altitude and on return from altitude in conditioned runners. J Appl Physiol. 1967;23:259–66.PubMedCrossRef
11.
go back to reference Sanz-Quinto S, López-Grueso R, Brizuela G, Flatt AA, Moya-Ramón M. Influence of training models at 3900 m altitude on the physiological response and performance of a professional wheelchair athlete: a case study. J Strength Cond Res. 2019;33:1714–22. Sanz-Quinto S, López-Grueso R, Brizuela G, Flatt AA, Moya-Ramón M. Influence of training models at 3900 m altitude on the physiological response and performance of a professional wheelchair athlete: a case study. J Strength Cond Res. 2019;33:1714–22.
12.
go back to reference Boyer SJ, Blume FD. Weight loss and changes in body composition at high altitude. J Appl Physiol. 1984;57:1580–5.PubMedCrossRef Boyer SJ, Blume FD. Weight loss and changes in body composition at high altitude. J Appl Physiol. 1984;57:1580–5.PubMedCrossRef
13.
go back to reference Consolazio CF, Matoush LO, Johnson HL, Krzywicki HJ, Isaac GJ, Witt NF. Metabolic aspects of calorie restriction: Hypohydration effects on body weight and blood parameters. Am J Clin Nutr. 1968;21:793–802.PubMedCrossRef Consolazio CF, Matoush LO, Johnson HL, Krzywicki HJ, Isaac GJ, Witt NF. Metabolic aspects of calorie restriction: Hypohydration effects on body weight and blood parameters. Am J Clin Nutr. 1968;21:793–802.PubMedCrossRef
14.
go back to reference Kayser B, Acheson K, Decombaz J, Fern E, Cerretelli P. Protein absorption and energy digestibility at high altitude. J Appl Physiol. 1992;73:2425–31.PubMedCrossRef Kayser B, Acheson K, Decombaz J, Fern E, Cerretelli P. Protein absorption and energy digestibility at high altitude. J Appl Physiol. 1992;73:2425–31.PubMedCrossRef
15.
go back to reference Surks MI, Chinn KS, Matoush LR. Alterations in body composition in man after acute exposure to high altitude. J Appl Physiol. 1966;21:1741–6.PubMedCrossRef Surks MI, Chinn KS, Matoush LR. Alterations in body composition in man after acute exposure to high altitude. J Appl Physiol. 1966;21:1741–6.PubMedCrossRef
16.
go back to reference Butterfield GE, Gates J, Fleming S, Brooks GA, Sutton JR, Reeves JT. Increased energy intake minimizes weight loss in men at high altitude. J Appl Physiol. 1992;72:1741–8.PubMedCrossRef Butterfield GE, Gates J, Fleming S, Brooks GA, Sutton JR, Reeves JT. Increased energy intake minimizes weight loss in men at high altitude. J Appl Physiol. 1992;72:1741–8.PubMedCrossRef
17.
go back to reference Hoppeler H, Kleinert E, Schlegel C, Claassen H, Howald H, Kayar SR, Cerretelli P. Morphological adaptations of human skeletal muscle to chronic hypoxia. Int J Sports Med. 1990;11:S3–9.PubMedCrossRef Hoppeler H, Kleinert E, Schlegel C, Claassen H, Howald H, Kayar SR, Cerretelli P. Morphological adaptations of human skeletal muscle to chronic hypoxia. Int J Sports Med. 1990;11:S3–9.PubMedCrossRef
18.
go back to reference Fulco CS, Rock PB, Cymerman A. Maximal and submaximal exercise performance at altitude. Aviat Space Environ Med. 1998;69:793–801.PubMed Fulco CS, Rock PB, Cymerman A. Maximal and submaximal exercise performance at altitude. Aviat Space Environ Med. 1998;69:793–801.PubMed
19.
go back to reference Murdoch DR. Symptoms of infection and altitude illness among hikers in the Mount Everest region of Nepal. Aviat Space Environ Med. 1995;66:148–51.PubMed Murdoch DR. Symptoms of infection and altitude illness among hikers in the Mount Everest region of Nepal. Aviat Space Environ Med. 1995;66:148–51.PubMed
22.
go back to reference Stock MJ, Norgan NG, Ferro-Luzzi A, Evans E. Effect of altitude on dietary-induced thermogenesis at rest and during light exercise in man. J Appl Physiol. 1978;45:345–9.PubMedCrossRef Stock MJ, Norgan NG, Ferro-Luzzi A, Evans E. Effect of altitude on dietary-induced thermogenesis at rest and during light exercise in man. J Appl Physiol. 1978;45:345–9.PubMedCrossRef
23.
go back to reference Woods AL, Garvican-Lewis LA, Rice A, Thompson KG. 12 days of altitude exposure at 1800 m does not increase resting metabolic rate in elite rowers. Appl Physiol Nutr Metab. 2017;42:672–6.PubMedCrossRef Woods AL, Garvican-Lewis LA, Rice A, Thompson KG. 12 days of altitude exposure at 1800 m does not increase resting metabolic rate in elite rowers. Appl Physiol Nutr Metab. 2017;42:672–6.PubMedCrossRef
24.
25.
go back to reference Westerterp KR, Kayser B, Brouns F, Herry JP, Saris WH. Energy expenditure climbing Mt. Everest J Appl Physiol. 1992;73:1815–9.PubMedCrossRef Westerterp KR, Kayser B, Brouns F, Herry JP, Saris WH. Energy expenditure climbing Mt. Everest J Appl Physiol. 1992;73:1815–9.PubMedCrossRef
26.
go back to reference Kayser B, Narici MV, Cibella F. Fatigue and performance at high altitude. In: Sutton JR, Houston CS, Coates G, editors. Hypoxia and molecular medicine. Burlington, NJ: Queen City press; 1993. p. 222–34. Kayser B, Narici MV, Cibella F. Fatigue and performance at high altitude. In: Sutton JR, Houston CS, Coates G, editors. Hypoxia and molecular medicine. Burlington, NJ: Queen City press; 1993. p. 222–34.
27.
go back to reference MacDougall JD, Green HJ, Sutton JR, Coates G, Cymerman A, Young P, Houston CS. Operation Everest II: structural adaptations in skeletal muscle in response to extreme simulated altitude. Acta Physiol Scand. 1991;142:421–7.PubMedCrossRef MacDougall JD, Green HJ, Sutton JR, Coates G, Cymerman A, Young P, Houston CS. Operation Everest II: structural adaptations in skeletal muscle in response to extreme simulated altitude. Acta Physiol Scand. 1991;142:421–7.PubMedCrossRef
28.
go back to reference D’Hulst G, Deldicque L. Human skeletal muscle wasting in hypoxia: a matter of hypoxic dose? J Appl Physiol. 2017;122:406–8.PubMedCrossRef D’Hulst G, Deldicque L. Human skeletal muscle wasting in hypoxia: a matter of hypoxic dose? J Appl Physiol. 2017;122:406–8.PubMedCrossRef
29.
go back to reference Garvican-Lewis LA, Sharpe K, Gore CJ. Time for a new metric for hypoxic dose? J Appl Physiol. 2016;121:352–5.PubMedCrossRef Garvican-Lewis LA, Sharpe K, Gore CJ. Time for a new metric for hypoxic dose? J Appl Physiol. 2016;121:352–5.PubMedCrossRef
30.
go back to reference Imoberdorf R, Garlick PJ, McNurlan MA, Casella GA, Marini JC, Turgay M, Bärtsch P, Ballmer PE. Skeletal muscle protein synthesis after active or passive ascent to high altitude. Med Sci Sports Exerc. 2006;38:1082–7.PubMedCrossRef Imoberdorf R, Garlick PJ, McNurlan MA, Casella GA, Marini JC, Turgay M, Bärtsch P, Ballmer PE. Skeletal muscle protein synthesis after active or passive ascent to high altitude. Med Sci Sports Exerc. 2006;38:1082–7.PubMedCrossRef
31.
go back to reference Sheffield-Moore M, Yeckel CW, Volpi E, Wolf SE, Morio B, Chinkes DL, Paddon-Jones D, Wolfe RR. Postexercise protein metabolism in older and younger men following moderate-intensity aerobic exercise. Am J Physiol Endocrinol Metab. 2004;287:E513–22.PubMedCrossRef Sheffield-Moore M, Yeckel CW, Volpi E, Wolf SE, Morio B, Chinkes DL, Paddon-Jones D, Wolfe RR. Postexercise protein metabolism in older and younger men following moderate-intensity aerobic exercise. Am J Physiol Endocrinol Metab. 2004;287:E513–22.PubMedCrossRef
32.
go back to reference Bigard AX, Satabin P, Lavier P, Canon F, Taillandier D, Guezennec CY. Effects of protein supplementation during prolonged exercise at moderate altitude on performance and plasma amino acid pattern. Eur J Appl Physiol Occup Physiol. 1993;66:5–10.PubMedCrossRef Bigard AX, Satabin P, Lavier P, Canon F, Taillandier D, Guezennec CY. Effects of protein supplementation during prolonged exercise at moderate altitude on performance and plasma amino acid pattern. Eur J Appl Physiol Occup Physiol. 1993;66:5–10.PubMedCrossRef
33.
go back to reference Schneider M, Bärtsch P. Characteristics of headache and relationship to acute mountain sickness at 4559 meters. High Alt Med Biol. 2018;19:321–8.PubMedCrossRef Schneider M, Bärtsch P. Characteristics of headache and relationship to acute mountain sickness at 4559 meters. High Alt Med Biol. 2018;19:321–8.PubMedCrossRef
34.
go back to reference Vesterinen V, Nummela A, Heikura I, Laine T, Hynynen E, Botella J, Häkkinen K. Individual endurance training prescription with heart rate variability. Med Sci Sport Exer. 2016;48:1347–55.CrossRef Vesterinen V, Nummela A, Heikura I, Laine T, Hynynen E, Botella J, Häkkinen K. Individual endurance training prescription with heart rate variability. Med Sci Sport Exer. 2016;48:1347–55.CrossRef
35.
go back to reference Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, Ragg KE, Ratamess NA, Kraemer WJ, Staron RS. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;88:50–60.PubMedCrossRef Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, Ragg KE, Ratamess NA, Kraemer WJ, Staron RS. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;88:50–60.PubMedCrossRef
37.
go back to reference Martin CK, Correa JB, Han H, Allen HR, Rood JC, Champagne CM, Gunturk BK, Bray GA. Validity of the remote food photography method (RFPM) for estimating energy and nutrient intake in near real-time. Obesity. 2012;20:891–9.PubMedCrossRef Martin CK, Correa JB, Han H, Allen HR, Rood JC, Champagne CM, Gunturk BK, Bray GA. Validity of the remote food photography method (RFPM) for estimating energy and nutrient intake in near real-time. Obesity. 2012;20:891–9.PubMedCrossRef
39.
go back to reference Morton RW, McGlory C, Phillips SM. Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Front Physiol. 2015;6:245.PubMedPubMedCentralCrossRef Morton RW, McGlory C, Phillips SM. Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Front Physiol. 2015;6:245.PubMedPubMedCentralCrossRef
40.
go back to reference Dhillon J, Craig BA, Leidy HJ, Amankwaah AF, Osei-Boadi Anguah K, Jacobs A, Jones BL, Jones JB, Keeler CL, McCrory MA, Rivera RL, Slebodnik M, Mattes RD, Tucker RM. The effects of increased protein intake on fullness: a meta-analysis and its limitations. J Acad Nutr Diet. 2016;116:968–83.PubMedCrossRef Dhillon J, Craig BA, Leidy HJ, Amankwaah AF, Osei-Boadi Anguah K, Jacobs A, Jones BL, Jones JB, Keeler CL, McCrory MA, Rivera RL, Slebodnik M, Mattes RD, Tucker RM. The effects of increased protein intake on fullness: a meta-analysis and its limitations. J Acad Nutr Diet. 2016;116:968–83.PubMedCrossRef
41.
go back to reference Bjorntorp P. Importance of fat as a support nutrient for energy: metabolism of athletes. J Sports Sci. 1991;9:71–6.PubMedCrossRef Bjorntorp P. Importance of fat as a support nutrient for energy: metabolism of athletes. J Sports Sci. 1991;9:71–6.PubMedCrossRef
42.
go back to reference Burke LM, Cox GR, Cummings NK, Desbrow B. Guidelines for daily carbohydrate intake. Int J Sports Med. 2001;31:267–99.CrossRef Burke LM, Cox GR, Cummings NK, Desbrow B. Guidelines for daily carbohydrate intake. Int J Sports Med. 2001;31:267–99.CrossRef
43.
go back to reference Pfeiffer B, Cotterill A, Grathwohl D, Stellingwerff T, Jeukendrup AE. The effect of carbohydrate gels on gastrointestinal tolerance during a 16-km run. Int J Sport Nutr Exerc Metab. 2009;19:485–503.PubMedCrossRef Pfeiffer B, Cotterill A, Grathwohl D, Stellingwerff T, Jeukendrup AE. The effect of carbohydrate gels on gastrointestinal tolerance during a 16-km run. Int J Sport Nutr Exerc Metab. 2009;19:485–503.PubMedCrossRef
44.
go back to reference Jentjens RL, Moseley L, Waring RH, Harding LK, Jeukendrup AE. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol. 2004;96:1277–84.PubMedCrossRef Jentjens RL, Moseley L, Waring RH, Harding LK, Jeukendrup AE. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol. 2004;96:1277–84.PubMedCrossRef
45.
go back to reference Jeukendrup AE. Carbohydrate feeding during exercise. Eur J Sport Sci. 2008;8:77–86.CrossRef Jeukendrup AE. Carbohydrate feeding during exercise. Eur J Sport Sci. 2008;8:77–86.CrossRef
46.
go back to reference Burke LM, Hawley JA, Wong SH, Jeukendrup AE. Carbohydrates for training and competition. J Sports Sci. 2011;29:S17–27.PubMedCrossRef Burke LM, Hawley JA, Wong SH, Jeukendrup AE. Carbohydrates for training and competition. J Sports Sci. 2011;29:S17–27.PubMedCrossRef
47.
go back to reference Norton LE, Wilson GJ, Layman DK, Moulton CJ, Garlick PJ. Leucine content of dietary proteins is a determinant of postpandrial skeletal muscle protein synthesis in adult rats. Nutr Metab (Lond). 2012;9:67.CrossRef Norton LE, Wilson GJ, Layman DK, Moulton CJ, Garlick PJ. Leucine content of dietary proteins is a determinant of postpandrial skeletal muscle protein synthesis in adult rats. Nutr Metab (Lond). 2012;9:67.CrossRef
48.
go back to reference Snijders T, Smeets JS, van Vliet S, van Kranenburg J, Maase K, Kies AK, Verdijk LB, van Loon LJ. Protein ingestion before sleep increases muscle mass and strength gains during prolonged resistance-type exercise training in healthy young men. J Nutr. 2015;145:1178–84.PubMedCrossRef Snijders T, Smeets JS, van Vliet S, van Kranenburg J, Maase K, Kies AK, Verdijk LB, van Loon LJ. Protein ingestion before sleep increases muscle mass and strength gains during prolonged resistance-type exercise training in healthy young men. J Nutr. 2015;145:1178–84.PubMedCrossRef
49.
go back to reference Stray-Gundersen J, Mordecai N, Levine BD. O2 transport response to altitude training in runners. Med Sci Sports Exerc. 1995;27:S202.CrossRef Stray-Gundersen J, Mordecai N, Levine BD. O2 transport response to altitude training in runners. Med Sci Sports Exerc. 1995;27:S202.CrossRef
50.
go back to reference Garvican-Lewis LA, Vuong VL, Govus AD, Peeling P, Jung G, Nemeth E, Hughes D, Lovell G, Eichner D, Gore CJ. Intravenous iron does not augment the hemoglobin mass response to simulated hypoxia. Med Sci Sports Exerc. 2018;50:1669–78.PubMedCrossRef Garvican-Lewis LA, Vuong VL, Govus AD, Peeling P, Jung G, Nemeth E, Hughes D, Lovell G, Eichner D, Gore CJ. Intravenous iron does not augment the hemoglobin mass response to simulated hypoxia. Med Sci Sports Exerc. 2018;50:1669–78.PubMedCrossRef
51.
go back to reference Cumming G, Finch S. A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions. Educ Psychol Meas. 2001;61:530–72.CrossRef Cumming G, Finch S. A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions. Educ Psychol Meas. 2001;61:530–72.CrossRef
53.
go back to reference Pasiakos SM, Berryman CE, Carrigan CT, Young AJ, Carbone JW. Muscle protein turnover and the molecular regulation of muscle mass during hypoxia. Med Sci Sports Exerc. 2017;49:1340–50.PubMedCrossRef Pasiakos SM, Berryman CE, Carrigan CT, Young AJ, Carbone JW. Muscle protein turnover and the molecular regulation of muscle mass during hypoxia. Med Sci Sports Exerc. 2017;49:1340–50.PubMedCrossRef
54.
go back to reference Hansen J, Sander M. Sympathetic neural overactivity in healthy humans after prolonged exposure to hypobaric hypoxia. J Physiol. 2003;546:921–9.PubMedCrossRef Hansen J, Sander M. Sympathetic neural overactivity in healthy humans after prolonged exposure to hypobaric hypoxia. J Physiol. 2003;546:921–9.PubMedCrossRef
Metadata
Title
Nutritional strategies in an elite wheelchair marathoner at 3900 m altitude: a case report
Authors
Santiago Sanz-Quinto
Manuel Moya-Ramón
Gabriel Brizuela
Ian Rice
Tomás Urbán
Raúl López-Grueso
Publication date
01-12-2019
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12970-019-0321-8

Other articles of this Issue 1/2019

Journal of the International Society of Sports Nutrition 1/2019 Go to the issue