Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2017

Open Access 01-01-2017 | Technical notes

In vivo cardiovascular magnetic resonance of 2D vessel wall diffusion anisotropy in carotid arteries

Authors: Peter Opriessnig, Harald Mangge, Rudolf Stollberger, Hannes Deutschmann, Gernot Reishofer

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2017

Login to get access

Abstract

Background

Diffusion weighted (DW) cardiovascular magnetic resonance (CMR) has shown great potential to discriminate between healthy and diseased vessel tissue by evaluating the apparent diffusion coefficient (ADC) along the arterial axis. Recently, ex vivo studies on porcine arteries utilizing diffusion tensor imaging (DTI) revealed a circumferential fiber orientation rather than an organization in axial direction, suggesting dominant diffusion perpendicular to the slice direction. In the present study, we propose a method to access tangential and radial diffusion of carotids in vivo by utilizing a pulse sequence that enables high resolution DW imaging in combination with a two-dimensional (2D) diffusion gradient direction sampling scheme perpendicular to the longitudinal axis of the artery.

Methods

High resolution DTI of 12 healthy male volunteers (age: 25–60 years) was performed on one selected axial slice using a read-out segmented EPI (rs-EPI) sequence on a 3T MR scanner.

Results

It was found consistently for all 12 volunteers, that the tangential component as the principle direction of diffusion. Mean vessel wall fractional anisotropy (FA) values ranged from 0.7 for the youngest to 0.56 for the oldest participant. Linear regression analysis between the FA values and volunteers age revealed a highly significant (P < 0.01) linear relationship with an adjusted R2 of 0.52. In addition, a linear trend (P < 0.1) could be observed between radial diffusivity (RD) and age.

Conclusion

These results point to FA being a sensitive parameter able to capture changes in the vascular architecture with age. In detail, the data demonstrate a decrease in FA with advancing age indicating possible alterations of tissue microstructural integrity. Moreover, analyzing 2D diffusion tensor directions is sufficient and applicable in a clinical setup concerning the overall scan time.
Literature
1.
go back to reference Health Organization World WHO: Global Status Report on Noncommunicable Diseases 2014. World Health Organization; 2015. ISBN Number: 9789241564854. Health Organization World WHO: Global Status Report on Noncommunicable Diseases 2014. World Health Organization; 2015. ISBN Number: 9789241564854.
3.
go back to reference Saam T, Underhill HR, Chu B, Takaya N, Cai J, Polissar NL, Yuan C, Hatsukami TS. Prevalence of American Heart Association type VI carotid atherosclerotic lesions identified by magnetic resonance imaging for different levels of stenosis as measured by duplex ultrasound. J Am Coll Cardiol. 2008;51:1014–21.CrossRefPubMed Saam T, Underhill HR, Chu B, Takaya N, Cai J, Polissar NL, Yuan C, Hatsukami TS. Prevalence of American Heart Association type VI carotid atherosclerotic lesions identified by magnetic resonance imaging for different levels of stenosis as measured by duplex ultrasound. J Am Coll Cardiol. 2008;51:1014–21.CrossRefPubMed
4.
go back to reference Cai J-M, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation. 2002;106:1368–73.CrossRefPubMed Cai J-M, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation. 2002;106:1368–73.CrossRefPubMed
5.
go back to reference Sun J, Zhao X-Q, Balu N, Hippe DS, Hatsukami TS, Isquith DA, Yamada K, Neradilek MB, Cantón G, Xue Y, Fleg JL, Desvigne-Nickens P, Klimas MT, Padley RJ, Vassileva MT, Wyman BT, Yuan C. Carotid magnetic resonance imaging for monitoring atherosclerotic plaque progression: a multicenter reproducibility study. Int J Cardiovasc Imaging. 2015;31:95–103.CrossRefPubMed Sun J, Zhao X-Q, Balu N, Hippe DS, Hatsukami TS, Isquith DA, Yamada K, Neradilek MB, Cantón G, Xue Y, Fleg JL, Desvigne-Nickens P, Klimas MT, Padley RJ, Vassileva MT, Wyman BT, Yuan C. Carotid magnetic resonance imaging for monitoring atherosclerotic plaque progression: a multicenter reproducibility study. Int J Cardiovasc Imaging. 2015;31:95–103.CrossRefPubMed
6.
go back to reference Kim S-E, Jeong E-K, Shi X-F, Morrell G, Treiman GS, Parker DL. Diffusion-weighted imaging of human carotid artery using 2D single-shot interleaved multislice inner volume diffusion-weighted echo planar imaging (2D ss-IMIV-DWEPI) at 3 T: diffusion measurement in atherosclerotic plaque. J Magn Reson Imaging. 2009;30:1068–77.CrossRefPubMedPubMedCentral Kim S-E, Jeong E-K, Shi X-F, Morrell G, Treiman GS, Parker DL. Diffusion-weighted imaging of human carotid artery using 2D single-shot interleaved multislice inner volume diffusion-weighted echo planar imaging (2D ss-IMIV-DWEPI) at 3 T: diffusion measurement in atherosclerotic plaque. J Magn Reson Imaging. 2009;30:1068–77.CrossRefPubMedPubMedCentral
7.
go back to reference Kim S-E, Treiman GS, Roberts JA, Jeong E-K, Shi X, Hadley JR, Parker DL. In vivo and ex vivo measurements of the mean ADC values of lipid necrotic core and hemorrhage obtained from diffusion weighted imaging in human atherosclerotic plaques. J Magn Reson Imaging. 2011;34:1167–75.CrossRefPubMed Kim S-E, Treiman GS, Roberts JA, Jeong E-K, Shi X, Hadley JR, Parker DL. In vivo and ex vivo measurements of the mean ADC values of lipid necrotic core and hemorrhage obtained from diffusion weighted imaging in human atherosclerotic plaques. J Magn Reson Imaging. 2011;34:1167–75.CrossRefPubMed
8.
go back to reference Xie Y, Yu W, Fan Z, Nguyen C, Bi X, An J, Zhang T, Zhang Z, Li D. High resolution 3D diffusion cardiovascular magnetic resonance of carotid vessel wall to detect lipid core without contrast media. J Cardiovasc Magn Reson. 2014;16:67.CrossRefPubMedPubMedCentral Xie Y, Yu W, Fan Z, Nguyen C, Bi X, An J, Zhang T, Zhang Z, Li D. High resolution 3D diffusion cardiovascular magnetic resonance of carotid vessel wall to detect lipid core without contrast media. J Cardiovasc Magn Reson. 2014;16:67.CrossRefPubMedPubMedCentral
9.
go back to reference Ghazanfari S, Driessen-Mol A, Strijkers GJ, Kanters FMW, Baaijens FPT, Bouten CVC. A comparative analysis of the collagen architecture in the carotid artery: second harmonic generation versus diffusion tensor imaging. Biochem Biophys Res Commun. 2012;426:54–8.CrossRefPubMed Ghazanfari S, Driessen-Mol A, Strijkers GJ, Kanters FMW, Baaijens FPT, Bouten CVC. A comparative analysis of the collagen architecture in the carotid artery: second harmonic generation versus diffusion tensor imaging. Biochem Biophys Res Commun. 2012;426:54–8.CrossRefPubMed
10.
go back to reference Flamini V, Kerskens C, Simms C, Lally C. Fibre orientation of fresh and frozen porcine aorta determined non-invasively using diffusion tensor imaging. Med Eng Phys. 2013;35:765–76.CrossRefPubMed Flamini V, Kerskens C, Simms C, Lally C. Fibre orientation of fresh and frozen porcine aorta determined non-invasively using diffusion tensor imaging. Med Eng Phys. 2013;35:765–76.CrossRefPubMed
11.
go back to reference Porter DA, Heidemann RM. High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magn Reson Med. 2009;62:468–75.CrossRefPubMed Porter DA, Heidemann RM. High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magn Reson Med. 2009;62:468–75.CrossRefPubMed
12.
go back to reference Clarke SE, Hammond RR, Mitchell JR, Rutt BK. Quantitative assessment of carotid plaque composition using multicontrast MRI and registered histology. Magn Reson Med. 2003;50:1199–208.CrossRefPubMed Clarke SE, Hammond RR, Mitchell JR, Rutt BK. Quantitative assessment of carotid plaque composition using multicontrast MRI and registered histology. Magn Reson Med. 2003;50:1199–208.CrossRefPubMed
13.
go back to reference Berquist RM, Gledhill KM, Peterson MW, Doan AH, Baxter GT, Yopak KE, Kang N, Walker HJ, Hastings PA, Frank LR. The Digital Fish Library: Using MRI to Digitize, Database, and Document the Morphological Diversity of Fish. PLoS ONE. 2012;7:e34499.CrossRefPubMedPubMedCentral Berquist RM, Gledhill KM, Peterson MW, Doan AH, Baxter GT, Yopak KE, Kang N, Walker HJ, Hastings PA, Frank LR. The Digital Fish Library: Using MRI to Digitize, Database, and Document the Morphological Diversity of Fish. PLoS ONE. 2012;7:e34499.CrossRefPubMedPubMedCentral
14.
go back to reference Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW. elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. 2010;29:196–205.CrossRefPubMed Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW. elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. 2010;29:196–205.CrossRefPubMed
15.
go back to reference Shamonin DP, Bron EE, Lelieveldt BPF, Smits M, Klein S, Staring M, Alzheimer’s Disease Neuroimaging Initiative. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer’s disease. Front Neuroinform. 2013;7:50.CrossRefPubMed Shamonin DP, Bron EE, Lelieveldt BPF, Smits M, Klein S, Staring M, Alzheimer’s Disease Neuroimaging Initiative. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer’s disease. Front Neuroinform. 2013;7:50.CrossRefPubMed
16.
go back to reference Soares JM, Marques P, Alves V, Sousa N. A hitchhiker’s guide to diffusion tensor imaging. Front Neurosci. 2013;7(March):1–14. Soares JM, Marques P, Alves V, Sousa N. A hitchhiker’s guide to diffusion tensor imaging. Front Neurosci. 2013;7(March):1–14.
17.
go back to reference Klooster R Van, Staring M, Klein S, Kwee RM, Kooi ME, Reiber JHC, Lelieveldt BPF. Automated registration of multispectral MR vessel wall images of the carotid artery Automated registration of multispectral MR vessel wall images. Med Phys. 2013;40(12):121904. Klooster R Van, Staring M, Klein S, Kwee RM, Kooi ME, Reiber JHC, Lelieveldt BPF. Automated registration of multispectral MR vessel wall images of the carotid artery Automated registration of multispectral MR vessel wall images. Med Phys. 2013;40(12):121904.
18.
go back to reference R Core Team. R: A Language and Environment for Statistical Computing. 2013. R Core Team. R: A Language and Environment for Statistical Computing. 2013.
19.
go back to reference Kingsley PB. Introduction to diffusion tensor imaging mathematics: Part I. Tensors, rotations, and eigenvectors. Concepts Magn Reson Part A. 2006;28A:101–22.CrossRef Kingsley PB. Introduction to diffusion tensor imaging mathematics: Part I. Tensors, rotations, and eigenvectors. Concepts Magn Reson Part A. 2006;28A:101–22.CrossRef
20.
go back to reference Kingsley PB. Introduction to diffusion tensor imaging mathematics: Part II. Anisotropy, diffusion-weighting factors, and gradient encoding schemes. Concepts Magn Reson Part A. 2006;28A:123–54.CrossRef Kingsley PB. Introduction to diffusion tensor imaging mathematics: Part II. Anisotropy, diffusion-weighting factors, and gradient encoding schemes. Concepts Magn Reson Part A. 2006;28A:123–54.CrossRef
21.
go back to reference Kingsley PB. Introduction to diffusion tensor imaging mathematics: Part III. Tensor calculation, noise, simulations, and optimization. Concepts Magn Reson Part A. 2006;28A:155–79.CrossRef Kingsley PB. Introduction to diffusion tensor imaging mathematics: Part III. Tensor calculation, noise, simulations, and optimization. Concepts Magn Reson Part A. 2006;28A:155–79.CrossRef
22.
go back to reference Finlay HM, McCullough L, Canham PB. Three-dimensional collagen organization of human brain arteries at different transmural pressures. J Vasc Res. 1995;32:301–12.PubMed Finlay HM, McCullough L, Canham PB. Three-dimensional collagen organization of human brain arteries at different transmural pressures. J Vasc Res. 1995;32:301–12.PubMed
23.
go back to reference Jackson A. Quantitative MRI of the brain: measuring changes caused by disease. By P Tofts. Br J Radiol. 2005;78:87.CrossRef Jackson A. Quantitative MRI of the brain: measuring changes caused by disease. By P Tofts. Br J Radiol. 2005;78:87.CrossRef
24.
go back to reference Miller KL, Pauly JM. Nonlinear phase correction for navigated diffusion imaging. Magn Reson Med. 2003;50:343–53.CrossRefPubMed Miller KL, Pauly JM. Nonlinear phase correction for navigated diffusion imaging. Magn Reson Med. 2003;50:343–53.CrossRefPubMed
25.
go back to reference Cohen-adad J. High-Resolution DWI in Brain and Spinal Cord with syngo RESOLVE 1. Siemens Magnetom - Clin Neurol. 2012;510:16–23. Cohen-adad J. High-Resolution DWI in Brain and Spinal Cord with syngo RESOLVE 1. Siemens Magnetom - Clin Neurol. 2012;510:16–23.
26.
go back to reference Hayes LL, Porter DA, Jones RA, Palasis S, Grattan-Smith JD. RESOLVE: A Powerful Tool for Imaging the Pediatric Spine. MAGNETOM Flash. 2014;2:38–45. Hayes LL, Porter DA, Jones RA, Palasis S, Grattan-Smith JD. RESOLVE: A Powerful Tool for Imaging the Pediatric Spine. MAGNETOM Flash. 2014;2:38–45.
27.
go back to reference Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA). Magn Reson Med. 2002;47:1202–10.CrossRefPubMed Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA). Magn Reson Med. 2002;47:1202–10.CrossRefPubMed
Metadata
Title
In vivo cardiovascular magnetic resonance of 2D vessel wall diffusion anisotropy in carotid arteries
Authors
Peter Opriessnig
Harald Mangge
Rudolf Stollberger
Hannes Deutschmann
Gernot Reishofer
Publication date
01-01-2017
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2017
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-016-0304-8

Other articles of this Issue 1/2017

Journal of Cardiovascular Magnetic Resonance 1/2017 Go to the issue