Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2019

Open Access 01-12-2019 | Research article

The effects of a caffeine-like supplement, TeaCrine®, on muscular strength, endurance and power performance in resistance-trained men

Authors: Kyle R. Cesareo, Justin R. Mason, Patrick G. Saracino, Margaret C. Morrissey, Michael J. Ormsbee

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2019

Login to get access

Abstract

Background

TeaCrine® is the synthetic version to naturally occurring theacrine (1, 3, 7, 9-tetramethyluric acid) found in the leaves of Camellia kucha tea plants. A few studies have examined the effects of TeaCrine® on cognitive perception, but no research exists examining its effects on resistance exercise performance. The purpose of this study was to determine the efficacy of TeaCrine®, a caffeine-like compound, on maximal muscular strength, endurance, and power performance in resistance-trained men.

Methods

Twelve resistance-trained men participated in a randomized, double-blind, cross-over designed study. Each participant performed one-repetition maximum (1RM) bench press, 1RM squat, bench press repetitions to failure (RTF) at 70% 1RM, squat RTF at 70% 1RM, and 2-km rowing time trial 90 min after consumption of: (1) Caffeine 300 mg (CAFF300); (2) TeaCrine® 300 mg (TEA300); (3) TeaCrine® + Caffeine (COMBO; 150 mg/150 mg); (4) Placebo 300 mg (PLA). Power and velocity were measured using a TENDO Power Analyzer. Visual analogue scales for energy, focus, motivation to exercise, and fatigue were administered at baseline and 90 min post-treatment ingestion (pre-workout). Rating of perceived exertion was assessed after bench press RTF and squat RTF.

Results

There were no differences between groups for 1RM, RTF, and power in the bench press and squat exercises. Only CAFF300 resulted in significant increases in perceived energy and motivation to exercise vs. TEA300 and PLA (Energy: + 9.8%, 95% confidence interval [3.3–16.4%], p < 0.01; + 15.3%, 95% CI [2.2–28.5%], p < 0.02; Motivation to exercise: + 8.9%, 95% CI [0.2–17.6%], p = 0.04, + 14.8%, 95% CI [4.7–24.8%], p < 0.01, respectively) and increased focus (+ 9.6%, 95% CI [2.1–17.1%], p = 0.01) vs. TEA300, but there were no significant differences between CAFF300 and COMBO (Energy + 3.9% [− 6.9–14.7%], Focus + 2.5% [− 6.3–11.3%], Motivation to exercise + 0.5% [− 11.6–12.6%]; p > 0.05).

Conclusion

Neither TEA300, CAFF300, COMBO, or PLA (when consumed 90 min pre-exercise) improved muscular strength, power, or endurance performance in resistance-trained men. Only CAFF300 improved measures of focus, energy, and motivation to exercise.
Literature
1.
go back to reference Feduccia AA, Wang Y, Simms JA, Yi HY, Li R, Bjeldanes L, et al. Locomotor activation by theacrine, a purine alkaloid structurally similar to caffeine: involvement of adenosine and dopamine receptors. Pharmacol Biochem Behav. 2012;102(2):241–8.PubMedCrossRef Feduccia AA, Wang Y, Simms JA, Yi HY, Li R, Bjeldanes L, et al. Locomotor activation by theacrine, a purine alkaloid structurally similar to caffeine: involvement of adenosine and dopamine receptors. Pharmacol Biochem Behav. 2012;102(2):241–8.PubMedCrossRef
2.
go back to reference Li W, Li Y, Zhai Y, Chen W, Kurihara H, He R. Theacrine, a purine alkaloid obtained from Camellia assamica var. kucha, attenuates restraint stress-provoked liver damage in mice. J Agric Food Chem. 2013;61(26):6328–35.PubMedCrossRef Li W, Li Y, Zhai Y, Chen W, Kurihara H, He R. Theacrine, a purine alkaloid obtained from Camellia assamica var. kucha, attenuates restraint stress-provoked liver damage in mice. J Agric Food Chem. 2013;61(26):6328–35.PubMedCrossRef
3.
go back to reference Wang Y, Yang X, Zheng X, Li J, Ye C, Song X. Theacrine, a purine alkaloid with anti-inflammatory and analgesic activities. Fitoterapia. 2010;81(6):627–31.PubMedCrossRef Wang Y, Yang X, Zheng X, Li J, Ye C, Song X. Theacrine, a purine alkaloid with anti-inflammatory and analgesic activities. Fitoterapia. 2010;81(6):627–31.PubMedCrossRef
4.
go back to reference Kuhman DJ, Joyner KJ, Bloomer RJ. Cognitive performance and mood following ingestion of a theacrine-containing dietary supplement, caffeine, or placebo by young men and women. Nutrients. 2015;7(11):9618–32.PubMedPubMedCentralCrossRef Kuhman DJ, Joyner KJ, Bloomer RJ. Cognitive performance and mood following ingestion of a theacrine-containing dietary supplement, caffeine, or placebo by young men and women. Nutrients. 2015;7(11):9618–32.PubMedPubMedCentralCrossRef
5.
go back to reference Taylor L, Mumford P, Roberts M, Hayward S, Mullins J, Urbina S, et al. Safety of TeaCrine®, a non-habituating, naturally-occurring purine alkaloid over eight weeks of continuous use. J Int Soc Sports Nutr. 2016;13(1):2.PubMedPubMedCentralCrossRef Taylor L, Mumford P, Roberts M, Hayward S, Mullins J, Urbina S, et al. Safety of TeaCrine®, a non-habituating, naturally-occurring purine alkaloid over eight weeks of continuous use. J Int Soc Sports Nutr. 2016;13(1):2.PubMedPubMedCentralCrossRef
6.
go back to reference Ziegenfuss TN, Habowski SM, Sandrock JE, Kedia AW, Kerksick CM, Lopez HL. A two-part approach to examine the effects of Theacrine (TeaCrine®) supplementation on oxygen consumption, hemodynamic responses, and subjective measures of cognitive and psychometric parameters. J Diet Suppl. 2016;0211(June):1–15. Ziegenfuss TN, Habowski SM, Sandrock JE, Kedia AW, Kerksick CM, Lopez HL. A two-part approach to examine the effects of Theacrine (TeaCrine®) supplementation on oxygen consumption, hemodynamic responses, and subjective measures of cognitive and psychometric parameters. J Diet Suppl. 2016;0211(June):1–15.
7.
go back to reference He H, Ma D, Crone LB, Butawan M, Meibohm B, Bloomer RJ, et al. Assessment of the drug–drug interaction potential between theacrine and caffeine in humans. J Caffeine Res. 2017;7(3):95-102.PubMedPubMedCentralCrossRef He H, Ma D, Crone LB, Butawan M, Meibohm B, Bloomer RJ, et al. Assessment of the drug–drug interaction potential between theacrine and caffeine in humans. J Caffeine Res. 2017;7(3):95-102.PubMedPubMedCentralCrossRef
8.
go back to reference Bello ML, Walker AJ, McFadden BA, Sanders DJ, Arent SM. The effects of TeaCrine® and caffeine on endurance and cognitive performance during a simulated match in high-level soccer players. J Int Soc Sports Nutr. 2019;16(1):1–10.CrossRef Bello ML, Walker AJ, McFadden BA, Sanders DJ, Arent SM. The effects of TeaCrine® and caffeine on endurance and cognitive performance during a simulated match in high-level soccer players. J Int Soc Sports Nutr. 2019;16(1):1–10.CrossRef
9.
go back to reference Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51(1):83–133.PubMed Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51(1):83–133.PubMed
10.
go back to reference Astorino T, Martin B, Schachtsiek L, Wong K, Ng K. Minimal effect of acute caffeine ingestion on intense resistance training performance. J Strength Cond Res. 2011;0(0):1–7. Astorino T, Martin B, Schachtsiek L, Wong K, Ng K. Minimal effect of acute caffeine ingestion on intense resistance training performance. J Strength Cond Res. 2011;0(0):1–7.
11.
go back to reference Davis K, Green M, Laurent M. Effects of caffeine on resistance training performance on repetitions to failure. Caffeine Res. 2012;2(1):31–7.CrossRef Davis K, Green M, Laurent M. Effects of caffeine on resistance training performance on repetitions to failure. Caffeine Res. 2012;2(1):31–7.CrossRef
12.
go back to reference Sabblah S, Dixon D, Bottoms L. Sex differences on the acute effects of caffeine on maximal strength and muscular endurance. Comp Exerc Physiol. 2015;11(2):89–94.CrossRef Sabblah S, Dixon D, Bottoms L. Sex differences on the acute effects of caffeine on maximal strength and muscular endurance. Comp Exerc Physiol. 2015;11(2):89–94.CrossRef
13.
go back to reference Arazi H, Hoseinihaji M, Eghbali E. The effects of different doses of caffeine on performance, rating of perceived exertion and pain perception in teenagers female karate athletes. Braz J Pharm Sci. 2016;52(4):685–92.CrossRef Arazi H, Hoseinihaji M, Eghbali E. The effects of different doses of caffeine on performance, rating of perceived exertion and pain perception in teenagers female karate athletes. Braz J Pharm Sci. 2016;52(4):685–92.CrossRef
14.
go back to reference Diaz-Lara FJ, Del Coso J, Garcia JM, Portillo LJ, Areces FA-VJ. Caffeine improves muscular performance in elite Brazilian Jiu-jitsu athletes. Eur J Sport Sci. 2016;16(8):1079–86.PubMedCrossRef Diaz-Lara FJ, Del Coso J, Garcia JM, Portillo LJ, Areces FA-VJ. Caffeine improves muscular performance in elite Brazilian Jiu-jitsu athletes. Eur J Sport Sci. 2016;16(8):1079–86.PubMedCrossRef
15.
go back to reference Grgic J, Mikulic P, Schoenfeld BJ, Bishop DJ, Pedisic Z. The influence of caffeine supplementation on resistance exercise: a review. Sport Med. 2019;49(1):17–30.CrossRef Grgic J, Mikulic P, Schoenfeld BJ, Bishop DJ, Pedisic Z. The influence of caffeine supplementation on resistance exercise: a review. Sport Med. 2019;49(1):17–30.CrossRef
16.
go back to reference Duncan MJ, Oxford SW. The effect of caffeine ingestion on mood state and bench press performance to failure. J Strength Cond Res. 2011;25(1):178–85.PubMedCrossRef Duncan MJ, Oxford SW. The effect of caffeine ingestion on mood state and bench press performance to failure. J Strength Cond Res. 2011;25(1):178–85.PubMedCrossRef
17.
go back to reference Duncan MJ, Stanley M, Parkhouse N, Cook K, Smith M. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. Eur J Sport Sci. 2011;13(4):1–8. Duncan MJ, Stanley M, Parkhouse N, Cook K, Smith M. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. Eur J Sport Sci. 2011;13(4):1–8.
18.
go back to reference Green JM, Wickwire PJ, McLester JR, Gendle S, Hudson G, Pritchett RC, et al. Effects of caffeine on repetitions to failure and ratings of perceived exertion during resistance training. Int J Sports Physiol Perform. 2007;2(3):250–9.PubMedCrossRef Green JM, Wickwire PJ, McLester JR, Gendle S, Hudson G, Pritchett RC, et al. Effects of caffeine on repetitions to failure and ratings of perceived exertion during resistance training. Int J Sports Physiol Perform. 2007;2(3):250–9.PubMedCrossRef
19.
go back to reference Hudson GM, Green JM, Bishop PA, Richardson MT. Effects of caffeine and aspirin on light resistance training performance, perceived exertion, and pain perception. J Strength Cond Res. 2008;22(6):1950–7.PubMedCrossRef Hudson GM, Green JM, Bishop PA, Richardson MT. Effects of caffeine and aspirin on light resistance training performance, perceived exertion, and pain perception. J Strength Cond Res. 2008;22(6):1950–7.PubMedCrossRef
20.
go back to reference Jozo Grgic PM. Caffeine ingestion acutely enhances muscular strength and power but not muscular endurance in resistance-trained men. Eur J Sport Sci. 2017;18(2):1029–36.CrossRef Jozo Grgic PM. Caffeine ingestion acutely enhances muscular strength and power but not muscular endurance in resistance-trained men. Eur J Sport Sci. 2017;18(2):1029–36.CrossRef
21.
go back to reference Arazi H, Dehlavinejad N, Gholizadeh R. The acute effect of caffeine supplementation on strength, repetition sustainability and work volume of novice bodybuilders. Turk J Kin. 2016;2(3):43–8. Arazi H, Dehlavinejad N, Gholizadeh R. The acute effect of caffeine supplementation on strength, repetition sustainability and work volume of novice bodybuilders. Turk J Kin. 2016;2(3):43–8.
22.
go back to reference Goldstein E, Jacobs PL, Whitehurst M, Penhollow T, Antonio J. Caffeine enhances upper body strength in resistance-trained women. J Int Soc Sports Nutr. 2010;7:18.PubMedPubMedCentralCrossRef Goldstein E, Jacobs PL, Whitehurst M, Penhollow T, Antonio J. Caffeine enhances upper body strength in resistance-trained women. J Int Soc Sports Nutr. 2010;7:18.PubMedPubMedCentralCrossRef
23.
go back to reference Williams AW, Cribb PJ, Cooke MB, Hayes A. The effect of ephedra and caffeine on maximal strength and power in resistance-trained athletes. J Strength Cond Res. 2008;22(2):464–70.PubMedCrossRef Williams AW, Cribb PJ, Cooke MB, Hayes A. The effect of ephedra and caffeine on maximal strength and power in resistance-trained athletes. J Strength Cond Res. 2008;22(2):464–70.PubMedCrossRef
24.
go back to reference Brooks JH, Wyld K. Acute effects of caffeine on strength performance in trained and untrained individuals. J Athl Enhanc. 2015;04(06). Brooks JH, Wyld K. Acute effects of caffeine on strength performance in trained and untrained individuals. J Athl Enhanc. 2015;04(06).
25.
go back to reference Astorino TA, Rohmann RL, Firth K. Effect of caffeine ingestion on one-repetition maximum muscular strength. Eur J Appl Physiol. 2008;102(2):127–32.PubMedCrossRef Astorino TA, Rohmann RL, Firth K. Effect of caffeine ingestion on one-repetition maximum muscular strength. Eur J Appl Physiol. 2008;102(2):127–32.PubMedCrossRef
26.
go back to reference Beck T, Housh T, Schmidt R, Johnson G, Housh D, Coburn J, et al. The acute effects of a caffeine-containing supplement on strength, muscular endurance, and anaerobic capabilities. Strength Cond J. 2006;20(3):506–10. Beck T, Housh T, Schmidt R, Johnson G, Housh D, Coburn J, et al. The acute effects of a caffeine-containing supplement on strength, muscular endurance, and anaerobic capabilities. Strength Cond J. 2006;20(3):506–10.
27.
go back to reference Grgic J, Trexler ET, Lazinica B, Pedisic Z. Effects of caffeine intake on muscle strength and power : a systematic review and meta-analysis; 2018. p. 1–10. Grgic J, Trexler ET, Lazinica B, Pedisic Z. Effects of caffeine intake on muscle strength and power : a systematic review and meta-analysis; 2018. p. 1–10.
28.
go back to reference Pallarés JG, Fernández-Elías VE, Ortega JF, Muñoz G, Muñoz-Guerra J, Mora-Rodríguez R. Neuromuscular responses to incremental caffeine doses: performance and side effects. Med Sci Sports Exerc. 2013;45(11):2184–92.PubMedCrossRef Pallarés JG, Fernández-Elías VE, Ortega JF, Muñoz G, Muñoz-Guerra J, Mora-Rodríguez R. Neuromuscular responses to incremental caffeine doses: performance and side effects. Med Sci Sports Exerc. 2013;45(11):2184–92.PubMedCrossRef
29.
go back to reference Mora-Rodríguez R, Pallarés JG, Fernández-Elías VE, Ortega JF. Improvements on neuromuscular performance with caffeine ingestion depend on the time-of-day. J Sci Med Sport. 2015;18(3):338–42.PubMedCrossRef Mora-Rodríguez R, Pallarés JG, Fernández-Elías VE, Ortega JF. Improvements on neuromuscular performance with caffeine ingestion depend on the time-of-day. J Sci Med Sport. 2015;18(3):338–42.PubMedCrossRef
30.
go back to reference Mora-Rodríguez R, Pallarés JG, López-Samanes Á, Ortega JF, Fernández-Elías VE. Caffeine ingestion reverses the circadian rhythm effects on neuromuscular performance in highly resistance-trained men. PLoS One. 2012;7(4):E33807: 1-9.PubMedPubMedCentralCrossRef Mora-Rodríguez R, Pallarés JG, López-Samanes Á, Ortega JF, Fernández-Elías VE. Caffeine ingestion reverses the circadian rhythm effects on neuromuscular performance in highly resistance-trained men. PLoS One. 2012;7(4):E33807: 1-9.PubMedPubMedCentralCrossRef
31.
go back to reference Baechle T, Earle R. Essentials of strength training and conditioning. 3rd ed. Champaign (IL): Human Kinetics; 2008. Baechle T, Earle R. Essentials of strength training and conditioning. 3rd ed. Champaign (IL): Human Kinetics; 2008.
32.
go back to reference Robertson RJ, Goss FL, Rutkowski J, Lenz B, Dixon C, Timmer J, et al. Concurrent validation of the OMNI perceived exertion scale for resistance exercise. Med Sci Sports Exerc. 2003;35(2):333–41.PubMedCrossRef Robertson RJ, Goss FL, Rutkowski J, Lenz B, Dixon C, Timmer J, et al. Concurrent validation of the OMNI perceived exertion scale for resistance exercise. Med Sci Sports Exerc. 2003;35(2):333–41.PubMedCrossRef
33.
go back to reference Kramer SJ, Baur DA, Spicer MT, Vukovich MD, Ormsbee MJ. The effect of six days of dietary nitrate supplementation on performance in trained CrossFit athletes. J Int Soc Sports Nutr. 2016;13(39):1–7. Kramer SJ, Baur DA, Spicer MT, Vukovich MD, Ormsbee MJ. The effect of six days of dietary nitrate supplementation on performance in trained CrossFit athletes. J Int Soc Sports Nutr. 2016;13(39):1–7.
34.
go back to reference Mclellan TM, Caldwell JA, Lieberman HR. Neuroscience and biobehavioral reviews review article a review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev. 2016;71:294–312.PubMedCrossRef Mclellan TM, Caldwell JA, Lieberman HR. Neuroscience and biobehavioral reviews review article a review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev. 2016;71:294–312.PubMedCrossRef
35.
go back to reference Astorino T, Roberson D. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systmeatic review. J Strength Cond Res. 2009;1:1–9. Astorino T, Roberson D. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systmeatic review. J Strength Cond Res. 2009;1:1–9.
36.
go back to reference Fimland M, Saeterbakken A. No effects of caffeine on muscle hypertrophy-style resistance exercise. J Caffeine Res. 2011;1(2):117–21.CrossRef Fimland M, Saeterbakken A. No effects of caffeine on muscle hypertrophy-style resistance exercise. J Caffeine Res. 2011;1(2):117–21.CrossRef
37.
go back to reference Jacobs I, Pasternak H, Bell DG. Effects of ephedrine, caffeine, and their combination on muscular endurance. Med Sci Sports Exerc. 2003;35(6):987–94.PubMedCrossRef Jacobs I, Pasternak H, Bell DG. Effects of ephedrine, caffeine, and their combination on muscular endurance. Med Sci Sports Exerc. 2003;35(6):987–94.PubMedCrossRef
38.
go back to reference Goldstein ER, Ziegenfuss T, Kalman D, Kreider R, Campbell B, Wilborn C, et al. International society of sports nutrition position stand: caffeine and performance. J Int Soc Sports Nutr. 2010;7(1):5.PubMedPubMedCentralCrossRef Goldstein ER, Ziegenfuss T, Kalman D, Kreider R, Campbell B, Wilborn C, et al. International society of sports nutrition position stand: caffeine and performance. J Int Soc Sports Nutr. 2010;7(1):5.PubMedPubMedCentralCrossRef
39.
go back to reference Bruce CR, Anderson ME, Fraser SF, Stepto NK, Klein R, Hopkins WG, et al. Enhancement of 2000-m rowing performance after caffeine ingestion. Med Sci Sports Exerc. 2000;32(11):1958–63.PubMedCrossRef Bruce CR, Anderson ME, Fraser SF, Stepto NK, Klein R, Hopkins WG, et al. Enhancement of 2000-m rowing performance after caffeine ingestion. Med Sci Sports Exerc. 2000;32(11):1958–63.PubMedCrossRef
40.
go back to reference Anderson ME, Bruce CR, Fraser SF, Stepto NK, Klein R, Hopkins WG, et al. Improved 2000-meter rowing performance in competitive oarswomen after caffeine ingestion. Int J Sport Nutr Exerc Metab. 2000;10:464–75.PubMedCrossRef Anderson ME, Bruce CR, Fraser SF, Stepto NK, Klein R, Hopkins WG, et al. Improved 2000-meter rowing performance in competitive oarswomen after caffeine ingestion. Int J Sport Nutr Exerc Metab. 2000;10:464–75.PubMedCrossRef
41.
go back to reference Doherty M, Smith PM. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scand J Med Sci Sport. 2005;15(2):69–78.CrossRef Doherty M, Smith PM. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scand J Med Sci Sport. 2005;15(2):69–78.CrossRef
42.
go back to reference Myers DE, Shaikh Z, Zullo TG. Hypoalgesic effect of caffeine in experimental ischemic muscle contraction pain. Headache. 1997;37(10):654–8.PubMedCrossRef Myers DE, Shaikh Z, Zullo TG. Hypoalgesic effect of caffeine in experimental ischemic muscle contraction pain. Headache. 1997;37(10):654–8.PubMedCrossRef
43.
go back to reference Motl RW, O’Connor PJ, Dishman RK. Effect of caffeine on perceptions of leg muscle pain during moderate intensity cycling exercise. J Pain. 2003;4(6):316–21.PubMedCrossRef Motl RW, O’Connor PJ, Dishman RK. Effect of caffeine on perceptions of leg muscle pain during moderate intensity cycling exercise. J Pain. 2003;4(6):316–21.PubMedCrossRef
44.
go back to reference O’Connor PJ, Motl RW, Broglio SP, Ely MR. Dose-dependent effect of caffeine on reducing leg muscle pain during cycling exercise is unrelated to systolic blood pressure. Int Assoc Study Pain. 2004;109(3):291–8. O’Connor PJ, Motl RW, Broglio SP, Ely MR. Dose-dependent effect of caffeine on reducing leg muscle pain during cycling exercise is unrelated to systolic blood pressure. Int Assoc Study Pain. 2004;109(3):291–8.
45.
go back to reference Ormsbee MJ, Carzoli JP, Klemp A, Allman BR, Zourdos MC, PL KJS. Efficacy of the repetitions in reserve-based rating of perceived exertion for the bench press in experienced and novice benchers. J Strength Cond Res. 2017;33(2):337–45.CrossRef Ormsbee MJ, Carzoli JP, Klemp A, Allman BR, Zourdos MC, PL KJS. Efficacy of the repetitions in reserve-based rating of perceived exertion for the bench press in experienced and novice benchers. J Strength Cond Res. 2017;33(2):337–45.CrossRef
46.
go back to reference Hulston CJ, Jeukendrup AE. Substrate metabolism and exercise performance with caffeine and carbohydrate intake. Med Sci Sports Exerc. 2008;40(12):2096–104.PubMedCrossRef Hulston CJ, Jeukendrup AE. Substrate metabolism and exercise performance with caffeine and carbohydrate intake. Med Sci Sports Exerc. 2008;40(12):2096–104.PubMedCrossRef
Metadata
Title
The effects of a caffeine-like supplement, TeaCrine®, on muscular strength, endurance and power performance in resistance-trained men
Authors
Kyle R. Cesareo
Justin R. Mason
Patrick G. Saracino
Margaret C. Morrissey
Michael J. Ormsbee
Publication date
01-12-2019
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12970-019-0316-5

Other articles of this Issue 1/2019

Journal of the International Society of Sports Nutrition 1/2019 Go to the issue