Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2018

Open Access 01-12-2018 | Research

Dynamic fetal cardiovascular magnetic resonance imaging using Doppler ultrasound gating

Authors: Fabian Kording, Jin Yamamura, Manuela Tavares de Sousa, Christian Ruprecht, Erik Hedström, Anthony H. Aletras, P. Ellen Grant, Andrew J. Powell, Kai Fehrs, Gerhard Adam, Hendrik Kooijman, Bjoern P. Schoennagel

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2018

Login to get access

Abstract

Background

Fetal cardiovascular magnetic resonance (CMR) imaging may provide a valuable adjunct to fetal echocardiography in the evaluation of congenital cardiovascular pathologies. However, dynamic fetal CMR is difficult due to the lack of direct in-utero cardiac gating. The aim of this study was to investigate the effectiveness of a newly developed Doppler ultrasound (DUS) device in humans for fetal CMR gating.

Methods

Fifteen fetuses (gestational age 30–39 weeks) were examined using 1.5 T CMR scanners at three different imaging sites. A newly developed CMR-compatible DUS device was used to generate gating signals from fetal cardiac motion. Gated dynamic balanced steady-state free precession images were acquired in 4-chamber and short-axis cardiac views. Gating signals during data acquisition were analyzed with respect to trigger variability and sensitivity. Image quality was assessed by measuring endocardial blurring (EB) and by image evaluation using a 4-point scale. Left ventricular (LV) volumetry was performed using the single-plane ellipsoid model.

Results

Gating signals from the fetal heart were detected with a variability of 26 ± 22 ms and a sensitivity of trigger detection of 96 ± 4%. EB was 2.9 ± 0.6 pixels (4-chamber) and 2.5 ± 0.1 pixels (short axis). Image quality scores were 3.6 ± 0.6 (overall), 3.4 ± 0.7 (mitral valve), 3.4 ± 0.7 (foramen ovale), 3.6 ± 0.7 (atrial septum), 3.7 ± 0.5 (papillary muscles), 3.8 ± 0.4 (differentiation myocardium/lumen), 3.7 ± 0.5 (differentiation myocardium/lung), and 3.9 ± 0.4 (systolic myocardial thickening). Inter-observer agreement for the scores was moderate to very good (kappa 0.57–0.84) for all structures. LV volumetry revealed mean values of 2.8 ± 1.2 ml (end-diastolic volume), 0.9 ± 0.4 ml (end systolic volume), 1.9 ± 0.8 ml (stroke volume), and 69.1 ± 8.4% (ejection fraction).

Conclusion

High-quality dynamic fetal CMR was successfully performed using a newly developed DUS device for direct fetal cardiac gating. This technique has the potential to improve the utility of fetal CMR in the evaluation of congenital pathologies.
Literature
1.
go back to reference Rodríguez MR, de Vega VM, Alonso RC, Arranz JC, Ten PM, Pedregosa JP. MR imaging of thoracic abnormalities in the fetus. Radiographics. 2012;32:E305–21.CrossRef Rodríguez MR, de Vega VM, Alonso RC, Arranz JC, Ten PM, Pedregosa JP. MR imaging of thoracic abnormalities in the fetus. Radiographics. 2012;32:E305–21.CrossRef
2.
go back to reference Furey EA, Bailey AA, Twickler DM. Fetal MR imaging of gastrointestinal abnormalities. Radiographics. 2016;36:904–17.CrossRefPubMed Furey EA, Bailey AA, Twickler DM. Fetal MR imaging of gastrointestinal abnormalities. Radiographics. 2016;36:904–17.CrossRefPubMed
3.
go back to reference Gat I, Hoffmann C, Shashar D, Yosef OB, Konen E, Achiron R, et al. Fetal brain MRI: novel classification and contribution to sonography. Ultraschall Med. 2016;37:176–84.PubMed Gat I, Hoffmann C, Shashar D, Yosef OB, Konen E, Achiron R, et al. Fetal brain MRI: novel classification and contribution to sonography. Ultraschall Med. 2016;37:176–84.PubMed
4.
go back to reference Wielandner A, Mlczoch E, Prayer D, Berger-Kulemann V. Potential of magnetic resonance for imaging the fetal heart. Semin Fetal Neonatal Med. 2013;18:286–97.CrossRefPubMed Wielandner A, Mlczoch E, Prayer D, Berger-Kulemann V. Potential of magnetic resonance for imaging the fetal heart. Semin Fetal Neonatal Med. 2013;18:286–97.CrossRefPubMed
5.
go back to reference Tuck DL. Improved Doppler ultrasonic monitoring of the foetal heart rate. Med Biol Eng Comput. 1981;19:135–40.CrossRefPubMed Tuck DL. Improved Doppler ultrasonic monitoring of the foetal heart rate. Med Biol Eng Comput. 1981;19:135–40.CrossRefPubMed
6.
go back to reference Feinberg D, Giese D, Bongers DA, Ramanna S, Zaitsev M, Markl M, et al. Hybrid ultrasound MRI for improved cardiac imaging and real-time respiration control. Magn Reson Med. 2010;63:290–6.CrossRefPubMedPubMedCentral Feinberg D, Giese D, Bongers DA, Ramanna S, Zaitsev M, Markl M, et al. Hybrid ultrasound MRI for improved cardiac imaging and real-time respiration control. Magn Reson Med. 2010;63:290–6.CrossRefPubMedPubMedCentral
7.
go back to reference Günther M, Feinberg DA. Ultrasound-guided MRI: preliminary results using a motion phantom. Magn Reson Med. 2004;52:27–32.CrossRefPubMed Günther M, Feinberg DA. Ultrasound-guided MRI: preliminary results using a motion phantom. Magn Reson Med. 2004;52:27–32.CrossRefPubMed
8.
go back to reference Kording F, Yamamura J, Lund G, Ueberle F, Jung C, Adam G, et al. Doppler ultrasound triggering for cardiovascular MRI at 3T in a healthy volunteer study. Magn Reson Med Sci. 2017;16:98–108.CrossRefPubMed Kording F, Yamamura J, Lund G, Ueberle F, Jung C, Adam G, et al. Doppler ultrasound triggering for cardiovascular MRI at 3T in a healthy volunteer study. Magn Reson Med Sci. 2017;16:98–108.CrossRefPubMed
9.
go back to reference Kording F, Schoennagel B, Lund G, Ueberle F, Jung C, Adam G, et al. Doppler ultrasound compared with electrocardiogram and pulse oximetry cardiac triggering: a pilot study. Magn Reson Med. 2015;74:1257–65.CrossRefPubMed Kording F, Schoennagel B, Lund G, Ueberle F, Jung C, Adam G, et al. Doppler ultrasound compared with electrocardiogram and pulse oximetry cardiac triggering: a pilot study. Magn Reson Med. 2015;74:1257–65.CrossRefPubMed
10.
go back to reference Yamamura J, Kopp I, Frisch M, Fischer R, Valett K, Hecher K, et al. Cardiac MRI of the fetal heart using a novel triggering method: initial results in an animal model. J Magn Reson Imaging. 2012;35:1071–6.CrossRefPubMed Yamamura J, Kopp I, Frisch M, Fischer R, Valett K, Hecher K, et al. Cardiac MRI of the fetal heart using a novel triggering method: initial results in an animal model. J Magn Reson Imaging. 2012;35:1071–6.CrossRefPubMed
11.
go back to reference Schoennagel BP, Remus CC, Yamamura J, Kording F, de Sousa MT, Hecher K, et al. Fetal blood flow velocimetry by phase-contrast MRI using a new triggering method and comparison with Doppler ultrasound in a sheep model: a pilot study. MAGMA. 2014;27:237–44.PubMed Schoennagel BP, Remus CC, Yamamura J, Kording F, de Sousa MT, Hecher K, et al. Fetal blood flow velocimetry by phase-contrast MRI using a new triggering method and comparison with Doppler ultrasound in a sheep model: a pilot study. MAGMA. 2014;27:237–44.PubMed
12.
go back to reference Peterson DM, Beck BL, Duensing GR, Fitzsimmons JR. Common mode signal rejection methods for MRI: reduction of cable shield currents for high static magnetic field systems. Concepts Magn Reson Part B Magn Reson Eng. 2003;19:1–8. Peterson DM, Beck BL, Duensing GR, Fitzsimmons JR. Common mode signal rejection methods for MRI: reduction of cable shield currents for high static magnetic field systems. Concepts Magn Reson Part B Magn Reson Eng. 2003;19:1–8.
13.
go back to reference Szabo TL. Diagnostic ultrasound imaging: inside out. Elsevier. Academic Press, Burlington, MA; London; 2004. Szabo TL. Diagnostic ultrasound imaging: inside out. Elsevier. Academic Press, Burlington, MA; London; 2004.
14.
go back to reference Haris K, Hedström E, Bidhult S, Testud F, Maglaveras N, Heiberg E, et al. Self-gated fetal cardiac MRI with tiny golden angle iGRASP: a feasibility study. J Magn Reson Imaging. 2017;46:207–2017.CrossRefPubMed Haris K, Hedström E, Bidhult S, Testud F, Maglaveras N, Heiberg E, et al. Self-gated fetal cardiac MRI with tiny golden angle iGRASP: a feasibility study. J Magn Reson Imaging. 2017;46:207–2017.CrossRefPubMed
15.
go back to reference Becker M, Frauenrath T, Hezel F, Krombach GA, Kremer U, Koppers B, et al. Comparison of left ventricular function assessment using phonocardiogram- and electrocardiogram-triggered 2D SSFP CINE MR imaging at 1.5 T and 3.0 T. Eur Radiol. 2010;20:1344–55.CrossRefPubMed Becker M, Frauenrath T, Hezel F, Krombach GA, Kremer U, Koppers B, et al. Comparison of left ventricular function assessment using phonocardiogram- and electrocardiogram-triggered 2D SSFP CINE MR imaging at 1.5 T and 3.0 T. Eur Radiol. 2010;20:1344–55.CrossRefPubMed
16.
go back to reference Boone JM, Seibert JA. An analytical edge spread function model for computer fitting and subsequent calculation of the LSF and MTF. Med Phys. 1994;21:1541–5.CrossRefPubMed Boone JM, Seibert JA. An analytical edge spread function model for computer fitting and subsequent calculation of the LSF and MTF. Med Phys. 1994;21:1541–5.CrossRefPubMed
17.
go back to reference Chia JM, Fischer SE, Wickline SA, Lorenz CH. Performance of QRS detection for cardiac magnetic resonance imaging with a novel vectorcardiographic triggering method. J Magn Reson Imaging. 2000;12:678–88.CrossRefPubMed Chia JM, Fischer SE, Wickline SA, Lorenz CH. Performance of QRS detection for cardiac magnetic resonance imaging with a novel vectorcardiographic triggering method. J Magn Reson Imaging. 2000;12:678–88.CrossRefPubMed
18.
go back to reference Gregory TS, Schmidt EJ, Zhang SH, Ho Tse ZT. 3DQRS: a method to obtain reliable QRS complex detection within high field MRI using 12-lead electrocardiogram traces. Magn Reson Med. 2014;71:1374–80.CrossRefPubMedPubMedCentral Gregory TS, Schmidt EJ, Zhang SH, Ho Tse ZT. 3DQRS: a method to obtain reliable QRS complex detection within high field MRI using 12-lead electrocardiogram traces. Magn Reson Med. 2014;71:1374–80.CrossRefPubMedPubMedCentral
19.
go back to reference Roy CW, Seed M, Macgowan CK. Motion compensated cine CMR of the fetal heart using radial undersampling and compressed sensing. J Cardiovasc Magn Reson. 2017;19:29.CrossRefPubMedPubMedCentral Roy CW, Seed M, Macgowan CK. Motion compensated cine CMR of the fetal heart using radial undersampling and compressed sensing. J Cardiovasc Magn Reson. 2017;19:29.CrossRefPubMedPubMedCentral
20.
go back to reference Dong S-Z, Zhu M, Li F. Preliminary experience with cardiovascular magnetic resonance in evaluation of fetal cardiovascular anomalies. J Cardiovasc Magn Reson. 2013;15:40.CrossRefPubMedPubMedCentral Dong S-Z, Zhu M, Li F. Preliminary experience with cardiovascular magnetic resonance in evaluation of fetal cardiovascular anomalies. J Cardiovasc Magn Reson. 2013;15:40.CrossRefPubMedPubMedCentral
21.
go back to reference Votino C, Jani J, Damry N, Dessy H, Kang X, Cos T, et al. Magnetic resonance imaging in the normal fetal heart and in congenital heart disease. Ultrasound Obstet Gynecol. 2012;39:322–9.CrossRefPubMed Votino C, Jani J, Damry N, Dessy H, Kang X, Cos T, et al. Magnetic resonance imaging in the normal fetal heart and in congenital heart disease. Ultrasound Obstet Gynecol. 2012;39:322–9.CrossRefPubMed
22.
go back to reference Manganaro L, Savelli S, Di Maurizio M, Francioso A, Fierro F, Tomei A, et al. Fetal MRI of the cardiovascular system: role of steady-state free precession sequences for the evaluation of normal and pathological appearances. Radiol Med. 2009;114:852–70.CrossRefPubMed Manganaro L, Savelli S, Di Maurizio M, Francioso A, Fierro F, Tomei A, et al. Fetal MRI of the cardiovascular system: role of steady-state free precession sequences for the evaluation of normal and pathological appearances. Radiol Med. 2009;114:852–70.CrossRefPubMed
23.
go back to reference Manganaro L, Savelli S, Di Maurizio M, Perrone A, Tesei J, Francioso A, et al. Potential role of fetal cardiac evaluation with magnetic resonance imaging: preliminary experience. Prenat Diagn. 2008;28:148–56.CrossRefPubMed Manganaro L, Savelli S, Di Maurizio M, Perrone A, Tesei J, Francioso A, et al. Potential role of fetal cardiac evaluation with magnetic resonance imaging: preliminary experience. Prenat Diagn. 2008;28:148–56.CrossRefPubMed
24.
go back to reference Saleem SN. Feasibility of MRI of the fetal heart with balanced steady-state free precession sequence along fetal body and cardiac planes. Am J Roentgenol. 2008;191:1208–15.CrossRef Saleem SN. Feasibility of MRI of the fetal heart with balanced steady-state free precession sequence along fetal body and cardiac planes. Am J Roentgenol. 2008;191:1208–15.CrossRef
25.
go back to reference Molina FS, Faro C, Sotiriadis A, Dagklis T, Nicolaides KH. Heart stroke volume and cardiac output by four-dimensional ultrasound in normal fetuses. Ultrasound Obstet Gynecol. 2008;32:181–7.CrossRefPubMed Molina FS, Faro C, Sotiriadis A, Dagklis T, Nicolaides KH. Heart stroke volume and cardiac output by four-dimensional ultrasound in normal fetuses. Ultrasound Obstet Gynecol. 2008;32:181–7.CrossRefPubMed
26.
go back to reference Hamill N, Yeo L, Romero R, Hassan SS, Myers SA, Mittal P, et al. Fetal cardiac ventricular volume, cardiac output, and ejection fraction determined with 4-dimensional ultrasound using spatiotemporal image correlation and virtual organ computer-aided analysis. Am J Obstet Gynecol. 2011;205:76–e1.CrossRefPubMedPubMedCentral Hamill N, Yeo L, Romero R, Hassan SS, Myers SA, Mittal P, et al. Fetal cardiac ventricular volume, cardiac output, and ejection fraction determined with 4-dimensional ultrasound using spatiotemporal image correlation and virtual organ computer-aided analysis. Am J Obstet Gynecol. 2011;205:76–e1.CrossRefPubMedPubMedCentral
27.
go back to reference Jansz MS, Seed M, van Amerom JFP, Wong D, Grosse-Wortmann L, Yoo S, et al. Metric optimized gating for fetal cardiac MRI. Magn Reson Med. 2010;64:1304–14.CrossRefPubMed Jansz MS, Seed M, van Amerom JFP, Wong D, Grosse-Wortmann L, Yoo S, et al. Metric optimized gating for fetal cardiac MRI. Magn Reson Med. 2010;64:1304–14.CrossRefPubMed
28.
go back to reference Roy CW, Seed M, van Amerom JFP, Al Nafisi B, Grosse-Wortmann L, Yoo S-J, et al. Dynamic imaging of the fetal heart using metric optimized gating. Magn Reson Med 2013;0:1–10. Roy CW, Seed M, van Amerom JFP, Al Nafisi B, Grosse-Wortmann L, Yoo S-J, et al. Dynamic imaging of the fetal heart using metric optimized gating. Magn Reson Med 2013;0:1–10.
29.
go back to reference Seed M, van Amerom JFP, Yoo S-J, Al Nafisi B, Grosse-Wortmann L, Jaeggi E, et al. Feasibility of quantification of the distribution of blood flow in the normal human fetal circulation using CMR: a cross-sectional study. J Cardiovasc Magn Reson. 2012;14:79.CrossRefPubMedPubMedCentral Seed M, van Amerom JFP, Yoo S-J, Al Nafisi B, Grosse-Wortmann L, Jaeggi E, et al. Feasibility of quantification of the distribution of blood flow in the normal human fetal circulation using CMR: a cross-sectional study. J Cardiovasc Magn Reson. 2012;14:79.CrossRefPubMedPubMedCentral
30.
go back to reference Al Nafisi B, van Amerom JFP, Forsey J, Jaeggi E, Grosse-Wortmann L, Yoo S-J, et al. Fetal circulation in left-sided congenital heart disease measured by cardiovascular magnetic resonance: a case–control study. J Cardiovasc Magn Reson. 2013;15:65.CrossRefPubMedPubMedCentral Al Nafisi B, van Amerom JFP, Forsey J, Jaeggi E, Grosse-Wortmann L, Yoo S-J, et al. Fetal circulation in left-sided congenital heart disease measured by cardiovascular magnetic resonance: a case–control study. J Cardiovasc Magn Reson. 2013;15:65.CrossRefPubMedPubMedCentral
31.
go back to reference Prsa M, Sun L, van Amerom J, Yoo S-J, Grosse-Wortmann L, Jaeggi E, et al. Reference ranges of blood flow in the major vessels of the normal human fetal circulation at term by phase-contrast magnetic resonance imaging. Circ Cardiovasc Imaging. 2014;7:663–70.CrossRefPubMed Prsa M, Sun L, van Amerom J, Yoo S-J, Grosse-Wortmann L, Jaeggi E, et al. Reference ranges of blood flow in the major vessels of the normal human fetal circulation at term by phase-contrast magnetic resonance imaging. Circ Cardiovasc Imaging. 2014;7:663–70.CrossRefPubMed
32.
go back to reference Tsai-Goodman B, Zhu MY, Al-Rujaib M, Seed M, Macgowan CK. Foetal blood flow measured using phase contrast cardiovascular magnetic resonance–preliminary data comparing 1.5 T with 3.0 T. J Cardiovasc Magn Reson. 2015;17:30.CrossRefPubMedPubMedCentral Tsai-Goodman B, Zhu MY, Al-Rujaib M, Seed M, Macgowan CK. Foetal blood flow measured using phase contrast cardiovascular magnetic resonance–preliminary data comparing 1.5 T with 3.0 T. J Cardiovasc Magn Reson. 2015;17:30.CrossRefPubMedPubMedCentral
34.
go back to reference Feinstein JA, Epstein FH, Arai AE, Foo TKF, Hartley MR, Balaban RS, et al. Using cardiac phase to order reconstruction (CAPTOR): a method to improve diastolic images. J Magn Reson Imaging. 1997;7:794–8.CrossRefPubMed Feinstein JA, Epstein FH, Arai AE, Foo TKF, Hartley MR, Balaban RS, et al. Using cardiac phase to order reconstruction (CAPTOR): a method to improve diastolic images. J Magn Reson Imaging. 1997;7:794–8.CrossRefPubMed
35.
go back to reference Hoerr V, Nagelmann N, Nauerth A, Kuhlmann MT, Stypmann J, Faber C. Cardiac-respiratory self-gated cine ultra-short echo time (UTE) cardiovascular magnetic resonance for assessment of functional cardiac parameters at high magnetic fields. J Cardiovasc Magn Reson. 2013;15:59.CrossRefPubMedPubMedCentral Hoerr V, Nagelmann N, Nauerth A, Kuhlmann MT, Stypmann J, Faber C. Cardiac-respiratory self-gated cine ultra-short echo time (UTE) cardiovascular magnetic resonance for assessment of functional cardiac parameters at high magnetic fields. J Cardiovasc Magn Reson. 2013;15:59.CrossRefPubMedPubMedCentral
36.
go back to reference Yamamura J, Frisch M, Ecker H, Graessner J, Hecher K, Adam G, et al. Self-gating MR imaging of the fetal heart: comparison with real cardiac triggering. Eur Radiol. 2011;21:142–9.CrossRefPubMed Yamamura J, Frisch M, Ecker H, Graessner J, Hecher K, Adam G, et al. Self-gating MR imaging of the fetal heart: comparison with real cardiac triggering. Eur Radiol. 2011;21:142–9.CrossRefPubMed
37.
go back to reference Krämer M, Herrmann K, Biermann J, Freiburger S, Schwarzer M, Reichenbach JR. Self-gated cardiac cine MRI of the rat on a clinical 3 T MRI system. NMR Biomed. 2015;28:162–7.CrossRefPubMed Krämer M, Herrmann K, Biermann J, Freiburger S, Schwarzer M, Reichenbach JR. Self-gated cardiac cine MRI of the rat on a clinical 3 T MRI system. NMR Biomed. 2015;28:162–7.CrossRefPubMed
38.
go back to reference Godfrey ME, Messing B, Cohen SM, Valsky DV, Yagel S. Functional assessment of the fetal heart: a review. Ultrasound Obstet Gynecol. 2012;39:131–44.CrossRefPubMed Godfrey ME, Messing B, Cohen SM, Valsky DV, Yagel S. Functional assessment of the fetal heart: a review. Ultrasound Obstet Gynecol. 2012;39:131–44.CrossRefPubMed
Metadata
Title
Dynamic fetal cardiovascular magnetic resonance imaging using Doppler ultrasound gating
Authors
Fabian Kording
Jin Yamamura
Manuela Tavares de Sousa
Christian Ruprecht
Erik Hedström
Anthony H. Aletras
P. Ellen Grant
Andrew J. Powell
Kai Fehrs
Gerhard Adam
Hendrik Kooijman
Bjoern P. Schoennagel
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2018
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-018-0440-4

Other articles of this Issue 1/2018

Journal of Cardiovascular Magnetic Resonance 1/2018 Go to the issue