Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2018

Open Access 01-12-2018 | Research

Effect of isolated left bundle-branch block on biventricular volumes and ejection fraction: a cardiovascular magnetic resonance assessment

Authors: Shadi Akhtari, Michael L. Chuang, Carol J. Salton, Sophie Berg, Kraig V. Kissinger, Beth Goddu, Christopher J. O’Donnell, Warren J. Manning

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2018

Login to get access

Abstract

Background

Left bundle branch block (LBBB) is associated with abnormal left ventricular (LV) contraction, and is frequently associated with co-morbid cardiovascular disease, but the effect of an isolated (i.e. in the absence of cardiovascular dissease) LBBB on biventricular volumes and ejection fraction (EF) is not well characterized. The objective of this study was to compare LV and right ventricular (RV) volumes and EF in adults with an isolated LBBB to matched healthy controls and to population-derived normative values, using cardiovascular magnetic resonance (CMR) imaging.

Methods

We reviewed our clinical echocardiography database and the Framingham Heart Study Offspring cohort CMR database to identify adults with an isolated LBBB. Age-, sex-, hypertension-status, and body-surface area (BSA)-matched controls were identified from the Offspring cohort. All study subjects were scanned using the same CMR hardware and imaging sequence. Isolated-LBBB cases were compared with matched controls using Wilcoxon paired signed-rank test, and to normative reference values via Z-score.

Results

Isolated-LBBB subjects (n = 18, 10F) ranged in age from 37 to 82 years. An isolated LBBB was associated with larger LV end-diastolic and end-systolic volumes (both p < 0.01) and lower LVEF (56+/− 7% vs. 68+/− 6%; p  <0.001) with similar myocardial contraction fraction. LVEF in isolated LBBB was nearly two standard deviations (Z = − 1.95) below mean sex and age-matched group values. LV stroke volume, cardiac output, and mass, and all RV parameters were similar (p = NS) between the groups.

Conclusions

Adults with an isolated LBBB have greater LV volumes and markedly reduced LVEF, despite the absence of overt cardiovascular disease. These data may be useful toward the clinical interpretation of imaging studies performed on patients with an isolated LBBB.
Literature
1.
go back to reference Hiss RG, Lamb LE. Electrocardiographic findings in 122,043 individuals. Circulation. 1962;25:947–61.CrossRef Hiss RG, Lamb LE. Electrocardiographic findings in 122,043 individuals. Circulation. 1962;25:947–61.CrossRef
2.
go back to reference Ostrander LD Jr, Brandt RL, Kjelsberg MO, Epstein FH. Electrocardiographic findings among the adult population of a Total natural community, Tecumseh, Michigan. Circulation. 1965;31:888–98.CrossRef Ostrander LD Jr, Brandt RL, Kjelsberg MO, Epstein FH. Electrocardiographic findings among the adult population of a Total natural community, Tecumseh, Michigan. Circulation. 1965;31:888–98.CrossRef
3.
go back to reference Siegman-Igra Y, Yahini JH, Goldbourt U, Neufeld HN. Intraventricular conduction disturbances: a review of prevalence, etiology, and progression for ten years within a stable population of Israeli adult males. Am Heart J. 1978;96:669–79.CrossRef Siegman-Igra Y, Yahini JH, Goldbourt U, Neufeld HN. Intraventricular conduction disturbances: a review of prevalence, etiology, and progression for ten years within a stable population of Israeli adult males. Am Heart J. 1978;96:669–79.CrossRef
4.
go back to reference Eriksson P, Hansson PO, Eriksson H, Dellborg M. Bundle-branch block in a general male population: the study of men born 1913. Circulation. 1998;98:2494–500.CrossRef Eriksson P, Hansson PO, Eriksson H, Dellborg M. Bundle-branch block in a general male population: the study of men born 1913. Circulation. 1998;98:2494–500.CrossRef
5.
go back to reference Francia P, Balla C, Paneni F, Volpe M. Left bundle-branch block--pathophysiology, prognosis, and clinical management. Clin Cardiol. 2007;30:110–5.CrossRef Francia P, Balla C, Paneni F, Volpe M. Left bundle-branch block--pathophysiology, prognosis, and clinical management. Clin Cardiol. 2007;30:110–5.CrossRef
6.
go back to reference Rotman M, Triebwasser JH. A clinical and follow-up study of right and left bundle branch block. Circulation. 1975;51:477–84.CrossRef Rotman M, Triebwasser JH. A clinical and follow-up study of right and left bundle branch block. Circulation. 1975;51:477–84.CrossRef
7.
go back to reference Zhang ZM, Rautaharju PM, Soliman EZ, et al. Mortality risk associated with bundle branch blocks and related repolarization abnormalities (from the Women's Health Initiative [WHI]). Am J Cardiol. 2012;110:1489–95.CrossRef Zhang ZM, Rautaharju PM, Soliman EZ, et al. Mortality risk associated with bundle branch blocks and related repolarization abnormalities (from the Women's Health Initiative [WHI]). Am J Cardiol. 2012;110:1489–95.CrossRef
8.
go back to reference Eriksson P, Wilhelmsen L, Rosengren A. Bundle-branch block in middle-aged men: risk of complications and death over 28 years. The primary prevention study in Goteborg, Sweden. Eur Heart J. 2005;26:2300–6.CrossRef Eriksson P, Wilhelmsen L, Rosengren A. Bundle-branch block in middle-aged men: risk of complications and death over 28 years. The primary prevention study in Goteborg, Sweden. Eur Heart J. 2005;26:2300–6.CrossRef
9.
go back to reference Grines CL, Bashore TM, Boudoulas H, Olson S, Shafer P, Wooley CF. Functional abnormalities in isolated left bundle branch block. The effect of interventricular asynchrony. Circulation. 1989;79:845–53.CrossRef Grines CL, Bashore TM, Boudoulas H, Olson S, Shafer P, Wooley CF. Functional abnormalities in isolated left bundle branch block. The effect of interventricular asynchrony. Circulation. 1989;79:845–53.CrossRef
10.
go back to reference Duzenli MA, Ozdemir K, Soylu A, Aygul N, Yazici M, Tokac M. The effect of isolated left bundle branch block on the myocardial velocities and myocardial performance index. Echocardiography. 2008;25:256–63.CrossRef Duzenli MA, Ozdemir K, Soylu A, Aygul N, Yazici M, Tokac M. The effect of isolated left bundle branch block on the myocardial velocities and myocardial performance index. Echocardiography. 2008;25:256–63.CrossRef
11.
go back to reference van Dijk J, Dijkmans PA, Gotte MJ, Spreeuwenberg MD, Visser CA, Kamp O. Evaluation of global left ventricular function and mechanical dyssynchrony in patients with an asymptomatic left bundle branch block: a real-time 3D echocardiography study. Eur J Echocardiogr. 2008;9:40–6.PubMed van Dijk J, Dijkmans PA, Gotte MJ, Spreeuwenberg MD, Visser CA, Kamp O. Evaluation of global left ventricular function and mechanical dyssynchrony in patients with an asymptomatic left bundle branch block: a real-time 3D echocardiography study. Eur J Echocardiogr. 2008;9:40–6.PubMed
12.
go back to reference Ozdemir K, Altunkeser BB, Danis G, et al. Effect of the isolated left bundle branch block on systolic and diastolic functions of left ventricle. J Am Soc Echocardiogr. 2001;14:1075–9.CrossRef Ozdemir K, Altunkeser BB, Danis G, et al. Effect of the isolated left bundle branch block on systolic and diastolic functions of left ventricle. J Am Soc Echocardiogr. 2001;14:1075–9.CrossRef
13.
go back to reference van Oosterhout MF, Prinzen FW, Arts T, et al. Asynchronous electrical activation induces asymmetrical hypertrophy of the left ventricular wall. Circulation. 1998;98:588–95.CrossRef van Oosterhout MF, Prinzen FW, Arts T, et al. Asynchronous electrical activation induces asymmetrical hypertrophy of the left ventricular wall. Circulation. 1998;98:588–95.CrossRef
14.
go back to reference Vernooy K, Verbeek XA, Peschar M, et al. Left bundle branch block induces ventricular remodelling and functional septal hypoperfusion. Eur Heart J. 2005;26:91–8.CrossRef Vernooy K, Verbeek XA, Peschar M, et al. Left bundle branch block induces ventricular remodelling and functional septal hypoperfusion. Eur Heart J. 2005;26:91–8.CrossRef
15.
go back to reference Yeon SB, Salton CJ, Gona P, et al. Impact of age, sex, and indexation method on MR left ventricular reference values in the Framingham heart study offspring cohort. J Magn Reson Imaging. 2015;41:1038–45.CrossRef Yeon SB, Salton CJ, Gona P, et al. Impact of age, sex, and indexation method on MR left ventricular reference values in the Framingham heart study offspring cohort. J Magn Reson Imaging. 2015;41:1038–45.CrossRef
16.
go back to reference Foppa M, Arora G, Gona P, et al. Right ventricular volumes and systolic function by cardiac magnetic resonance and the impact of sex, age, and obesity in a longitudinally followed cohort free of pulmonary and cardiovascular disease: the Framingham heart study. Circ Cardiovasc Imaging. 2016;9:e003810.CrossRef Foppa M, Arora G, Gona P, et al. Right ventricular volumes and systolic function by cardiac magnetic resonance and the impact of sex, age, and obesity in a longitudinally followed cohort free of pulmonary and cardiovascular disease: the Framingham heart study. Circ Cardiovasc Imaging. 2016;9:e003810.CrossRef
17.
go back to reference Melek M, Esen O, Esen AM, Barutcu I, Onrat E, Kaya D. Tissue Doppler evaluation of intraventricular asynchrony in isolated left bundle branch block. Echocardiography. 2006;23:120–6.CrossRef Melek M, Esen O, Esen AM, Barutcu I, Onrat E, Kaya D. Tissue Doppler evaluation of intraventricular asynchrony in isolated left bundle branch block. Echocardiography. 2006;23:120–6.CrossRef
18.
go back to reference Chuang ML, Hibberd MG, Salton CJ, et al. Importance of imaging method over imaging modality in noninvasive determination of left ventricular volumes and ejection fraction: assessment by two- and three-dimensional echocardiography and magnetic resonance imaging. J Am Coll Cardiol. 2000;35:477–84.CrossRef Chuang ML, Hibberd MG, Salton CJ, et al. Importance of imaging method over imaging modality in noninvasive determination of left ventricular volumes and ejection fraction: assessment by two- and three-dimensional echocardiography and magnetic resonance imaging. J Am Coll Cardiol. 2000;35:477–84.CrossRef
19.
go back to reference Brunekreeft JA, Graauw M, de Milliano PA, Keijer JT. Influence of left bundle branch block on left ventricular volumes, ejection fraction and regional wall motion. Neth Heart J. 2007;15:89–94.CrossRef Brunekreeft JA, Graauw M, de Milliano PA, Keijer JT. Influence of left bundle branch block on left ventricular volumes, ejection fraction and regional wall motion. Neth Heart J. 2007;15:89–94.CrossRef
20.
go back to reference Valenti V, Zia MI, Shubayev L, et al. Cardiac magnetic resonance evaluation of the impact of interventricular and intraventricular dyssynchrony on cardiac ventricular systolic and diastolic function in patients with isolated left bundle branch block. Am J Cardiol. 2012;110:1651–6.CrossRef Valenti V, Zia MI, Shubayev L, et al. Cardiac magnetic resonance evaluation of the impact of interventricular and intraventricular dyssynchrony on cardiac ventricular systolic and diastolic function in patients with isolated left bundle branch block. Am J Cardiol. 2012;110:1651–6.CrossRef
21.
go back to reference van Dijk J, Knaapen P, Bekkering I, Gotte MJ, Kamp O. Right ventricular dimensions and function in isolated left bundle branch block: is there evidence of biventricular involvement? Echocardiography. 2008;25:457–64.CrossRef van Dijk J, Knaapen P, Bekkering I, Gotte MJ, Kamp O. Right ventricular dimensions and function in isolated left bundle branch block: is there evidence of biventricular involvement? Echocardiography. 2008;25:457–64.CrossRef
22.
go back to reference Youn HJ, Park CS, Cho EJ, et al. Left bundle branch block disturbs left anterior descending coronary artery flow: study using transthoracic Doppler echocardiography. J Am Soc Echocardiogr. 2005;18:1093–8.CrossRef Youn HJ, Park CS, Cho EJ, et al. Left bundle branch block disturbs left anterior descending coronary artery flow: study using transthoracic Doppler echocardiography. J Am Soc Echocardiogr. 2005;18:1093–8.CrossRef
23.
go back to reference Skalidis EI, Kochiadakis GE, Koukouraki SI, Parthenakis FI, Karkavitsas NS, Vardas PE. Phasic coronary flow pattern and flow reserve in patients with left bundle branch block and normal coronary arteries. J Am Coll Cardiol. 1999;33:1338–46.CrossRef Skalidis EI, Kochiadakis GE, Koukouraki SI, Parthenakis FI, Karkavitsas NS, Vardas PE. Phasic coronary flow pattern and flow reserve in patients with left bundle branch block and normal coronary arteries. J Am Coll Cardiol. 1999;33:1338–46.CrossRef
24.
go back to reference Vernooy K, Cornelussen RN, Verbeek XA, et al. Cardiac resynchronization therapy cures dyssynchronopathy in canine left bundle-branch block hearts. Eur Heart J. 2007;28:2148–55.CrossRef Vernooy K, Cornelussen RN, Verbeek XA, et al. Cardiac resynchronization therapy cures dyssynchronopathy in canine left bundle-branch block hearts. Eur Heart J. 2007;28:2148–55.CrossRef
25.
go back to reference Gold MR, Thebault C, Linde C, et al. Effect of QRS duration and morphology on cardiac resynchronization therapy outcomes in mild heart failure: results from the resynchronization reverses remodeling in systolic left ventricular dysfunction (REVERSE) study. Circulation. 2012;126:822–9.CrossRef Gold MR, Thebault C, Linde C, et al. Effect of QRS duration and morphology on cardiac resynchronization therapy outcomes in mild heart failure: results from the resynchronization reverses remodeling in systolic left ventricular dysfunction (REVERSE) study. Circulation. 2012;126:822–9.CrossRef
26.
go back to reference Hsu JC, Solomon SD, Bourgoun M, et al. Predictors of super-response to cardiac resynchronization therapy and associated improvement in clinical outcome: the MADIT-CRT (multicenter automatic defibrillator implantation trial with cardiac resynchronization therapy) study. J Am Coll Cardiol. 2012;59:2366–73.CrossRef Hsu JC, Solomon SD, Bourgoun M, et al. Predictors of super-response to cardiac resynchronization therapy and associated improvement in clinical outcome: the MADIT-CRT (multicenter automatic defibrillator implantation trial with cardiac resynchronization therapy) study. J Am Coll Cardiol. 2012;59:2366–73.CrossRef
27.
go back to reference King DL, El-Khoury L, Maurer MS. Myocardial contraction fraction: a volumetric index of myocardial shortening by freehand three-dimensional echocardiography. J Am Coll Cardiol. 2002;40:325–9. King DL, El-Khoury L, Maurer MS. Myocardial contraction fraction: a volumetric index of myocardial shortening by freehand three-dimensional echocardiography. J Am Coll Cardiol. 2002;40:325–9.
Metadata
Title
Effect of isolated left bundle-branch block on biventricular volumes and ejection fraction: a cardiovascular magnetic resonance assessment
Authors
Shadi Akhtari
Michael L. Chuang
Carol J. Salton
Sophie Berg
Kraig V. Kissinger
Beth Goddu
Christopher J. O’Donnell
Warren J. Manning
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2018
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-018-0457-8

Other articles of this Issue 1/2018

Journal of Cardiovascular Magnetic Resonance 1/2018 Go to the issue