Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2016

Open Access 01-12-2016 | Research article

Post-exercise branched chain amino acid supplementation does not affect recovery markers following three consecutive high intensity resistance training bouts compared to carbohydrate supplementation

Authors: Wesley C. Kephart, Petey W. Mumford, Anna E. McCloskey, A. Maleah Holland, Joshua J. Shake, C. Brooks Mobley, Adam E. Jagodinsky, Wendi H. Weimar, Gretchen D. Oliver, Kaelin C. Young, Jordan R. Moon, Michael D. Roberts

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2016

Login to get access

Abstract

Background

Amino acid supplementation has been shown to potentially reduced exercise-induced muscle soreness. Thus, the purpose of this study was to examine if branched chain amino acid and carbohydrate (BCAACHO) versus carbohydrate-only sports drink (CHO) supplementation attenuated markers of muscle damage while preserving performance markers following 3 days of intense weight training.

Methods

Healthy resistance-trained males (n = 30) performed preliminary testing (T1) whereby they: 1) donated a baseline blood draw, 2) performed knee extensor dynamometry to obtain peak quadriceps isometric and isokinetic torque as well as electromyography (EMG) activity at 60°/s and 120°/s, and 3) performed a one repetition maximum (1RM) barbell back squat. The following week participants performed 10 sets x 5 repetitions at 80 % of their 1RM barbell back squat for 3 consecutive days and 48 h following the third lifting bout participants returned for (T2) testing whereby they repeated the T1 battery. Immediately following and 24 h after the three lifting bouts, participants were randomly assigned to consume one of two commercial products in 600 mL of tap water: 1) BCAAs and CHO (3 g/d L-leucine, 1 g/d L-isoleucine and 2 g/d L-valine with 2 g of CHO; n = 15), or 2) 42 g of CHO only (n = 15). Additionally, venous blood was drawn 24 h following the first and second lifting bouts and 48 h following the third bout to assess serum myoglobin concentrations, and a visual analog scale was utilized prior, during, and after the 3-d protocol to measure subjective perceptions of muscular soreness.

Results

There were similar decrements in 1RM squat strength and isokinetic peak torque measures in the BCAA-CHO and CHO groups. Serum myoglobin concentrations (p = 0.027) and perceived muscle soreness (p < 0.001) increased over the intervention regardless of supplementation. A group*time interaction was observed for monocyte percentages (p = 0.01) whereby BCAA-CHO supplementation attenuated increases in this variable over the duration of the protocol compared to CHO supplementation.

Conclusion

BCAA-CHO supplementation did not reduce decrements in lower body strength or improve select markers of muscle damage/soreness compared to CHO supplementation over three consecutive days of intense lower-body training.
Literature
1.
go back to reference Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil. 2002;81(11):S52–69.PubMedCrossRef Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil. 2002;81(11):S52–69.PubMedCrossRef
2.
go back to reference Clarkson PM, Nosaka K, Braun B. Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc. 1992;24(5):512–20.PubMed Clarkson PM, Nosaka K, Braun B. Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc. 1992;24(5):512–20.PubMed
3.
go back to reference Kraemer WJ, Spiering BA, Volek JS, Martin GJ, Howard RL, Ratamess NA, et al. Recovery from a national collegiate athletic association division I football game: muscle damage and hormonal status. J Strength Cond Res. 2009;23(1):2–10.PubMedCrossRef Kraemer WJ, Spiering BA, Volek JS, Martin GJ, Howard RL, Ratamess NA, et al. Recovery from a national collegiate athletic association division I football game: muscle damage and hormonal status. J Strength Cond Res. 2009;23(1):2–10.PubMedCrossRef
4.
go back to reference Twist C, Eston R. The effects of exercise-induced muscle damage on maximal intensity intermittent exercise performance. Eur J Appl Physiol. 2005;94(5–6):652–8.PubMedCrossRef Twist C, Eston R. The effects of exercise-induced muscle damage on maximal intensity intermittent exercise performance. Eur J Appl Physiol. 2005;94(5–6):652–8.PubMedCrossRef
6.
go back to reference Maughan R. Nutritional ergogenic aids and exercise performance. Nutr Res Rev. 1999;12(02):255–80.PubMedCrossRef Maughan R. Nutritional ergogenic aids and exercise performance. Nutr Res Rev. 1999;12(02):255–80.PubMedCrossRef
7.
go back to reference Hulmi JJ, Lockwood CM, Stout JR. Review Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein. Nutr Metab. 2010;7:51.CrossRef Hulmi JJ, Lockwood CM, Stout JR. Review Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein. Nutr Metab. 2010;7:51.CrossRef
8.
go back to reference Ha E, Zemel MB. Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people (review). J Nutr Biochem. 2003;14(5):251–8.PubMedCrossRef Ha E, Zemel MB. Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people (review). J Nutr Biochem. 2003;14(5):251–8.PubMedCrossRef
9.
go back to reference Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol. 2009;107(3):987–92.PubMedCrossRef Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol. 2009;107(3):987–92.PubMedCrossRef
10.
go back to reference Nicastro H, da Luz CR, Chaves DFS, Bechara LRG, Voltarelli VA, Rogero MM et al. Does branched-chain amino acids supplementation modulate skeletal muscle remodeling through inflammation modulation? Possible mechanisms of action. J Nutr Metab. 2012;2012:1-10. Nicastro H, da Luz CR, Chaves DFS, Bechara LRG, Voltarelli VA, Rogero MM et al. Does branched-chain amino acids supplementation modulate skeletal muscle remodeling through inflammation modulation? Possible mechanisms of action. J Nutr Metab. 2012;2012:1-10.
11.
go back to reference Jackman SR, Witard OC, Jeukendrup AE, Tipton KD. Branched-chain amino acid ingestion can ameliorate soreness from eccentric exercise. Med Sci Sports Exerc. 2010;42(5):962–70.PubMedCrossRef Jackman SR, Witard OC, Jeukendrup AE, Tipton KD. Branched-chain amino acid ingestion can ameliorate soreness from eccentric exercise. Med Sci Sports Exerc. 2010;42(5):962–70.PubMedCrossRef
12.
go back to reference Howatson G, Hoad M, Goodall S, Tallent J, Bell PG, French DN. Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study. J Int Soc Sports Nutr. 2012;9(1):20.PubMedPubMedCentralCrossRef Howatson G, Hoad M, Goodall S, Tallent J, Bell PG, French DN. Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study. J Int Soc Sports Nutr. 2012;9(1):20.PubMedPubMedCentralCrossRef
13.
go back to reference Sharp CP, Pearson DR. Amino acid supplements and recovery from high-intensity resistance training. J Strength Cond Res. 2010;24(4):1125–30.PubMedCrossRef Sharp CP, Pearson DR. Amino acid supplements and recovery from high-intensity resistance training. J Strength Cond Res. 2010;24(4):1125–30.PubMedCrossRef
14.
go back to reference Nosaka K, Sacco P, Mawatari K. Effects of amino acid supplementation on muscle soreness and damage. Int J Sport Nutr Exerc Metab. 2006;16(6):620.PubMedCrossRef Nosaka K, Sacco P, Mawatari K. Effects of amino acid supplementation on muscle soreness and damage. Int J Sport Nutr Exerc Metab. 2006;16(6):620.PubMedCrossRef
15.
go back to reference White JP, Wilson JM, Austin KG, Greer BK, St John N, Panton LB. Effect of carbohydrate-protein supplement timing on acute exercise-induced muscle damage. J Int Soc Sports Nutr. 2008;5(1):1–7.CrossRef White JP, Wilson JM, Austin KG, Greer BK, St John N, Panton LB. Effect of carbohydrate-protein supplement timing on acute exercise-induced muscle damage. J Int Soc Sports Nutr. 2008;5(1):1–7.CrossRef
16.
go back to reference Stock MS, Young JC, Golding LA, Kruskall LJ, Tandy RD, Conway-Klaassen JM, et al. The effects of adding leucine to pre and postexercise carbohydrate beverages on acute muscle recovery from resistance training. J Strength Cond Res. 2010;24(8):2211–9.PubMedCrossRef Stock MS, Young JC, Golding LA, Kruskall LJ, Tandy RD, Conway-Klaassen JM, et al. The effects of adding leucine to pre and postexercise carbohydrate beverages on acute muscle recovery from resistance training. J Strength Cond Res. 2010;24(8):2211–9.PubMedCrossRef
17.
go back to reference Tipton KD, Ferrando AA, Phillips SM, Doyle Jr D, Wolfe RR. Postexercise net protein synthesis in human muscle from orally administered amino acids. Am J Phys. 1999;276(4 Pt 1):E628–34. Tipton KD, Ferrando AA, Phillips SM, Doyle Jr D, Wolfe RR. Postexercise net protein synthesis in human muscle from orally administered amino acids. Am J Phys. 1999;276(4 Pt 1):E628–34.
19.
go back to reference BOBBERT MF, HOLLANDER AP, Huijing P. Factors in delayed onset muscular soreness. Med Sci Sports Exerc. 1986;18:75–81.PubMedCrossRef BOBBERT MF, HOLLANDER AP, Huijing P. Factors in delayed onset muscular soreness. Med Sci Sports Exerc. 1986;18:75–81.PubMedCrossRef
20.
go back to reference Basmajian JV, De Luca C. Muscles alive. Proc R Soc Med. 1985;278:126. Basmajian JV, De Luca C. Muscles alive. Proc R Soc Med. 1985;278:126.
21.
go back to reference Sorichter S, Puschendorf B, Mair J. Skeletal muscle injury induced by eccentric muscle action: muscle proteins as markers of muscle fiber injury. Exerc Immunol Rev. 1998;5:5–21. Sorichter S, Puschendorf B, Mair J. Skeletal muscle injury induced by eccentric muscle action: muscle proteins as markers of muscle fiber injury. Exerc Immunol Rev. 1998;5:5–21.
22.
go back to reference Kirby TJ, Triplett NT, Haines TL, Skinner JW, Fairbrother KR, McBride JM. Effect of leucine supplementation on indices of muscle damage following drop jumps and resistance exercise. Amino Acids. 2012;42(5):1987–96.PubMedCrossRef Kirby TJ, Triplett NT, Haines TL, Skinner JW, Fairbrother KR, McBride JM. Effect of leucine supplementation on indices of muscle damage following drop jumps and resistance exercise. Amino Acids. 2012;42(5):1987–96.PubMedCrossRef
23.
go back to reference Blomstrand E, Eliasson J, Karlsson HK, Köhnke R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr. 2006;136(1):269S–73.PubMed Blomstrand E, Eliasson J, Karlsson HK, Köhnke R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr. 2006;136(1):269S–73.PubMed
24.
go back to reference Norton LE, Layman DK. Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J Nutr. 2006;136(2):533S–7.PubMed Norton LE, Layman DK. Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J Nutr. 2006;136(2):533S–7.PubMed
25.
go back to reference Anthony JC, Anthony TG, Kimball SR, Jefferson LS. Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. J Nutr. 2001;131(3):856S–60.PubMed Anthony JC, Anthony TG, Kimball SR, Jefferson LS. Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. J Nutr. 2001;131(3):856S–60.PubMed
26.
go back to reference Tipton K, Gurkin B, Matin S, Wolfe R. Nonessential amino acids are not necessary to stimulate net muscle protein synthesis in healthy volunteers. J Nutr Biochem. 1999;10(2):89–95.PubMedCrossRef Tipton K, Gurkin B, Matin S, Wolfe R. Nonessential amino acids are not necessary to stimulate net muscle protein synthesis in healthy volunteers. J Nutr Biochem. 1999;10(2):89–95.PubMedCrossRef
27.
go back to reference Matsumoto K, Mizuno M, Mizuno T, Dilling-Hansen B, Lahoz A, Bertelsen V, et al. Branched-chain amino acids and arginine supplementation attenuates skeletal muscle proteolysis induced by moderate exercise in young individuals. Int J Sports Med. 2007;28(6):531–8.PubMedCrossRef Matsumoto K, Mizuno M, Mizuno T, Dilling-Hansen B, Lahoz A, Bertelsen V, et al. Branched-chain amino acids and arginine supplementation attenuates skeletal muscle proteolysis induced by moderate exercise in young individuals. Int J Sports Med. 2007;28(6):531–8.PubMedCrossRef
28.
go back to reference Louard RJ, Barrett EJ, Gelfand RA. Overnight branched-chain amino acid infusion causes sustained suppression of muscle proteolysis. Metabolism. 1995;44(4):424–9.PubMedCrossRef Louard RJ, Barrett EJ, Gelfand RA. Overnight branched-chain amino acid infusion causes sustained suppression of muscle proteolysis. Metabolism. 1995;44(4):424–9.PubMedCrossRef
29.
go back to reference Busquets S, Alvarez B, Llovera M, Agell N, López‐Soriano FJ, Argilés JM. Branched‐chain amino acids inhibit proteolysis in rat skeletal muscle: mechanisms involved. J Cell Physiol. 2000;184(3):380–4.PubMedCrossRef Busquets S, Alvarez B, Llovera M, Agell N, López‐Soriano FJ, Argilés JM. Branched‐chain amino acids inhibit proteolysis in rat skeletal muscle: mechanisms involved. J Cell Physiol. 2000;184(3):380–4.PubMedCrossRef
30.
go back to reference Shimomura Y, Inaguma A, Watanabe S, Yamamoto Y, Muramatsu Y, Bajotto G, et al. Branched-chain amino acid supplementation before squat exercise and delayed-onset muscle soreness. Int J Sport Nutr. 2010;20(3):236. Shimomura Y, Inaguma A, Watanabe S, Yamamoto Y, Muramatsu Y, Bajotto G, et al. Branched-chain amino acid supplementation before squat exercise and delayed-onset muscle soreness. Int J Sport Nutr. 2010;20(3):236.
31.
go back to reference Field CJ, Gougeon R, Marliss EB. Circulating mononuclear cell numbers and function during intense exercise and recovery. J Appl Physiol. 1991;71(3):1089–97.PubMed Field CJ, Gougeon R, Marliss EB. Circulating mononuclear cell numbers and function during intense exercise and recovery. J Appl Physiol. 1991;71(3):1089–97.PubMed
32.
go back to reference Kraemer WJ, Clemson A, Triplett NT, Bush JA, Newton RU, Lynch JM. The effects of plasma cortisol elevation on total and differential leukocyte counts in response to heavy-resistance exercise. Eur J Appl Physiol Occup Physiol. 1996;73(1):93–7.PubMedCrossRef Kraemer WJ, Clemson A, Triplett NT, Bush JA, Newton RU, Lynch JM. The effects of plasma cortisol elevation on total and differential leukocyte counts in response to heavy-resistance exercise. Eur J Appl Physiol Occup Physiol. 1996;73(1):93–7.PubMedCrossRef
33.
go back to reference Nieman DC, Nehlsen-Cannarella SL, Fagoaga OR, Henson DA, Utter A, Davis JM, et al. Effects of mode and carbohydrate on the granulocyte and monocyte response to intensive, prolonged exercise. J Appl Physiol. 1998;84(4):1252–9.PubMed Nieman DC, Nehlsen-Cannarella SL, Fagoaga OR, Henson DA, Utter A, Davis JM, et al. Effects of mode and carbohydrate on the granulocyte and monocyte response to intensive, prolonged exercise. J Appl Physiol. 1998;84(4):1252–9.PubMed
34.
go back to reference Peake JM. Exercise-induced alterations in neutrophil degranulation and respiratory burst activity: possible mechanisms of action. Exerc Immunol Rev. 2002;8:49–100.PubMed Peake JM. Exercise-induced alterations in neutrophil degranulation and respiratory burst activity: possible mechanisms of action. Exerc Immunol Rev. 2002;8:49–100.PubMed
35.
go back to reference Suzuki K, Sato H, Kikuchi T, Abe T, Nakaji S, Sugawara K, et al. Capacity of circulating neutrophils to produce reactive oxygen species after exhaustive exercise. J Appl Physiol. 1996;81(3):1213–22.PubMed Suzuki K, Sato H, Kikuchi T, Abe T, Nakaji S, Sugawara K, et al. Capacity of circulating neutrophils to produce reactive oxygen species after exhaustive exercise. J Appl Physiol. 1996;81(3):1213–22.PubMed
36.
go back to reference Suzuki K, Totsuka M, Nakaji S, Yamada M, Kudoh S, Liu Q, et al. Endurance exercise causes interaction among stress hormones, cytokines, neutrophil dynamics, and muscle damage. J Appl Physiol. 1999;87(4):1360–7.PubMed Suzuki K, Totsuka M, Nakaji S, Yamada M, Kudoh S, Liu Q, et al. Endurance exercise causes interaction among stress hormones, cytokines, neutrophil dynamics, and muscle damage. J Appl Physiol. 1999;87(4):1360–7.PubMed
37.
go back to reference Malm C, Nyberg P, Engström M, Sjödin B, Lenkei R, Ekblom B, et al. Immunological changes in human skeletal muscle and blood after eccentric exercise and multiple biopsies. J Physiol. 2000;529(1):243–62.PubMedPubMedCentralCrossRef Malm C, Nyberg P, Engström M, Sjödin B, Lenkei R, Ekblom B, et al. Immunological changes in human skeletal muscle and blood after eccentric exercise and multiple biopsies. J Physiol. 2000;529(1):243–62.PubMedPubMedCentralCrossRef
38.
go back to reference Chieng W-S, Lee S-C. Discrepancy between initial high expression of interest in clinical cancer genetic testing and actual low uptake in an Asian population. Genet Test Mol Biomarkers. 2012;16(7):785–93.PubMedCrossRef Chieng W-S, Lee S-C. Discrepancy between initial high expression of interest in clinical cancer genetic testing and actual low uptake in an Asian population. Genet Test Mol Biomarkers. 2012;16(7):785–93.PubMedCrossRef
Metadata
Title
Post-exercise branched chain amino acid supplementation does not affect recovery markers following three consecutive high intensity resistance training bouts compared to carbohydrate supplementation
Authors
Wesley C. Kephart
Petey W. Mumford
Anna E. McCloskey
A. Maleah Holland
Joshua J. Shake
C. Brooks Mobley
Adam E. Jagodinsky
Wendi H. Weimar
Gretchen D. Oliver
Kaelin C. Young
Jordan R. Moon
Michael D. Roberts
Publication date
01-12-2016
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12970-016-0142-y

Other articles of this Issue 1/2016

Journal of the International Society of Sports Nutrition 1/2016 Go to the issue