Skip to main content
Top
Published in: Pediatric Rheumatology 1/2017

Open Access 01-12-2017 | Research article

A single-center analysis of Henoch-Schonlein purpura nephritis with nephrotic proteinuria in children

Authors: Dan Feng, Wen-Yan Huang, Sheng Hao, Xiao-Ling Niu, Ping Wang, Ying Wu, Guang-Hua Zhu

Published in: Pediatric Rheumatology | Issue 1/2017

Login to get access

Abstract

Background

In children with Henoch-Schonlein purpura nephritis (HSPN), the degree of proteinuria has been proven to be not only a sign of kidney damage, but also an accelerator of kidney disease progression. Nephrotic proteinuria at disease onset has been proposed as a predictor of a poor renal outcome. This study aims to assess the clinical and pathological features of HSPN with nephrotic proteinuria in a single center.

Methods

One hundred thirty-seven patients with HSPN who visited Shanghai Children’s Hospital from January 2009 to December 2013 were retrospectively reviewed. The patients were divided into 2 groups based on the 24-h urinary protein levels: nephrotic proteinuria group (NP group: 24-h urinary protein ≥50 mg/kg) and non-nephrotic proteinuria group (NNP group: 24-h urinary protein <50 mg/kg). In addition, data regarding their sex, age, clinical features, renal pathology, and prognosis were collected.

Results

(1) There were 34 boys and 20 girls in the NP group with a mean age of 8.39 ± 2.85 years. The peak age of incidence was 6 to 11 years (72.22%). (2) There were 8 cases (14.81%) with joint symptoms and 9 cases (16.67%) with gastrointestinal symptoms in the NP group. According to the analysis of the laboratory test results, the serum albumin and IgG levels of the NP group were significantly lower than that of the NNP group (35.04 ± 8.45 in the NP group vs. 41.55 ± 4.46 in the NNP group, P < 0.0001; 7.68 ± 3.12 in the NP group vs. 9.53 ± 2.74 in the NNP group, P < 0.001, respectively); their blood urea nitrogen and cystatin C levels increased significantly (P < 0.05). (3) The majority of the pathological changes in the NP group were above the International Study of Kidney Disease in Children (ISKDC) grade III (62.97%). The NP group patients with tubulointerstitial injurie with grade 2 and above (50%) were prioritized. Immune complex deposition in the NP group was dominated by IgA. (4) The prognosis of the NP group was in complete remission (A), and their cases did not develop into end-stage renal disease; their prognosis was also associated with clinical classification (P < 0.01) but was not related to pathologic grading and tubulointerstitial injury (P > 0.05).

Conclusion

The serum albumin and IgG levels of the NP group were significantly lower; however, their blood urea nitrogen and cystatin C levels were higher. The ISKDC grades were mainly above grade III. The prognosis of the NP group was associated with clinical classification and improved after a timely and early treatment.
Literature
1.
go back to reference Kawasaki Y, Suzuki H. Henoch-Schonlein Nephritis. In: Geary D, Shaefer F, editors. Comprehensive pediatric nephrology. 1st ed. Philadelphia: Mosby Elsevier; 2008. p. 343–51.CrossRef Kawasaki Y, Suzuki H. Henoch-Schonlein Nephritis. In: Geary D, Shaefer F, editors. Comprehensive pediatric nephrology. 1st ed. Philadelphia: Mosby Elsevier; 2008. p. 343–51.CrossRef
2.
go back to reference Jafar TH, Stark PC, Schmid CH, et al. Proteinuria as a modifiable risk factor for the progression of non - diabeticrenal diseases. Kidney Int. 2001;60(4):1131–6.CrossRefPubMed Jafar TH, Stark PC, Schmid CH, et al. Proteinuria as a modifiable risk factor for the progression of non - diabeticrenal diseases. Kidney Int. 2001;60(4):1131–6.CrossRefPubMed
4.
go back to reference Bohle A, Muller GA, Wehrmann M, et al. Pathogenesis of chronic renal failure in the primary glomerulopathies,renal vasculopathies,and chronic interstitial nephrities. Kidney Int Suppl. 1996;54:S2–9.PubMed Bohle A, Muller GA, Wehrmann M, et al. Pathogenesis of chronic renal failure in the primary glomerulopathies,renal vasculopathies,and chronic interstitial nephrities. Kidney Int Suppl. 1996;54:S2–9.PubMed
5.
go back to reference Du Y, Hou L, Zhao C, et al. Treatment of children with Henoch-Schonlein purpura nephritis with mycophenolate mofetil. Pediatr Nephrol. 2012;27(5):765–71.CrossRefPubMed Du Y, Hou L, Zhao C, et al. Treatment of children with Henoch-Schonlein purpura nephritis with mycophenolate mofetil. Pediatr Nephrol. 2012;27(5):765–71.CrossRefPubMed
6.
go back to reference Tabel Y, Inanc FC, Dogan DG, et al. Clinical features of children with Henoch-Schonlein purpura: risk factors associated with renal involvement. Iran J Kidney Dis. 2012;6(4):269–74.PubMed Tabel Y, Inanc FC, Dogan DG, et al. Clinical features of children with Henoch-Schonlein purpura: risk factors associated with renal involvement. Iran J Kidney Dis. 2012;6(4):269–74.PubMed
7.
go back to reference Shin JI, Park JM, Shin YH, et al. Predictive factors for nephritis, relapse, and significant proteinuria in childhood Henoch-Schonlein purpura. Scand J Rheumatol. 2006;35:56–60.CrossRefPubMed Shin JI, Park JM, Shin YH, et al. Predictive factors for nephritis, relapse, and significant proteinuria in childhood Henoch-Schonlein purpura. Scand J Rheumatol. 2006;35:56–60.CrossRefPubMed
8.
go back to reference Jauhola O, Ronkainen J, Koskimies O, et al. Renal manifestations of Henoch-Schonlein Puroura in a 6-month prospective study of 223 children. Arch Dis Child. 2010;95(11):877–82.CrossRefPubMed Jauhola O, Ronkainen J, Koskimies O, et al. Renal manifestations of Henoch-Schonlein Puroura in a 6-month prospective study of 223 children. Arch Dis Child. 2010;95(11):877–82.CrossRefPubMed
9.
go back to reference Ding Y, Yin W, He XL. Exploration of immune function in acute phase in children withHenoch-Schonlein Purpura. Chinese J Immunol. 2013;29(5):518–21. Ding Y, Yin W, He XL. Exploration of immune function in acute phase in children withHenoch-Schonlein Purpura. Chinese J Immunol. 2013;29(5):518–21.
10.
go back to reference He JH, Li ZH, Duan CR, et al. Relationship of proteinuria immunpathogenesis and humoral immunity in children with Henoch-Schonlein Purpura Nephritis. J Appl Clin Pediatr. 2008;23(5):362–3. He JH, Li ZH, Duan CR, et al. Relationship of proteinuria immunpathogenesis and humoral immunity in children with Henoch-Schonlein Purpura Nephritis. J Appl Clin Pediatr. 2008;23(5):362–3.
11.
go back to reference Fretzayas A, Sionti I, Moustaki M, et al. Clinical impact of altered immunoglobulin levels in Henoch-Schönlein purpura. Pediatr Int. 2009;51(3):381–4.CrossRefPubMed Fretzayas A, Sionti I, Moustaki M, et al. Clinical impact of altered immunoglobulin levels in Henoch-Schönlein purpura. Pediatr Int. 2009;51(3):381–4.CrossRefPubMed
12.
go back to reference Nickavar A, Mehrazma M, Lahouti A. Clinicopathologic Correlations in Henoch-Schonlein Nephritis. Iran J Kidney Dis. 2012;6(6):437–40.PubMed Nickavar A, Mehrazma M, Lahouti A. Clinicopathologic Correlations in Henoch-Schonlein Nephritis. Iran J Kidney Dis. 2012;6(6):437–40.PubMed
13.
go back to reference Chen XX, Lin HZ, Wang DX. 63 cases ofnephrotic range proteinuria in children with Henoch-Schonlein Purpura nephritis with renal pathology and clinical analysis. Chinese J Integrated Traditional Western Nephrol. 2012;13(2):148–9. Chen XX, Lin HZ, Wang DX. 63 cases ofnephrotic range proteinuria in children with Henoch-Schonlein Purpura nephritis with renal pathology and clinical analysis. Chinese J Integrated Traditional Western Nephrol. 2012;13(2):148–9.
14.
go back to reference Kawasaki Y, Ono A, Ohara S, et al. Henoch-Schönlein purpura nephritis in childhood: pathogenesis, prognostic factors and treatment. Fukushima J Med Sci. 2013;59(1):15–26.CrossRefPubMed Kawasaki Y, Ono A, Ohara S, et al. Henoch-Schönlein purpura nephritis in childhood: pathogenesis, prognostic factors and treatment. Fukushima J Med Sci. 2013;59(1):15–26.CrossRefPubMed
15.
go back to reference Gunana T, Luo Q, Guo YF. Analysis of correlated risk factorof Henoch-Schonlein Purpura nephritis in childhood. J Xinjiang University. 2012;35(10):1400–3. Gunana T, Luo Q, Guo YF. Analysis of correlated risk factorof Henoch-Schonlein Purpura nephritis in childhood. J Xinjiang University. 2012;35(10):1400–3.
16.
go back to reference Halling SF, Söderberg MP, Berg UB. Henoch Sch nlein nephritis:clinical findings related to renal function and morphology. Pediatr Nephrol. 2005;20(1):46–51.CrossRefPubMed Halling SF, Söderberg MP, Berg UB. Henoch Sch nlein nephritis:clinical findings related to renal function and morphology. Pediatr Nephrol. 2005;20(1):46–51.CrossRefPubMed
17.
go back to reference Jauhola O, Ronkainen J, Autio-Harmainen H, Koskimies O, AlaHouhala M, Arikoski P, Holtta T, Jahnukainen T, Rajantie J, Ormala T, Nuutinen M. Cyclosporine A vs. methylprednisolone for HenochSchonlein nephritis: a randomized trial. Pediatr Nephrol. 2011;26:2159–66.CrossRefPubMed Jauhola O, Ronkainen J, Autio-Harmainen H, Koskimies O, AlaHouhala M, Arikoski P, Holtta T, Jahnukainen T, Rajantie J, Ormala T, Nuutinen M. Cyclosporine A vs. methylprednisolone for HenochSchonlein nephritis: a randomized trial. Pediatr Nephrol. 2011;26:2159–66.CrossRefPubMed
Metadata
Title
A single-center analysis of Henoch-Schonlein purpura nephritis with nephrotic proteinuria in children
Authors
Dan Feng
Wen-Yan Huang
Sheng Hao
Xiao-Ling Niu
Ping Wang
Ying Wu
Guang-Hua Zhu
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Pediatric Rheumatology / Issue 1/2017
Electronic ISSN: 1546-0096
DOI
https://doi.org/10.1186/s12969-017-0146-4

Other articles of this Issue 1/2017

Pediatric Rheumatology 1/2017 Go to the issue