Skip to main content
Top
Published in: Pediatric Rheumatology 1/2019

Open Access 01-12-2019 | Juvenile Rheumatoid Arthritis | Research article

Measurement properties and performance of an eight-minute submaximal treadmill test in patients with juvenile idiopathic arthritis: a controlled study

Authors: Kristine Risum, Elisabeth Edvardsen, Anne M. Selvaag, Hanne Dagfinrud, Helga Sanner

Published in: Pediatric Rheumatology | Issue 1/2019

Login to get access

Abstract

Background

Poor cardiorespiratory fitness is previously reported in patients with juvenile idiopathic arthritis (JIA) measured both by maximal and submaximal exercise tests, but a submaximal exercise test with acceptable measurement properties is currently lacking for both clinical and research purposes in this patient population. The objectives of this study were to evaluate the measurement properties and performance of a submaximal treadmill test in patients with JIA, and to compare the results with those obtained in controls.

Methods

Fifty-nine patients (50 girls), aged 10–16 years, with oligo- (n = 30) and polyarticular (n = 29) JIA, and 59 age- and sex-matched controls performed an eight-minute submaximal treadmill test for estimating peak oxygen uptake (VO2peak) followed by a maximal treadmill test measuring VO2peak directly. During the submaximal treadmill test, the study participants walked with no inclination at a speed between 3.2–7.2 km/h for four minutes, and then continued to walk at the same speed for four minutes with five % inclination. VO2peak was directly measured during a continuous graded exercise test on treadmill until exhaustion. Thirty-seven patients participated in the evaluation of the reliability. Criterion validity and reliability were evaluated with interclass correlation coefficient (ICC); measurement errors by Bland-Altman plot, standard error of measurement and smallest detectable change.

Results

In patients with JIA, the ICC (95% CI) for criterion validity was acceptable at group level 0.71 (0.51, 0.82), but not at individual level. The test-retest reliability and inter-rater reliability were acceptable at individual (0.84 (0.71, 0.91) and 0.92 (0.83, 0.96), respectively) and group levels (0.91 (0.83, 0.96) and 0.96 (0.91, 0.98), respectively). The measurement errors (for test-retest reliability/inter-rater reliability) were large. Bland-Altman plots showed no systematic differences, but a large variability for both the validity and reliability. The performance of and estimated VO2peak from the submaximal test were not associated with disease variables and were comparable between patients and controls.

Conclusion

The submaximal treadmill test is valid for use in patients with JIA on group level, but not on individual level. The reliability is acceptable. Due to large measurement errors, the submaximal treadmill test is not optimal for use in daily clinical practice to estimate VO2peak in individual patients.
Literature
1.
go back to reference Lee DC, Artero EG, Sui X, Blair SN. Mortality trends in the general population: the importance of cardiorespiratory fitness. J Psychopharmacol (Oxford, England). 2010;24:27–35.CrossRef Lee DC, Artero EG, Sui X, Blair SN. Mortality trends in the general population: the importance of cardiorespiratory fitness. J Psychopharmacol (Oxford, England). 2010;24:27–35.CrossRef
2.
go back to reference Kaminsky LA, Arena R, Beckie TM, Brubaker PH, Church TS, Forman DE, et al. The importance of cardiorespiratory fitness in the United States: the need for a national registry: a policy statement from the American Heart Association. Circulation. 2013;127:652–62.CrossRef Kaminsky LA, Arena R, Beckie TM, Brubaker PH, Church TS, Forman DE, et al. The importance of cardiorespiratory fitness in the United States: the need for a national registry: a policy statement from the American Heart Association. Circulation. 2013;127:652–62.CrossRef
3.
go back to reference Melo X, Santa-Clara H, Santos DA, Pimenta NM, Minderico CS, Fernhall B, et al. Linking cardiorespiratory fitness classification criteria to early subclinical atherosclerosis in children. Appl Physiol Nutr Metab. 2015;40:386–92.CrossRef Melo X, Santa-Clara H, Santos DA, Pimenta NM, Minderico CS, Fernhall B, et al. Linking cardiorespiratory fitness classification criteria to early subclinical atherosclerosis in children. Appl Physiol Nutr Metab. 2015;40:386–92.CrossRef
4.
go back to reference van Pelt PA, Takken T, van Brussel M, de Witte I, Kruize AA, Wulffraat NM. Aerobic capacity and disease activity in children, adolescents and young adults with juvenile idiopathic arthritis (JIA). Pediatr Rheumatol Online J. 2012;10:27.CrossRef van Pelt PA, Takken T, van Brussel M, de Witte I, Kruize AA, Wulffraat NM. Aerobic capacity and disease activity in children, adolescents and young adults with juvenile idiopathic arthritis (JIA). Pediatr Rheumatol Online J. 2012;10:27.CrossRef
5.
go back to reference Hassan J, van der Net J, Helders PJ, Prakken BJ, Takken T. Six-minute walk test in children with chronic conditions. Br J Sports Med. 2010;44:270–4.CrossRef Hassan J, van der Net J, Helders PJ, Prakken BJ, Takken T. Six-minute walk test in children with chronic conditions. Br J Sports Med. 2010;44:270–4.CrossRef
6.
go back to reference Lelieveld OT, Takken T, van der Net J, van Weert E. Validity of the 6-minute walking test in juvenile idiopathic arthritis. Arthritis Rheum. 2005;53:304–7.CrossRef Lelieveld OT, Takken T, van der Net J, van Weert E. Validity of the 6-minute walking test in juvenile idiopathic arthritis. Arthritis Rheum. 2005;53:304–7.CrossRef
7.
go back to reference Risum K, Edvardsen E, Godang K, Selvaag AM, Hansen BH, Molberg O, et al. Physical fitness in patients with oligo- and Polyarticular juvenile idiopathic arthritis diagnosed in the era of biologics - a controlled cross-sectional study. Arthritis Care Res (Hoboken). 2018. https://doi.org/10.1002/acr.23818. Risum K, Edvardsen E, Godang K, Selvaag AM, Hansen BH, Molberg O, et al. Physical fitness in patients with oligo- and Polyarticular juvenile idiopathic arthritis diagnosed in the era of biologics - a controlled cross-sectional study. Arthritis Care Res (Hoboken). 2018. https://​doi.​org/​10.​1002/​acr.​23818.
8.
go back to reference Bar-Or O, Rowland T. Pediatric Exercise Medicine: From Physiologic Principles to Health Care Application. Champaign: Human Kinetics; 2004. Bar-Or O, Rowland T. Pediatric Exercise Medicine: From Physiologic Principles to Health Care Application. Champaign: Human Kinetics; 2004.
9.
go back to reference American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. Philadelphia: Wolters Kluwer; 2017. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. Philadelphia: Wolters Kluwer; 2017.
10.
go back to reference Bartels B, de Groot JF, Terwee CB. The six-minute walk test in chronic pediatric conditions: a systematic review of measurement properties. Phys Ther. 2013;93:529–41.CrossRef Bartels B, de Groot JF, Terwee CB. The six-minute walk test in chronic pediatric conditions: a systematic review of measurement properties. Phys Ther. 2013;93:529–41.CrossRef
11.
go back to reference Paap E, van der Net J, Helders PJ, Takken T. Physiologic response of the six-minute walk test in children with juvenile idiopathic arthritis. Arthritis Rheum. 2005;53:351–6.CrossRef Paap E, van der Net J, Helders PJ, Takken T. Physiologic response of the six-minute walk test in children with juvenile idiopathic arthritis. Arthritis Rheum. 2005;53:351–6.CrossRef
12.
go back to reference Ebbeling CB, Ward A, Puleo EM, Widrick J, Rippe JM. Development of a single-stage submaximal treadmill walking test. Med Sci Sports Exerc. 1991;23:966–73.CrossRef Ebbeling CB, Ward A, Puleo EM, Widrick J, Rippe JM. Development of a single-stage submaximal treadmill walking test. Med Sci Sports Exerc. 1991;23:966–73.CrossRef
13.
go back to reference Minor MA, Johnson JC. Reliability and validity of a submaximal treadmill test to estimate aerobic capacity in women with rheumatic disease. J Rheumatol. 1996;23:1517–23.PubMed Minor MA, Johnson JC. Reliability and validity of a submaximal treadmill test to estimate aerobic capacity in women with rheumatic disease. J Rheumatol. 1996;23:1517–23.PubMed
14.
go back to reference Waddoups L, Wagner D, Fallon J, Heath E. Validation of a single-stage submaximal treadmill walking test. J Sports Sci. 2008;26:491–7.CrossRef Waddoups L, Wagner D, Fallon J, Heath E. Validation of a single-stage submaximal treadmill walking test. J Sports Sci. 2008;26:491–7.CrossRef
15.
go back to reference Risum K, Hansen BH, Selvaag AM, Molberg O, Dagfinrud H, Sanner H. Physical activity in patients with oligo- and polyarticular juvenile idiopathic arthritis diagnosed in the era of biologics: a controlled cross-sectional study. Pediatr Rheumatol Online J. 2018;16:64.CrossRef Risum K, Hansen BH, Selvaag AM, Molberg O, Dagfinrud H, Sanner H. Physical activity in patients with oligo- and polyarticular juvenile idiopathic arthritis diagnosed in the era of biologics: a controlled cross-sectional study. Pediatr Rheumatol Online J. 2018;16:64.CrossRef
16.
go back to reference Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J, et al. International league of associations for rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004;31:390–2. Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J, et al. International league of associations for rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004;31:390–2.
17.
go back to reference de Vet H, Terwee CB, Mokkink LB, Knol DL. Measurement in Medicine. United Kingdom: Cambridge University Press; 2011.CrossRef de Vet H, Terwee CB, Mokkink LB, Knol DL. Measurement in Medicine. United Kingdom: Cambridge University Press; 2011.CrossRef
18.
go back to reference Weiss JE, Luca NJ, Boneparth A, Stinson J. Assessment and management of pain in juvenile idiopathic arthritis. Paediatr Drugs. 2014;16:473–81.CrossRef Weiss JE, Luca NJ, Boneparth A, Stinson J. Assessment and management of pain in juvenile idiopathic arthritis. Paediatr Drugs. 2014;16:473–81.CrossRef
19.
go back to reference Consolaro A, Ruperto N, Bazso A, Pistorio A, Magni-Manzoni S, Filocamo G, et al. Development and validation of a composite disease activity score for juvenile idiopathic arthritis. Arthritis Rheum. 2009;61:658–66.CrossRef Consolaro A, Ruperto N, Bazso A, Pistorio A, Magni-Manzoni S, Filocamo G, et al. Development and validation of a composite disease activity score for juvenile idiopathic arthritis. Arthritis Rheum. 2009;61:658–66.CrossRef
20.
go back to reference Wallace CA, Giannini EH, Huang B, Itert L, Ruperto N. American College of Rheumatology provisional criteria for defining clinical inactive disease in select categories of juvenile idiopathic arthritis. Arthritis Care Res (Hoboken). 2011;63:929–36.CrossRef Wallace CA, Giannini EH, Huang B, Itert L, Ruperto N. American College of Rheumatology provisional criteria for defining clinical inactive disease in select categories of juvenile idiopathic arthritis. Arthritis Care Res (Hoboken). 2011;63:929–36.CrossRef
21.
go back to reference Singh G, Athreya BH, Fries JF, Goldsmith DP. Measurement of health status in children with juvenile rheumatoid arthritis. Arthritis Rheum. 1994;37:1761–9.CrossRef Singh G, Athreya BH, Fries JF, Goldsmith DP. Measurement of health status in children with juvenile rheumatoid arthritis. Arthritis Rheum. 1994;37:1761–9.CrossRef
22.
go back to reference Flato B, Sorskaar D, Vinje O, Lien G, Aasland A, Moum T, et al. Measuring disability in early juvenile rheumatoid arthritis: evaluation of a Norwegian version of the childhood health assessment questionnaire. J Rheumatol. 1998;25:1851–8.PubMed Flato B, Sorskaar D, Vinje O, Lien G, Aasland A, Moum T, et al. Measuring disability in early juvenile rheumatoid arthritis: evaluation of a Norwegian version of the childhood health assessment questionnaire. J Rheumatol. 1998;25:1851–8.PubMed
23.
go back to reference Fox SM 3rd, Naughton JP, Haskell WL. Physical activity and the prevention of coronary heart disease. Ann Clin Res. 1971;3:404–32.PubMed Fox SM 3rd, Naughton JP, Haskell WL. Physical activity and the prevention of coronary heart disease. Ann Clin Res. 1971;3:404–32.PubMed
24.
25.
go back to reference Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37:153–6.CrossRef Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37:153–6.CrossRef
26.
go back to reference Nes BM, Janszky I, Wisloff U, Stoylen A, Karlsen T. Age-predicted maximal heart rate in healthy subjects: the HUNT fitness study. Scand J Med Sci Sports. 2013;23:697–704.CrossRef Nes BM, Janszky I, Wisloff U, Stoylen A, Karlsen T. Age-predicted maximal heart rate in healthy subjects: the HUNT fitness study. Scand J Med Sci Sports. 2013;23:697–704.CrossRef
27.
go back to reference Mahon AD, Marjerrison AD, Lee JD, Woodruff ME, Hanna LE. Evaluating the prediction of maximal heart rate in children and adolescents. Res Q Exerc Sport. 2010;81:466–71.CrossRef Mahon AD, Marjerrison AD, Lee JD, Woodruff ME, Hanna LE. Evaluating the prediction of maximal heart rate in children and adolescents. Res Q Exerc Sport. 2010;81:466–71.CrossRef
Metadata
Title
Measurement properties and performance of an eight-minute submaximal treadmill test in patients with juvenile idiopathic arthritis: a controlled study
Authors
Kristine Risum
Elisabeth Edvardsen
Anne M. Selvaag
Hanne Dagfinrud
Helga Sanner
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Pediatric Rheumatology / Issue 1/2019
Electronic ISSN: 1546-0096
DOI
https://doi.org/10.1186/s12969-019-0316-7

Other articles of this Issue 1/2019

Pediatric Rheumatology 1/2019 Go to the issue