Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2016

Open Access 01-12-2016 | Short report

The NAD+ precursor nicotinamide riboside decreases exercise performance in rats

Authors: Ioannis A. Kourtzidis, Andreas T. Stoupas, Ioannis S. Gioris, Aristidis S. Veskoukis, Nikos V. Margaritelis, Maria Tsantarliotou, Ioannis Taitzoglou, Ioannis S. Vrabas, Vassilis Paschalis, Antonios Kyparos, Michalis G. Nikolaidis

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2016

Login to get access

Abstract

Background

Nicotinamide adenine dinucleotide (NAD+) and its phosphorylated form (NADP+) are key molecules in ubiquitous bioenergetic and cellular signaling pathways, regulating cellular metabolism and homeostasis. Thus, supplementation with NAD+ and NADP+ precursors emerged as a promising strategy to gain many and multifaceted health benefits. In this proof-of-concept study, we sought to investigate whether chronic nicotinamide riboside administration (an NAD+ precursor) affects exercise performance.

Methods

Eighteen Wistar rats were equally divided in two groups that received either saline vehicle or nicotinamide riboside at a dose of 300 mg/kg body weight/day for 21 days via gavage. At the end of the 21-day administration protocol, both groups performed an incremental swimming performance test.

Results

The nicotinamide riboside group showed a tendency towards worse physical performance by 35 % compared to the control group at the final 10 % load (94 ± 53 s for the nicotinamide riboside group and 145 ± 59 s for the control group; P = 0.071).

Conclusion

Our results do not confirm the previously reported ergogenic effect of nicotinamide riboside. The potentially negative effect of nicotinamide riboside administration on physical performance may be attributed to the pleiotropic metabolic and redox properties of NAD+ and NADP+.
Appendix
Available only for authorised users
Literature
1.
go back to reference Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature. 2003;423(6936):181–5.CrossRefPubMedPubMedCentral Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature. 2003;423(6936):181–5.CrossRefPubMedPubMedCentral
2.
go back to reference Close GL, Hamilton DL, Philp A, Burke LM, Morton JP. New strategies in sport nutrition to increase exercise performance. Free Radic Biol Med. 2016. [Epub ahead of print] Close GL, Hamilton DL, Philp A, Burke LM, Morton JP. New strategies in sport nutrition to increase exercise performance. Free Radic Biol Med. 2016. [Epub ahead of print]
3.
go back to reference Frederick DW, Davis JG, Dávila Jr A, Agarwal B, Michan S, Puchowicz MA, Nakamaru-Ogiso E, Baur JA. Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism. J Biol Chem. 2015;290(3):1546–58.CrossRefPubMed Frederick DW, Davis JG, Dávila Jr A, Agarwal B, Michan S, Puchowicz MA, Nakamaru-Ogiso E, Baur JA. Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism. J Biol Chem. 2015;290(3):1546–58.CrossRefPubMed
4.
go back to reference Pollak N, Dölle C, Ziegler M. The power to reduce: pyridine nucleotides—small molecules with a multitude of functions. Biochem J. 2007;402(2):205–18.CrossRefPubMedPubMedCentral Pollak N, Dölle C, Ziegler M. The power to reduce: pyridine nucleotides—small molecules with a multitude of functions. Biochem J. 2007;402(2):205–18.CrossRefPubMedPubMedCentral
5.
go back to reference Cantó C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, Fernandez-Marcos PJ, Yamamoto H, Andreux PA, Cettour-Rose P, Gademann K, Rinsch C, Schoonjans K, Sauve AA, Auwerx J. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012;15(6):838–47.CrossRefPubMedPubMedCentral Cantó C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, Fernandez-Marcos PJ, Yamamoto H, Andreux PA, Cettour-Rose P, Gademann K, Rinsch C, Schoonjans K, Sauve AA, Auwerx J. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012;15(6):838–47.CrossRefPubMedPubMedCentral
6.
go back to reference Conze DB, Crespo-Barreto J, Kruger CL. Safety assessment of nicotinamide riboside, a form of vitamin B3. Hum Exp Toxicol. 2016. [Epub ahead of print] Conze DB, Crespo-Barreto J, Kruger CL. Safety assessment of nicotinamide riboside, a form of vitamin B3. Hum Exp Toxicol. 2016. [Epub ahead of print]
7.
go back to reference Bieganowski P, Brenner C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell. 2004;117(4):495–502.CrossRefPubMed Bieganowski P, Brenner C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell. 2004;117(4):495–502.CrossRefPubMed
8.
go back to reference Murray R, Bartoli WP, Eddy DE, Horn MK. Physiological and performance responses to nicotinic-acid ingestion during exercise. Med Sci Sports Exerc. 1995;27(7):1057–62.CrossRefPubMed Murray R, Bartoli WP, Eddy DE, Horn MK. Physiological and performance responses to nicotinic-acid ingestion during exercise. Med Sci Sports Exerc. 1995;27(7):1057–62.CrossRefPubMed
9.
go back to reference Pernow B, Saltin B. Availability of substrates and capacity for prolonged heavy exercise in man. J Appl Physiol. 1971;31(3):416–22.PubMed Pernow B, Saltin B. Availability of substrates and capacity for prolonged heavy exercise in man. J Appl Physiol. 1971;31(3):416–22.PubMed
10.
go back to reference Nikolaidis MG, Kyparos A, Spanou C, Paschalis V, Theodorou AA, Vrabas IS. Redox biology of exercise: an integrative and comparative consideration of some overlooked issues. J Exp Biol. 2012;215(Pt 10):1615–25.CrossRefPubMed Nikolaidis MG, Kyparos A, Spanou C, Paschalis V, Theodorou AA, Vrabas IS. Redox biology of exercise: an integrative and comparative consideration of some overlooked issues. J Exp Biol. 2012;215(Pt 10):1615–25.CrossRefPubMed
11.
go back to reference Ristow M. Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nat Med. 2014;20(7):709–11.CrossRefPubMed Ristow M. Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nat Med. 2014;20(7):709–11.CrossRefPubMed
12.
go back to reference Gomez-Cabrera MC, Salvador-Pascual A, Cabo H, Ferrando B, Viña J. Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free Radic Biol Med. 2015;86:37–46.CrossRefPubMed Gomez-Cabrera MC, Salvador-Pascual A, Cabo H, Ferrando B, Viña J. Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free Radic Biol Med. 2015;86:37–46.CrossRefPubMed
Metadata
Title
The NAD+ precursor nicotinamide riboside decreases exercise performance in rats
Authors
Ioannis A. Kourtzidis
Andreas T. Stoupas
Ioannis S. Gioris
Aristidis S. Veskoukis
Nikos V. Margaritelis
Maria Tsantarliotou
Ioannis Taitzoglou
Ioannis S. Vrabas
Vassilis Paschalis
Antonios Kyparos
Michalis G. Nikolaidis
Publication date
01-12-2016
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12970-016-0143-x

Other articles of this Issue 1/2016

Journal of the International Society of Sports Nutrition 1/2016 Go to the issue