Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2017

Open Access 01-12-2016 | Research

An interactive videogame designed to improve respiratory navigator efficiency in children undergoing cardiovascular magnetic resonance

Authors: Sean M. Hamlet, Christopher M. Haggerty, Jonathan D. Suever, Gregory J. Wehner, Jonathan D. Grabau, Kristin N. Andres, Moriel H. Vandsburger, David K. Powell, Vincent L. Sorrell, Brandon K. Fornwalt

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2017

Login to get access

Abstract

Background

Advanced cardiovascular magnetic resonance (CMR) acquisitions often require long scan durations that necessitate respiratory navigator gating. The tradeoff of navigator gating is reduced scan efficiency, particularly when the patient’s breathing patterns are inconsistent, as is commonly seen in children. We hypothesized that engaging pediatric participants with a navigator-controlled videogame to help control breathing patterns would improve navigator efficiency and maintain image quality.

Methods

We developed custom software that processed the Siemens respiratory navigator image in real-time during CMR and represented diaphragm position using a cartoon avatar, which was projected to the participant in the scanner as visual feedback. The game incentivized children to breathe such that the avatar was positioned within the navigator acceptance window (±3 mm) throughout image acquisition.
Using a 3T Siemens Tim Trio, 50 children (Age: 14 ± 3 years, 48 % female) with no significant past medical history underwent a respiratory navigator-gated 2D spiral cine displacement encoding with stimulated echoes (DENSE) CMR acquisition first with no feedback (NF) and then with the feedback game (FG). Thirty of the 50 children were randomized to undergo extensive off-scanner training with the FG using a MRI simulator, or no off-scanner training. Navigator efficiency, signal-to-noise ratio (SNR), and global left-ventricular strains were determined for each participant and compared.

Results

Using the FG improved average navigator efficiency from 33 ± 15 to 58 ± 13 % (p < 0.001) and improved SNR by 5 % (p = 0.01) compared to acquisitions with NF. There was no difference in navigator efficiency (p = 0.90) or SNR (p = 0.77) between untrained and trained participants for FG acquisitions. Circumferential and radial strains derived from FG acquisitions were slightly reduced compared to NF acquisitions (−16 ± 2 % vs −17 ± 2 %, p < 0.001; 40 ± 10 % vs 44 ± 11 %, p = 0.005, respectively). There were no differences in longitudinal strain (p = 0.38).

Conclusions

Use of a respiratory navigator feedback game during navigator-gated CMR improved navigator efficiency in children from 33 to 58 %. This improved efficiency was associated with a 5 % increase in SNR for spiral cine DENSE. Extensive off-scanner training was not required to achieve the improvement in navigator efficiency.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhong X, Spottiswoode BS, Meyer CH, Kramer CM, Epstein FH. Imaging three-dimensional myocardial mechanics using navigator-gated volumetric spiral cine DENSE MRI. Magn Reson Med. 2010;64:1089–97.CrossRefPubMedPubMedCentral Zhong X, Spottiswoode BS, Meyer CH, Kramer CM, Epstein FH. Imaging three-dimensional myocardial mechanics using navigator-gated volumetric spiral cine DENSE MRI. Magn Reson Med. 2010;64:1089–97.CrossRefPubMedPubMedCentral
2.
go back to reference Potthast S, Mitsumori L, Stanescu LA, Richardson ML, Branch K, Dubinsky TJ, Maki JH. Measuring aortic diameter with different MR techniques: Comparison of three-dimensional (3D) navigated steady-state free-precession (SSFP), 3D contrast-enhanced magnetic resonance angiography (CE-MRA), 2D T2 black blood, and 2D cine SSFP. J Magn Reson Imaging. 2010;31:177–84.CrossRefPubMed Potthast S, Mitsumori L, Stanescu LA, Richardson ML, Branch K, Dubinsky TJ, Maki JH. Measuring aortic diameter with different MR techniques: Comparison of three-dimensional (3D) navigated steady-state free-precession (SSFP), 3D contrast-enhanced magnetic resonance angiography (CE-MRA), 2D T2 black blood, and 2D cine SSFP. J Magn Reson Imaging. 2010;31:177–84.CrossRefPubMed
3.
go back to reference Markl M, Kilner PJ, Ebbers T. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011;13:7.CrossRefPubMedPubMedCentral Markl M, Kilner PJ, Ebbers T. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011;13:7.CrossRefPubMedPubMedCentral
4.
go back to reference Abd-Elmoniem KZ, Obele CC, Sibley CT, Matta JR, Pettigrew RI, Gharib AM. Free-breathing single navigator gated cine cardiac magnetic resonance at 3T: feasibility study in patients. J Comput Assist Tomogr. 2011;35:382–6.CrossRefPubMedPubMedCentral Abd-Elmoniem KZ, Obele CC, Sibley CT, Matta JR, Pettigrew RI, Gharib AM. Free-breathing single navigator gated cine cardiac magnetic resonance at 3T: feasibility study in patients. J Comput Assist Tomogr. 2011;35:382–6.CrossRefPubMedPubMedCentral
5.
go back to reference Feuerlein S, Klass O, Pasquarelli A, Brambs HJ, Wunderlich A, Duerk JL, Aschoff AJ, Hoffmann MHK. Coronary MR imaging: navigator echo biofeedback increases navigator efficiency-initial experience. Acad Radiol. 2009;16:374–9.CrossRefPubMed Feuerlein S, Klass O, Pasquarelli A, Brambs HJ, Wunderlich A, Duerk JL, Aschoff AJ, Hoffmann MHK. Coronary MR imaging: navigator echo biofeedback increases navigator efficiency-initial experience. Acad Radiol. 2009;16:374–9.CrossRefPubMed
6.
go back to reference Jhooti P, Haas T, Kawel N, Bremerich J, Keegan J, Scheffler K. Use of respiratory biofeedback and CLAWS for increased navigator efficiency for imaging the thoracic aorta. Magn Reson Med. 2011;66:1666–73.CrossRefPubMed Jhooti P, Haas T, Kawel N, Bremerich J, Keegan J, Scheffler K. Use of respiratory biofeedback and CLAWS for increased navigator efficiency for imaging the thoracic aorta. Magn Reson Med. 2011;66:1666–73.CrossRefPubMed
7.
go back to reference Wang Y, Rossman PJ, Grimm RC, Riederer SJ, Ehman RL. Navigator-echo-based real-time respiratory gating and triggering for reduction of respiration effects in three-dimensional coronary MR angiography. Radiology. 1996;198:55–60.CrossRefPubMed Wang Y, Rossman PJ, Grimm RC, Riederer SJ, Ehman RL. Navigator-echo-based real-time respiratory gating and triggering for reduction of respiration effects in three-dimensional coronary MR angiography. Radiology. 1996;198:55–60.CrossRefPubMed
8.
go back to reference Liu YL, Riederer SJ, Rossman PJ, Grimm RC, Debbins JP, Ehman RL. A Monitoring, feedback, and triggering system for reproducible breath-hold MR imaging. Magn Reson Med. 1993;30:507–11.CrossRefPubMed Liu YL, Riederer SJ, Rossman PJ, Grimm RC, Debbins JP, Ehman RL. A Monitoring, feedback, and triggering system for reproducible breath-hold MR imaging. Magn Reson Med. 1993;30:507–11.CrossRefPubMed
9.
go back to reference Wang Y, Christy PS, Korosec FR, Alley MT, Grist TM, Polzin JA, Mistretta CA. Coronary MRI with a respiratory feedback monitor: the 2D imaging case. Magn Reson Med. 1995;33:116–21.CrossRefPubMed Wang Y, Christy PS, Korosec FR, Alley MT, Grist TM, Polzin JA, Mistretta CA. Coronary MRI with a respiratory feedback monitor: the 2D imaging case. Magn Reson Med. 1995;33:116–21.CrossRefPubMed
10.
go back to reference Taylor AM, Jhooti P, Wiesmann F, Keegan J, Firmin DN, Pennell DJ. MR navigator-echo monitoring of temporal changes in diaphragm position: implications for MR coronary angiography. J Magn Reson Imaging. 1997;7:629–36.CrossRefPubMed Taylor AM, Jhooti P, Wiesmann F, Keegan J, Firmin DN, Pennell DJ. MR navigator-echo monitoring of temporal changes in diaphragm position: implications for MR coronary angiography. J Magn Reson Imaging. 1997;7:629–36.CrossRefPubMed
11.
go back to reference Wehner GJ, Suever JD, Haggerty CM, Jing L, Powell DK, Hamlet SM, Grabau JD, Mojsejenko WD, Zhong X, Epstein FH, Fornwalt BK. Validation of in vivo 2D displacements from spiral cine DENSE at 3T. J Cardiovasc Magn Reson. 2015;17:5.CrossRefPubMedPubMedCentral Wehner GJ, Suever JD, Haggerty CM, Jing L, Powell DK, Hamlet SM, Grabau JD, Mojsejenko WD, Zhong X, Epstein FH, Fornwalt BK. Validation of in vivo 2D displacements from spiral cine DENSE at 3T. J Cardiovasc Magn Reson. 2015;17:5.CrossRefPubMedPubMedCentral
12.
go back to reference Wehner GJ, Grabau JD, Suever JD, Haggerty CM, Jing L, Powell DK, Hamlet SM, Vandsburger MH, Zhong X, Fornwalt BK. 2D cine DENSE with low encoding frequencies accurately quantifies cardiac mechanics with improved image characteristics. J Cardiovasc Magn Reson. 2015;17:93.CrossRefPubMedPubMedCentral Wehner GJ, Grabau JD, Suever JD, Haggerty CM, Jing L, Powell DK, Hamlet SM, Vandsburger MH, Zhong X, Fornwalt BK. 2D cine DENSE with low encoding frequencies accurately quantifies cardiac mechanics with improved image characteristics. J Cardiovasc Magn Reson. 2015;17:93.CrossRefPubMedPubMedCentral
13.
go back to reference Zhong X, Spottiswoode BS, Cowart EA, Gilson WD, Epstein FH. Selective suppression of artifact-generating echoes in cine DENSE using through-plane dephasing. Magn Reson Med. 2006;56:1126–31.CrossRefPubMed Zhong X, Spottiswoode BS, Cowart EA, Gilson WD, Epstein FH. Selective suppression of artifact-generating echoes in cine DENSE using through-plane dephasing. Magn Reson Med. 2006;56:1126–31.CrossRefPubMed
14.
go back to reference Kim D, Gilson WD, Kramer CM, Epstein FH. Myocardial tissue tracking with two-dimensional cine displacement-encoded MR imaging: development and initial evaluation. Radiology. 2004;230:862–71.CrossRefPubMed Kim D, Gilson WD, Kramer CM, Epstein FH. Myocardial tissue tracking with two-dimensional cine displacement-encoded MR imaging: development and initial evaluation. Radiology. 2004;230:862–71.CrossRefPubMed
15.
go back to reference Hamlet SM, Haggerty CM, Suever JD, Wehner GK, Andres KN, Powell DK, Fornwalt BK. Optimal configuration of respiratory navigator gating for the quantification of left ventricular strain using spiral cine displacement encoding with stimulated echoes (DENSE) MRI. J Magn Reson Imaging. 2016. doi:10.1002/jmri.25389. Hamlet SM, Haggerty CM, Suever JD, Wehner GK, Andres KN, Powell DK, Fornwalt BK. Optimal configuration of respiratory navigator gating for the quantification of left ventricular strain using spiral cine displacement encoding with stimulated echoes (DENSE) MRI. J Magn Reson Imaging. 2016. doi:10.1002/jmri.25389.
16.
go back to reference Suever JD, Wehner GJ, Haggerty CM, Jing L, Hamlet SM, Binkley CM, Kramer SP, Mattingly AC, Powell DK, Bilchick KC, Epstein FH, Fornwalt BK. Simplified post processing of cine DENSE cardiovascular magnetic resonance for quantification of cardiac mechanics. J Cardiovasc Magn Reson. 2014;16:94.CrossRefPubMedPubMedCentral Suever JD, Wehner GJ, Haggerty CM, Jing L, Hamlet SM, Binkley CM, Kramer SP, Mattingly AC, Powell DK, Bilchick KC, Epstein FH, Fornwalt BK. Simplified post processing of cine DENSE cardiovascular magnetic resonance for quantification of cardiac mechanics. J Cardiovasc Magn Reson. 2014;16:94.CrossRefPubMedPubMedCentral
17.
go back to reference Spottiswoode BS, Zhong X, Hess AT, Kramer CM, Meintjes EM, Mayosi BM, Epstein FH. Tracking myocardial motion from cine DENSE images using spatiotemporal phase unwrapping and temporal fitting. IEEE Trans Med Imaging. 2007;26:15–30.CrossRefPubMed Spottiswoode BS, Zhong X, Hess AT, Kramer CM, Meintjes EM, Mayosi BM, Epstein FH. Tracking myocardial motion from cine DENSE images using spatiotemporal phase unwrapping and temporal fitting. IEEE Trans Med Imaging. 2007;26:15–30.CrossRefPubMed
19.
go back to reference Harte JM, Golby CK, Acosta J, Nash EF, Kiraci E, Williams MA, Arvanitis TN, Naidu B. Chest wall motion analysis in healthy volunteers and adults with cystic fibrosis using a novel Kinect-based motion tracking system. Med Biol Eng Comput. 2016. [Epub ahead of print]. Harte JM, Golby CK, Acosta J, Nash EF, Kiraci E, Williams MA, Arvanitis TN, Naidu B. Chest wall motion analysis in healthy volunteers and adults with cystic fibrosis using a novel Kinect-based motion tracking system. Med Biol Eng Comput. 2016. [Epub ahead of print].
20.
go back to reference Heß M, Büther F, Gigengack F, Dawood M, Schäfers KP. A dual-Kinect approach to determine torso surface motion for respiratory motion correction in PET. Med Phys. 2015;42:2276–86.CrossRefPubMed Heß M, Büther F, Gigengack F, Dawood M, Schäfers KP. A dual-Kinect approach to determine torso surface motion for respiratory motion correction in PET. Med Phys. 2015;42:2276–86.CrossRefPubMed
21.
22.
go back to reference Boettler P, Hartmann M, Watzl K, Maroula E, Schulte-moenting J, Knirsch W, Dittrich S. Heart rate effects on strain and strain rate in healthy children. J Am Soc Echocardiogr. 2005;18:1121–30.CrossRefPubMed Boettler P, Hartmann M, Watzl K, Maroula E, Schulte-moenting J, Knirsch W, Dittrich S. Heart rate effects on strain and strain rate in healthy children. J Am Soc Echocardiogr. 2005;18:1121–30.CrossRefPubMed
23.
go back to reference Piran S, Bassett AS, Grewal J, Swaby J-A, Morel C, Oechslin EN, Redington AN, Liu PP, Silversides CK. Patterns of cardiac and extracardiac anomalies in adults with tetrology of Fallot. Am Heart J. 2011;161:131–7.CrossRefPubMedPubMedCentral Piran S, Bassett AS, Grewal J, Swaby J-A, Morel C, Oechslin EN, Redington AN, Liu PP, Silversides CK. Patterns of cardiac and extracardiac anomalies in adults with tetrology of Fallot. Am Heart J. 2011;161:131–7.CrossRefPubMedPubMedCentral
Metadata
Title
An interactive videogame designed to improve respiratory navigator efficiency in children undergoing cardiovascular magnetic resonance
Authors
Sean M. Hamlet
Christopher M. Haggerty
Jonathan D. Suever
Gregory J. Wehner
Jonathan D. Grabau
Kristin N. Andres
Moriel H. Vandsburger
David K. Powell
Vincent L. Sorrell
Brandon K. Fornwalt
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2017
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-016-0272-z

Other articles of this Issue 1/2017

Journal of Cardiovascular Magnetic Resonance 1/2017 Go to the issue