Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2015

Open Access 01-12-2015 | Research

Contrast-free detection of myocardial fibrosis in hypertrophic cardiomyopathy patients with diffusion-weighted cardiovascular magnetic resonance

Authors: Christopher Nguyen, Minjie Lu, Zhaoyang Fan, Xiaoming Bi, Peter Kellman, Shihua Zhao, Debiao Li

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2015

Login to get access

Abstract

Backgrounds

Previous studies have shown that diffusion-weighted cardiovascular magnetic resonance (DW-CMR) is highly sensitive to replacement fibrosis of chronic myocardial infarction. Despite this sensitivity to myocardial infarction, DW-CMR has not been established as a method to detect diffuse myocardial fibrosis. We propose the application of a recently developed DW-CMR technique to detect diffuse myocardial fibrosis in hypertrophic cardiomyopathy (HCM) patients and compare its performance with established CMR techniques.

Methods

HCM patients (N = 23) were recruited and scanned with the following protocol: standard morphological localizers, DW-CMR, extracellular volume (ECV) CMR, and late gadolinium enhanced (LGE) imaging for reference. Apparent diffusion coefficient (ADC) and ECV maps were segmented into 6 American Heart Association (AHA) segments. Positive regions for myocardial fibrosis were defined as: ADC > 2.0 μm2/ms and ECV > 30 %. Fibrotic and non-fibrotic mean ADC and ECV values were compared as well as ADC-derived and ECV-derived fibrosis burden. In addition, fibrosis regional detection was compared between ADC and ECV calculating sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) using ECV as the gold-standard reference.

Results

ADC (2.4 ± 0.2 μm2/ms) of fibrotic regions (ADC > 2.0 μm2/ms) was significantly (p < 0.01) higher than ADC (1.5 ± 0.2 μm2/ms) of non-fibrotic regions. Similarly, ECV (35 ± 4 %) of fibrotic regions (ECV > 30 %) was significantly (p < 0.01) higher than ECV (26 ± 2 %) of non-fibrotic regions. In fibrotic regions defined by ECV, ADC (2.2 ± 0.3 μm2/ms) was again significantly (p < 0.05) higher than ADC (1.6 ± 0.3 μm2/ms) of non-fibrotic regions. In fibrotic regions defined by ADC criterion, ECV (34 ± 5 %) was significantly (p < 0.01) higher than ECV (28 ± 3 %) in non-fibrotic regions. ADC-derived and ECV-derived fibrosis burdens were in substantial agreement (intra-class correlation = 0.83). Regional detection between ADC and ECV of diffuse fibrosis yielded substantial agreement (κ = 0.66) with high sensitivity, specificity, PPV, NPV, and accuracy (0.80, 0.85, 0.81, 0.85, and 0.83, respectively).

Conclusion

DW-CMR is sensitive to diffuse myocardial fibrosis and is capable of characterizing the extent of fibrosis in HCM patients.
Literature
1.
go back to reference Azevedo CF, Nigri M, Higuchi ML, Pomerantzeff PM, Spina GS, Sampaio RO, et al. Prognostic Significance of Myocardial Fibrosis Quantification by Histopathology and Magnetic Resonance Imaging in Patients With Severe Aortic Valve Disease. J Am Coll Cardiol. 2010;56:278–87.CrossRefPubMed Azevedo CF, Nigri M, Higuchi ML, Pomerantzeff PM, Spina GS, Sampaio RO, et al. Prognostic Significance of Myocardial Fibrosis Quantification by Histopathology and Magnetic Resonance Imaging in Patients With Severe Aortic Valve Disease. J Am Coll Cardiol. 2010;56:278–87.CrossRefPubMed
2.
go back to reference O'Hanlon R, Grasso A, Roughton M, Moon JC, Clark S, Wage R, et al. Prognostic Significance of Myocardial Fibrosis in Hypertrophic Cardiomyopathy. J Am Coll Cardiol. 2010;56:867–74.CrossRefPubMed O'Hanlon R, Grasso A, Roughton M, Moon JC, Clark S, Wage R, et al. Prognostic Significance of Myocardial Fibrosis in Hypertrophic Cardiomyopathy. J Am Coll Cardiol. 2010;56:867–74.CrossRefPubMed
3.
go back to reference Green JJ, Berger JS, Kramer CM, Salerno M. Prognostic Value of Late Gadolinium Enhancement in Clinical Outcomes for Hypertrophic Cardiomyopathy. J Am Coll Cardiol Img. 2012;5:370–7.CrossRef Green JJ, Berger JS, Kramer CM, Salerno M. Prognostic Value of Late Gadolinium Enhancement in Clinical Outcomes for Hypertrophic Cardiomyopathy. J Am Coll Cardiol Img. 2012;5:370–7.CrossRef
4.
go back to reference Noureldin RA, Liu S, Nacif MS, Judge DP, Halushka MK, Abraham TP, et al. The diagnosis of hypertrophic cardiomyopathy by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:17.PubMedCentralCrossRefPubMed Noureldin RA, Liu S, Nacif MS, Judge DP, Halushka MK, Abraham TP, et al. The diagnosis of hypertrophic cardiomyopathy by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:17.PubMedCentralCrossRefPubMed
5.
go back to reference Broberg CS, Chugh SS, Conklin C, Sahn DJ, Jerosch-Herold M. Quantification of Diffuse Myocardial Fibrosis and Its Association With Myocardial Dysfunction in Congenital Heart Disease. Circ Cardiovasc Imaging. 2010;3:727–34.PubMedCentralCrossRefPubMed Broberg CS, Chugh SS, Conklin C, Sahn DJ, Jerosch-Herold M. Quantification of Diffuse Myocardial Fibrosis and Its Association With Myocardial Dysfunction in Congenital Heart Disease. Circ Cardiovasc Imaging. 2010;3:727–34.PubMedCentralCrossRefPubMed
6.
go back to reference Amano Y, Takayama M, Kumita S. Contrast-enhanced myocardial T1-weighted scout (Look-Locker) imaging for the detection of myocardial damages in hypertrophic cardiomyopathy. J Magn Reson Imaging. 2009;30:778–84.CrossRefPubMed Amano Y, Takayama M, Kumita S. Contrast-enhanced myocardial T1-weighted scout (Look-Locker) imaging for the detection of myocardial damages in hypertrophic cardiomyopathy. J Magn Reson Imaging. 2009;30:778–84.CrossRefPubMed
7.
go back to reference Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92.PubMedCentralCrossRefPubMed Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92.PubMedCentralCrossRefPubMed
8.
go back to reference Kellman P, Wilson JR, Xue H, Ugander M, Arai AE. Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson. 2012;14:63.PubMedCentralCrossRefPubMed Kellman P, Wilson JR, Xue H, Ugander M, Arai AE. Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson. 2012;14:63.PubMedCentralCrossRefPubMed
9.
go back to reference Kellman P, Wilson JR, Xue H, Bandettini W, Shanbhag SM, Druey KM, et al. Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson. 2012;14:64.PubMedCentralCrossRefPubMed Kellman P, Wilson JR, Xue H, Bandettini W, Shanbhag SM, Druey KM, et al. Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson. 2012;14:64.PubMedCentralCrossRefPubMed
10.
go back to reference Kali A, Cokic I, Tang RLQ, Yang HJ, Sharif B, Marban E, et al. Determination of Location, Size, and Transmurality of Chronic Myocardial Infarction Without Exogenous Contrast Media by Using Cardiac Magnetic Resonance Imaging at 3 T. Circ Cardiovasc Imaging. 2014;7:471–81.PubMedCentralCrossRefPubMed Kali A, Cokic I, Tang RLQ, Yang HJ, Sharif B, Marban E, et al. Determination of Location, Size, and Transmurality of Chronic Myocardial Infarction Without Exogenous Contrast Media by Using Cardiac Magnetic Resonance Imaging at 3 T. Circ Cardiovasc Imaging. 2014;7:471–81.PubMedCentralCrossRefPubMed
11.
go back to reference Wu EX, Wu Y, Nicholls JM, Wang J, Liao S, Zhu S, et al. MR diffusion tensor imaging study of postinfarct myocardium structural remodeling in a porcine model. Magn Reson Med. 2007;58:687–95.CrossRefPubMed Wu EX, Wu Y, Nicholls JM, Wang J, Liao S, Zhu S, et al. MR diffusion tensor imaging study of postinfarct myocardium structural remodeling in a porcine model. Magn Reson Med. 2007;58:687–95.CrossRefPubMed
12.
go back to reference Nguyen C, Fan Z, Xie Y, Dawkins J, Tseliou E, Bi X, et al. In vivo contrast free chronic myocardial infarction characterization using diffusion-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2014;16:1770.CrossRef Nguyen C, Fan Z, Xie Y, Dawkins J, Tseliou E, Bi X, et al. In vivo contrast free chronic myocardial infarction characterization using diffusion-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2014;16:1770.CrossRef
13.
go back to reference Wu M-T, Tseng W-YI SM-YM, Liu C-P, Chiou K-R, Wedeen VJ, Reese TG, et al. Diffusion tensor magnetic resonance imaging mapping the fiber architecture remodeling in human myocardium after infarction: correlation with viability and wall motion. Circulation. 2006;114:1036–45.CrossRefPubMed Wu M-T, Tseng W-YI SM-YM, Liu C-P, Chiou K-R, Wedeen VJ, Reese TG, et al. Diffusion tensor magnetic resonance imaging mapping the fiber architecture remodeling in human myocardium after infarction: correlation with viability and wall motion. Circulation. 2006;114:1036–45.CrossRefPubMed
14.
go back to reference Witschey WR, Zsido GA, Koomalsingh K, Kondo N, Minakawa M, Shuto T, et al. In vivo chronic myocardial infarction characterization by spin locked cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:37.PubMedCentralCrossRefPubMed Witschey WR, Zsido GA, Koomalsingh K, Kondo N, Minakawa M, Shuto T, et al. In vivo chronic myocardial infarction characterization by spin locked cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:37.PubMedCentralCrossRefPubMed
15.
go back to reference Haris M, Singh A, Cai K, Kogan F, McGarvey J, Debrosse C, et al. A technique for in vivo mapping of myocardial creatine kinase metabolism. Nat Med. 2014;20:209–14.PubMedCentralCrossRefPubMed Haris M, Singh A, Cai K, Kogan F, McGarvey J, Debrosse C, et al. A technique for in vivo mapping of myocardial creatine kinase metabolism. Nat Med. 2014;20:209–14.PubMedCentralCrossRefPubMed
16.
go back to reference Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K, et al. Native T1 Mapping in Differentiation of Normal Myocardium From Diffuse Disease in Hypertrophic and Dilated Cardiomyopathy. J Am Coll Cardiol Img. 2013;6:475–84.CrossRef Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K, et al. Native T1 Mapping in Differentiation of Normal Myocardium From Diffuse Disease in Hypertrophic and Dilated Cardiomyopathy. J Am Coll Cardiol Img. 2013;6:475–84.CrossRef
17.
go back to reference Pop M, Ghugre NR, Ramanan V, Morikawa L, Stanisz G, Dick AJ, et al. Quantification of fibrosis in infarcted swine hearts by ex vivolate gadolinium-enhancement and diffusion-weighted MRI methods. Phys Med Biol. 2013;58:5009–28.CrossRefPubMed Pop M, Ghugre NR, Ramanan V, Morikawa L, Stanisz G, Dick AJ, et al. Quantification of fibrosis in infarcted swine hearts by ex vivolate gadolinium-enhancement and diffusion-weighted MRI methods. Phys Med Biol. 2013;58:5009–28.CrossRefPubMed
18.
go back to reference Abdullah OM, Drakos SG, Diakos NA, Wever-Pinzon O, Kfoury AG, Stehlik J, et al. Characterization of diffuse fibrosis in the failing human heart via diffusion tensor imaging and quantitative histological validation. NMR Biomed. 2014;27:1378–86.PubMedCentralCrossRefPubMed Abdullah OM, Drakos SG, Diakos NA, Wever-Pinzon O, Kfoury AG, Stehlik J, et al. Characterization of diffuse fibrosis in the failing human heart via diffusion tensor imaging and quantitative histological validation. NMR Biomed. 2014;27:1378–86.PubMedCentralCrossRefPubMed
19.
go back to reference Tseng W-YI, Dou J, Reese TG, Wedeen VJ. Imaging myocardial fiber disarray and intramural strain hypokinesis in hypertrophic cardiomyopathy with MRI. J Magn Reson Imaging. 2005;23:1–8.CrossRef Tseng W-YI, Dou J, Reese TG, Wedeen VJ. Imaging myocardial fiber disarray and intramural strain hypokinesis in hypertrophic cardiomyopathy with MRI. J Magn Reson Imaging. 2005;23:1–8.CrossRef
20.
go back to reference Ferreira PF, Kilner PJ, McGill L-A, Nielles-Vallespin S, Scott AD, Ho SY, et al. In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2014;16:445. Ferreira PF, Kilner PJ, McGill L-A, Nielles-Vallespin S, Scott AD, Ho SY, et al. In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2014;16:445.
21.
go back to reference Nguyen C, Fan Z, Sharif B, He Y, Dharmakumar R, Berman DS, et al. In vivo three-dimensional high resolution cardiac diffusion-weighted MRI: a motion compensated diffusion-prepared balanced steady-state free precession approach. Magn Reson Med. 2014;72:1257–67.CrossRefPubMed Nguyen C, Fan Z, Sharif B, He Y, Dharmakumar R, Berman DS, et al. In vivo three-dimensional high resolution cardiac diffusion-weighted MRI: a motion compensated diffusion-prepared balanced steady-state free precession approach. Magn Reson Med. 2014;72:1257–67.CrossRefPubMed
22.
go back to reference Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, et al. ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2011;2011(124):e783–831. Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, et al. ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2011;2011(124):e783–831.
23.
go back to reference Bland JM, Altman DG. Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement. Lancet. 1986;327:307–10.CrossRef Bland JM, Altman DG. Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement. Lancet. 1986;327:307–10.CrossRef
24.
go back to reference Rousson V, Gasser T, Seifert B. Assessing intrarater, interrater and test-retest reliability of continuous measurements. Stat Med. 2002;21:3431–46.CrossRefPubMed Rousson V, Gasser T, Seifert B. Assessing intrarater, interrater and test-retest reliability of continuous measurements. Stat Med. 2002;21:3431–46.CrossRefPubMed
25.
go back to reference McGill L-A, Scott AD, Ferreira PF, Nielles-Vallespin S, Ismail T, Kilner PJ, et al. Heterogeneity of Fractional Anisotropy and Mean Diffusivity Measurements by In Vivo Diffusion Tensor Imaging in Normal Human Hearts. PLoS One. 2015;10:e0132360.PubMedCentralCrossRefPubMed McGill L-A, Scott AD, Ferreira PF, Nielles-Vallespin S, Ismail T, Kilner PJ, et al. Heterogeneity of Fractional Anisotropy and Mean Diffusivity Measurements by In Vivo Diffusion Tensor Imaging in Normal Human Hearts. PLoS One. 2015;10:e0132360.PubMedCentralCrossRefPubMed
26.
go back to reference Potet J, Rahmouni A, Mayer J, Vignaud A, Lim P, Luciani A, et al. Detection of myocardial edema with low-b-value diffusion-weighted echo-planar imaging sequence in patients with acute myocarditis. Radiology. 2013;269:362–9.CrossRefPubMed Potet J, Rahmouni A, Mayer J, Vignaud A, Lim P, Luciani A, et al. Detection of myocardial edema with low-b-value diffusion-weighted echo-planar imaging sequence in patients with acute myocarditis. Radiology. 2013;269:362–9.CrossRefPubMed
27.
go back to reference Yang H-J, Sharif B, Pang J, Kali A, Bi X, Cokic I, Li D, Dharmakumar R. Free-breathing, motion-corrected, highly efficient whole heart T2 mapping at 3T with hybrid radial-cartesian trajectory. Magn Reson Med 2015. doi: 10.1002/mrm.25576. [Epub ahead of print] Yang H-J, Sharif B, Pang J, Kali A, Bi X, Cokic I, Li D, Dharmakumar R. Free-breathing, motion-corrected, highly efficient whole heart T2 mapping at 3T with hybrid radial-cartesian trajectory. Magn Reson Med 2015. doi: 10.1002/mrm.25576. [Epub ahead of print]
Metadata
Title
Contrast-free detection of myocardial fibrosis in hypertrophic cardiomyopathy patients with diffusion-weighted cardiovascular magnetic resonance
Authors
Christopher Nguyen
Minjie Lu
Zhaoyang Fan
Xiaoming Bi
Peter Kellman
Shihua Zhao
Debiao Li
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2015
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-015-0214-1

Other articles of this Issue 1/2015

Journal of Cardiovascular Magnetic Resonance 1/2015 Go to the issue