Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2015

Open Access 01-12-2015 | Technical notes

Comparison of diffusion tensor imaging by cardiovascular magnetic resonance and gadolinium enhanced 3D image intensity approaches to investigation of structural anisotropy in explanted rat hearts

Authors: Olivier Bernus, Aleksandra Radjenovic, Mark L Trew, Ian J LeGrice, Gregory B Sands, Derek R Magee, Bruce H Smaill, Stephen H Gilbert

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2015

Login to get access

Abstract

Background

Cardiovascular magnetic resonance (CMR) can through the two methods 3D FLASH and diffusion tensor imaging (DTI) give complementary information on the local orientations of cardiomyocytes and their laminar arrays.

Methods

Eight explanted rat hearts were perfused with Gd-DTPA contrast agent and fixative and imaged in a 9.4T magnet by two types of acquisition: 3D fast low angle shot (FLASH) imaging, voxels 50 × 50 × 50 μm, and 3D spin echo DTI with monopolar diffusion gradients of 3.6 ms duration at 11.5 ms separation, voxels 200 × 200 × 200 μm. The sensitivity of each approach to imaging parameters was explored.

Results

The FLASH data showed laminar alignments of voxels with high signal, in keeping with the presumed predominance of contrast in the interstices between sheetlets. It was analysed, using structure-tensor (ST) analysis, to determine the most (v 1 ST ), intermediate (v 2 ST ) and least (v 3 ST ) extended orthogonal directions of signal continuity. The DTI data was analysed to determine the most (e 1 DTI ), intermediate (e 2 DTI ) and least (e 3 DTI ) orthogonal eigenvectors of extent of diffusion. The correspondence between the FLASH and DTI methods was measured and appraised. The most extended direction of FLASH signal (v 1 ST ) agreed well with that of diffusion (e 1 DTI ) throughout the left ventricle (representative discrepancy in the septum of 13.3 ± 6.7°: median ± absolute deviation) and both were in keeping with the expected local orientations of the long-axis of cardiomyocytes. However, the orientation of the least directions of FLASH signal continuity (v 3 ST ) and diffusion (e 3 ST ) showed greater discrepancies of up to 27.9 ± 17.4°. Both FLASH (v 3 ST ) and DTI (e 3 DTI ) where compared to directly measured laminar arrays in the FLASH images. For FLASH the discrepancy between the structure-tensor calculated v 3 ST and the directly measured FLASH laminar array normal was of 9 ± 7° for the lateral wall and 7 ± 9° for the septum (median ± inter quartile range), and for DTI the discrepancy between the calculated v 3 DTI and the directly measured FLASH laminar array normal was 22 ± 14° and 61 ± 53.4°. DTI was relatively insensitive to the number of diffusion directions and to time up to 72 hours post fixation, but was moderately affected by b-value (which was scaled by modifying diffusion gradient pulse strength with fixed gradient pulse separation). Optimal DTI parameters were b = 1000 mm/s2 and 12 diffusion directions. FLASH acquisitions were relatively insensitive to the image processing parameters explored.

Conclusions

We show that ST analysis of FLASH is a useful and accurate tool in the measurement of cardiac microstructure. While both FLASH and the DTI approaches appear promising for mapping of the alignments of myocytes throughout myocardium, marked discrepancies between the cross myocyte anisotropies deduced from each method call for consideration of their respective limitations.
Appendix
Available only for authorised users
Literature
1.
go back to reference LeGrice IJ, Pope AJ, Sands GB, Whalley G, Doughty RN, Smaill BH. Progression of myocardial remodeling and mechanical dysfunction in the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol. 2012;303:H1353–65.CrossRefPubMed LeGrice IJ, Pope AJ, Sands GB, Whalley G, Doughty RN, Smaill BH. Progression of myocardial remodeling and mechanical dysfunction in the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol. 2012;303:H1353–65.CrossRefPubMed
2.
go back to reference Hooks DA, Trew ML, Caldwell BJ, Sands GB, LeGrice IJ, Smaill BH. Laminar arrangement of ventricular myocytes influences electrical behavior of the heart. Circ Res. 2007;101:e103–12.CrossRefPubMed Hooks DA, Trew ML, Caldwell BJ, Sands GB, LeGrice IJ, Smaill BH. Laminar arrangement of ventricular myocytes influences electrical behavior of the heart. Circ Res. 2007;101:e103–12.CrossRefPubMed
3.
go back to reference Sands GB, Gerneke DA, Hooks DA, Green CR, Smaill BH, Legrice IJ. Automated imaging of extended tissue volumes using confocal microscopy. Microsc Res Tech. 2005;67:227–39.CrossRefPubMed Sands GB, Gerneke DA, Hooks DA, Green CR, Smaill BH, Legrice IJ. Automated imaging of extended tissue volumes using confocal microscopy. Microsc Res Tech. 2005;67:227–39.CrossRefPubMed
4.
go back to reference Trew ML, Caldwell BJ, Sands GB, Hooks DA, Tai DC, Austin TM, et al. Cardiac electrophysiology and tissue structure: bridging the scale gap with a joint measurement and modelling paradigm. Exp Physiol. 2006;91:355–70. Epub 2006 Jan 2023.CrossRefPubMed Trew ML, Caldwell BJ, Sands GB, Hooks DA, Tai DC, Austin TM, et al. Cardiac electrophysiology and tissue structure: bridging the scale gap with a joint measurement and modelling paradigm. Exp Physiol. 2006;91:355–70. Epub 2006 Jan 2023.CrossRefPubMed
5.
go back to reference Caldwell BJ, Trew ML, Sands GB, Hooks DA, LeGrice IJ, Smaill BH. Three distinct directions of intramural activation reveal nonuniform side-to-side electrical coupling of ventricular myocytes. Circ Arrhythm Electrophysiol. 2009;2:433–40. Epub 2009 Jun 2018.CrossRefPubMed Caldwell BJ, Trew ML, Sands GB, Hooks DA, LeGrice IJ, Smaill BH. Three distinct directions of intramural activation reveal nonuniform side-to-side electrical coupling of ventricular myocytes. Circ Arrhythm Electrophysiol. 2009;2:433–40. Epub 2009 Jun 2018.CrossRefPubMed
6.
go back to reference Pope AJ, Sands GB, Smaill BH, LeGrice IJ. Three-dimensional transmural organization of perimysial collagen in the heart. Am J Physiol Heart Circ Physiol. 2008;295:H1243-H1252. Epub 2008 Jul 1218.CrossRefPubMedCentralPubMed Pope AJ, Sands GB, Smaill BH, LeGrice IJ. Three-dimensional transmural organization of perimysial collagen in the heart. Am J Physiol Heart Circ Physiol. 2008;295:H1243-H1252. Epub 2008 Jul 1218.CrossRefPubMedCentralPubMed
7.
go back to reference Hales PW, Schneider JE, Burton RA, Wright BJ, Bollensdorff C, Kohl P. Histo-anatomical structure of the living isolated rat heart in two contraction states assessed by diffusion tensor MRI. Prog Biophys Mol Biol. 2012;110:319–30.CrossRefPubMedCentralPubMed Hales PW, Schneider JE, Burton RA, Wright BJ, Bollensdorff C, Kohl P. Histo-anatomical structure of the living isolated rat heart in two contraction states assessed by diffusion tensor MRI. Prog Biophys Mol Biol. 2012;110:319–30.CrossRefPubMedCentralPubMed
8.
go back to reference Gilbert SH, Benson AP, Li P, Holden AV. Regional localisation of left ventricular sheet structure: integration with current models of cardiac fibre, sheet and band structure. Eur J Cardiothorac Surg. 2007;32:231–49.CrossRefPubMed Gilbert SH, Benson AP, Li P, Holden AV. Regional localisation of left ventricular sheet structure: integration with current models of cardiac fibre, sheet and band structure. Eur J Cardiothorac Surg. 2007;32:231–49.CrossRefPubMed
9.
go back to reference Costa KD, Takayama Y, McCulloch AD, Covell JW. Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium. Am J Physiol. 1999;276:H595–607.PubMed Costa KD, Takayama Y, McCulloch AD, Covell JW. Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium. Am J Physiol. 1999;276:H595–607.PubMed
10.
go back to reference Dokos S, Smaill BH, Young AA, LeGrice IJ. Shear properties of passive ventricular myocardium. Am J Physiol Heart Circ Physiol. 2002;283:H2650–9.CrossRefPubMed Dokos S, Smaill BH, Young AA, LeGrice IJ. Shear properties of passive ventricular myocardium. Am J Physiol Heart Circ Physiol. 2002;283:H2650–9.CrossRefPubMed
11.
go back to reference Gilbert SH, Benoist D, Benson AP, White E, Tanner SF, Holden AV, et al. Visualization and quantification of whole rat heart laminar structure using high-spatial resolution contrast-enhanced MRI. Am J Physiol Heart Circ Physiol. 2012;302:H287–98.CrossRefPubMedCentralPubMed Gilbert SH, Benoist D, Benson AP, White E, Tanner SF, Holden AV, et al. Visualization and quantification of whole rat heart laminar structure using high-spatial resolution contrast-enhanced MRI. Am J Physiol Heart Circ Physiol. 2012;302:H287–98.CrossRefPubMedCentralPubMed
12.
go back to reference LeGrice IJ, Smaill BH, Chai LZ, Edgar SG, Gavin JB, Hunter PJ. Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Physiol. 1995;269:H571–82.PubMed LeGrice IJ, Smaill BH, Chai LZ, Edgar SG, Gavin JB, Hunter PJ. Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Physiol. 1995;269:H571–82.PubMed
13.
go back to reference Streeter DD. Vol. I. The heart. Section 2: The cardiovascular system: Gross morphology and fiber geometry of the heart. In: M. BR, editor. Handbook of Physiology Volume 1, Am. Physiol. Soc. Bethesda, MD. 1979. p. 61–112. Streeter DD. Vol. I. The heart. Section 2: The cardiovascular system: Gross morphology and fiber geometry of the heart. In: M. BR, editor. Handbook of Physiology Volume 1, Am. Physiol. Soc. Bethesda, MD. 1979. p. 61–112.
14.
go back to reference Colli Franzone P, Guerri L, Taccardi B. Potential distributions generated by point stimulation in a myocardial volume: simulation studies in a model of anisotropic ventricular muscle. J Cardiovasc Electrophysiol. 1993;4:438–58.CrossRefPubMed Colli Franzone P, Guerri L, Taccardi B. Potential distributions generated by point stimulation in a myocardial volume: simulation studies in a model of anisotropic ventricular muscle. J Cardiovasc Electrophysiol. 1993;4:438–58.CrossRefPubMed
16.
go back to reference Wang VY, Lam HI, Ennis DB, Cowan BR, Young AA, Nash MP. Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function. Med Image Anal. 2009;13:773–84.CrossRefPubMed Wang VY, Lam HI, Ennis DB, Cowan BR, Young AA, Nash MP. Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function. Med Image Anal. 2009;13:773–84.CrossRefPubMed
17.
go back to reference Eriksson TS, Prassl AJ, Plank G, Holzapfel GA. Modeling the dispersion in electromechanically coupled myocardium. In: International journal for numerical methods in biomedical engineering. 2013. Eriksson TS, Prassl AJ, Plank G, Holzapfel GA. Modeling the dispersion in electromechanically coupled myocardium. In: International journal for numerical methods in biomedical engineering. 2013.
18.
go back to reference Hsu EW, Muzikant AL, Matulevicius SA, Penland RC, Henriquez CS. Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am J Physiol. 1998;274:H1627–34.PubMed Hsu EW, Muzikant AL, Matulevicius SA, Penland RC, Henriquez CS. Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am J Physiol. 1998;274:H1627–34.PubMed
19.
go back to reference Gilbert SH, Benson AP, Li P, Holden AV. Visualisation of dog myocardial structure from diffusion tensor magnetic resonance imaging: The paradox of uniformity and variability. In: Sachse FBSG, editor. Functional Imaging and Modeling of the Heart, Proceedings. Volume 4466. 2007. p. 403–12. Lecture Notes in Computer Science]. Gilbert SH, Benson AP, Li P, Holden AV. Visualisation of dog myocardial structure from diffusion tensor magnetic resonance imaging: The paradox of uniformity and variability. In: Sachse FBSG, editor. Functional Imaging and Modeling of the Heart, Proceedings. Volume 4466. 2007. p. 403–12. Lecture Notes in Computer Science].
20.
go back to reference Scollan DF, Holmes A, Zhang J, Winslow RL. Reconstruction of cardiac ventricular geometry and fiber orientation using magnetic resonance imaging. Ann Biomed Eng. 2000;28:934–44.CrossRefPubMedCentralPubMed Scollan DF, Holmes A, Zhang J, Winslow RL. Reconstruction of cardiac ventricular geometry and fiber orientation using magnetic resonance imaging. Ann Biomed Eng. 2000;28:934–44.CrossRefPubMedCentralPubMed
21.
go back to reference Tseng WY, Wedeen VJ, Reese TG, Smith RN, Halpern EF. Diffusion tensor MRI of myocardial fibers and sheets: correspondence with visible cut-face texture. J Magn Reson Imaging. 2003;17:31–42.CrossRefPubMed Tseng WY, Wedeen VJ, Reese TG, Smith RN, Halpern EF. Diffusion tensor MRI of myocardial fibers and sheets: correspondence with visible cut-face texture. J Magn Reson Imaging. 2003;17:31–42.CrossRefPubMed
22.
go back to reference Hsu EW, Buckley DL, Bui JD, Blackband SJ, Forder JR. Two-component diffusion tensor MRI of isolated perfused hearts. Magn Reson Med. 2001;45:1039–45.CrossRefPubMed Hsu EW, Buckley DL, Bui JD, Blackband SJ, Forder JR. Two-component diffusion tensor MRI of isolated perfused hearts. Magn Reson Med. 2001;45:1039–45.CrossRefPubMed
23.
go back to reference Forder JR, Bui JD, Buckley DL, Blackband SJ. MR imaging measurement of compartmental water diffusion in perfused heart slices. Am J Physiol Heart Circ Physiol. 2001;281:H1280–5.PubMed Forder JR, Bui JD, Buckley DL, Blackband SJ. MR imaging measurement of compartmental water diffusion in perfused heart slices. Am J Physiol Heart Circ Physiol. 2001;281:H1280–5.PubMed
24.
go back to reference Kohler S, Hiller KH, Waller C, Jakob PM, Bauer WR, Haase A. Visualization of myocardial microstructure using high-resolution T*2 imaging at high magnetic field. Magn Reson Med. 2003;49:371–5.CrossRefPubMed Kohler S, Hiller KH, Waller C, Jakob PM, Bauer WR, Haase A. Visualization of myocardial microstructure using high-resolution T*2 imaging at high magnetic field. Magn Reson Med. 2003;49:371–5.CrossRefPubMed
25.
go back to reference Jähne B. Digital image processing. The Netherlands: Springer-Verlag; 2005. Jähne B. Digital image processing. The Netherlands: Springer-Verlag; 2005.
26.
go back to reference Farid H, Simoncelli EP. Differentiation of Discrete Multidimensional Signals. IEEE Trans Image Process. 2004;13:496–508.CrossRefPubMed Farid H, Simoncelli EP. Differentiation of Discrete Multidimensional Signals. IEEE Trans Image Process. 2004;13:496–508.CrossRefPubMed
27.
go back to reference Gilbert SH, Sands GB, LeGrice IJ, Smaill BH, Bernus O, Trew ML. A framework for myoarchitecture analysis of high resolution cardiac MRI and comparison with diffusion Tensor MRI. Conference Proceedings. 2012;2012:4063–6.PubMed Gilbert SH, Sands GB, LeGrice IJ, Smaill BH, Bernus O, Trew ML. A framework for myoarchitecture analysis of high resolution cardiac MRI and comparison with diffusion Tensor MRI. Conference Proceedings. 2012;2012:4063–6.PubMed
28.
go back to reference Gilbert SH, Trew ML, Smaill BH, Radjenovic A, Bernus O. Measurement of Myocardial Structure: 3D Structure Tensor Analysis of High Resolution MRI Quantitatively Compared to DT-MRI. Statistical Atlases and Computational Models of the Heart 2012. In in Lect Notes Comput Sc. 2012;7746:207–14. Gilbert SH, Trew ML, Smaill BH, Radjenovic A, Bernus O. Measurement of Myocardial Structure: 3D Structure Tensor Analysis of High Resolution MRI Quantitatively Compared to DT-MRI. Statistical Atlases and Computational Models of the Heart 2012. In in Lect Notes Comput Sc. 2012;7746:207–14.
29.
go back to reference Papadakis NG, Xing D, Huang CL, Hall LD, Carpenter TA. A comparative study of acquisition schemes for diffusion tensor imaging using MRI. J Magn Reson. 1999;137:67–82.CrossRefPubMed Papadakis NG, Xing D, Huang CL, Hall LD, Carpenter TA. A comparative study of acquisition schemes for diffusion tensor imaging using MRI. J Magn Reson. 1999;137:67–82.CrossRefPubMed
30.
go back to reference Benson AP, Gilbert SH, Li P, Newton SM, Holden AV. Reconstruction and Quantification of Diffusion Tensor Imaging-Derived Cardiac Fibre and Sheet Structure in Ventricular Regions used in Studies of Excitation Propagation. Mathematical Modelling Nat Phenomena. 2008;3:101–30.CrossRef Benson AP, Gilbert SH, Li P, Newton SM, Holden AV. Reconstruction and Quantification of Diffusion Tensor Imaging-Derived Cardiac Fibre and Sheet Structure in Ventricular Regions used in Studies of Excitation Propagation. Mathematical Modelling Nat Phenomena. 2008;3:101–30.CrossRef
31.
go back to reference Marchand P, Marmet L. Binomial smoothing filter: A way to avoid some pitfalls of least-squares polynomial smoothing. Rev Sci Instrum. 1983;54:1034–41.CrossRef Marchand P, Marmet L. Binomial smoothing filter: A way to avoid some pitfalls of least-squares polynomial smoothing. Rev Sci Instrum. 1983;54:1034–41.CrossRef
32.
go back to reference Helm PA, Tseng HJ, Younes L, McVeigh ER, Winslow RL. Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. Magn Reson Med. 2005;54:850–9.CrossRefPubMedCentralPubMed Helm PA, Tseng HJ, Younes L, McVeigh ER, Winslow RL. Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. Magn Reson Med. 2005;54:850–9.CrossRefPubMedCentralPubMed
33.
go back to reference Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, et al. Engineering and algorithm design for an image processing Api: a technical report on ITK–the Insight Toolkit. Stud Health Technol Inform. 2002;85:586–92.PubMed Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, et al. Engineering and algorithm design for an image processing Api: a technical report on ITK–the Insight Toolkit. Stud Health Technol Inform. 2002;85:586–92.PubMed
34.
go back to reference Hsu EW. Myocardial Fiber Orientation Mapping via MR Diffusion Tensor Imaging. In: Joint EMBS-BMES conference; Oct. Houston, TX: IEEE; 2002. p. 1169–70. Hsu EW. Myocardial Fiber Orientation Mapping via MR Diffusion Tensor Imaging. In: Joint EMBS-BMES conference; Oct. Houston, TX: IEEE; 2002. p. 1169–70.
35.
go back to reference Chen J, Liu W, Zhang H, Lacy L, Yang X, Song SK, et al. Regional ventricular wall thickening reflects changes in cardiac fiber and sheet structure during contraction: quantification with diffusion tensor MRI. Am J Physiol Heart Circ Physiol. 2005;289:H1898–907.CrossRefPubMed Chen J, Liu W, Zhang H, Lacy L, Yang X, Song SK, et al. Regional ventricular wall thickening reflects changes in cardiac fiber and sheet structure during contraction: quantification with diffusion tensor MRI. Am J Physiol Heart Circ Physiol. 2005;289:H1898–907.CrossRefPubMed
36.
go back to reference Fisher R. Dispersion on a Sphere. Proc R Soc Lond A Math Phys Sci. 1953;217:295–305.CrossRef Fisher R. Dispersion on a Sphere. Proc R Soc Lond A Math Phys Sci. 1953;217:295–305.CrossRef
37.
go back to reference Scheer P, Sverakova V, Doubek J, Janeckova K, Uhrikova I, Svoboda P. Basic values of M-mode echocardiographic parameters of the left ventricle in outbreed Wistar rats. Vet Med. 2012;57:42–52. Scheer P, Sverakova V, Doubek J, Janeckova K, Uhrikova I, Svoboda P. Basic values of M-mode echocardiographic parameters of the left ventricle in outbreed Wistar rats. Vet Med. 2012;57:42–52.
38.
go back to reference Helm PA, Younes L, Beg MF, Ennis DB, Leclercq C, Faris OP, et al. Evidence of structural remodeling in the dyssynchronous failing heart. Circ Res. 2006;98:125–32. Epub 2005 Dec 2008.CrossRefPubMed Helm PA, Younes L, Beg MF, Ennis DB, Leclercq C, Faris OP, et al. Evidence of structural remodeling in the dyssynchronous failing heart. Circ Res. 2006;98:125–32. Epub 2005 Dec 2008.CrossRefPubMed
39.
go back to reference Chen J, Song SK, Liu W, McLean M, Allen JS, Tan J, et al. Remodeling of cardiac fiber structure after infarction in rats quantified with diffusion tensor MRI. Am J Physiol Heart Circ Physiol. 2003;285:H946-954. Epub 2003 May 2022. Chen J, Song SK, Liu W, McLean M, Allen JS, Tan J, et al. Remodeling of cardiac fiber structure after infarction in rats quantified with diffusion tensor MRI. Am J Physiol Heart Circ Physiol. 2003;285:H946-954. Epub 2003 May 2022.
40.
go back to reference Kung GL, Nguyen TC, Itoh A, Skare S, Ingels Jr NB, Miller DC, et al. The presence of two local myocardial sheet populations confirmed by diffusion tensor MRI and histological validation. J Magn Reson Imaging. 2011;34:1080–91.CrossRefPubMedCentralPubMed Kung GL, Nguyen TC, Itoh A, Skare S, Ingels Jr NB, Miller DC, et al. The presence of two local myocardial sheet populations confirmed by diffusion tensor MRI and histological validation. J Magn Reson Imaging. 2011;34:1080–91.CrossRefPubMedCentralPubMed
41.
go back to reference Hsu EW, Xue R, Holmes A, Forder JR. Delayed reduction of tissue water diffusion after myocardial ischemia. Am J Physiol. 1998;275:H697–702.PubMed Hsu EW, Xue R, Holmes A, Forder JR. Delayed reduction of tissue water diffusion after myocardial ischemia. Am J Physiol. 1998;275:H697–702.PubMed
43.
go back to reference Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401–7.CrossRefPubMed Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401–7.CrossRefPubMed
44.
go back to reference Kingsley PB, Monahan WG. Selection of the optimum b factor for diffusion-weighted magnetic resonance imaging assessment of ischemic stroke. Magn Reson Med. 2004;51:996–1001.CrossRefPubMed Kingsley PB, Monahan WG. Selection of the optimum b factor for diffusion-weighted magnetic resonance imaging assessment of ischemic stroke. Magn Reson Med. 2004;51:996–1001.CrossRefPubMed
45.
go back to reference Scott AD, Ferreira PF, Nielles-Vallespin S, Gatehouse P, McGill LA, Kilner P, et al. Optimal diffusion weighting for in vivo cardiac diffusion tensor imaging. Magn Reson Med 2014, In Press. Scott AD, Ferreira PF, Nielles-Vallespin S, Gatehouse P, McGill LA, Kilner P, et al. Optimal diffusion weighting for in vivo cardiac diffusion tensor imaging. Magn Reson Med 2014, In Press.
46.
go back to reference Thickman DI, Kundel HL, Wolf G. Nuclear magnetic resonance characteristics of fresh and fixed tissue: the effect of elapsed time. Radiology. 1983;148:183–5.CrossRefPubMed Thickman DI, Kundel HL, Wolf G. Nuclear magnetic resonance characteristics of fresh and fixed tissue: the effect of elapsed time. Radiology. 1983;148:183–5.CrossRefPubMed
47.
go back to reference Holmes AA, Scollan DF, Winslow RL. Direct histological validation of diffusion tensor MRI in formaldehyde-fixed myocardium. Magn Reson Med. 2000;44:157–61.CrossRefPubMed Holmes AA, Scollan DF, Winslow RL. Direct histological validation of diffusion tensor MRI in formaldehyde-fixed myocardium. Magn Reson Med. 2000;44:157–61.CrossRefPubMed
48.
go back to reference Wu Y, Tepper HL, Voth GA. Flexible simple point-charge water model with improved liquid-state properties. J Chem Phys. 2006;124:024503.CrossRefPubMed Wu Y, Tepper HL, Voth GA. Flexible simple point-charge water model with improved liquid-state properties. J Chem Phys. 2006;124:024503.CrossRefPubMed
49.
go back to reference Ferreira PF, Kilner PJ, McGill LA, Nielles-Vallespin S, Scott AD, Ho SY, et al. In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2014;16:87.CrossRefPubMedCentralPubMed Ferreira PF, Kilner PJ, McGill LA, Nielles-Vallespin S, Scott AD, Ho SY, et al. In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2014;16:87.CrossRefPubMedCentralPubMed
50.
go back to reference Kim S, Chi-Fishman G, Barnett AS, Pierpaoli C. Dependence on diffusion time of apparent diffusion tensor of ex vivo calf tongue and heart. Magn Reson Med. 2005;54:1387–96.CrossRefPubMed Kim S, Chi-Fishman G, Barnett AS, Pierpaoli C. Dependence on diffusion time of apparent diffusion tensor of ex vivo calf tongue and heart. Magn Reson Med. 2005;54:1387–96.CrossRefPubMed
51.
go back to reference Jiang Y, Pandya K, Smithies O, Hsu EW. Three-dimensional diffusion tensor microscopy of fixed mouse hearts. Magn Reson Med. 2004;52:453–60.CrossRefPubMed Jiang Y, Pandya K, Smithies O, Hsu EW. Three-dimensional diffusion tensor microscopy of fixed mouse hearts. Magn Reson Med. 2004;52:453–60.CrossRefPubMed
52.
go back to reference Bishop MJ, Plank G. The role of fine-scale anatomical structure in the dynamics of reentry in computational models of the rabbit ventricles. J Physiol. 2012;590:4515–35.CrossRefPubMedCentralPubMed Bishop MJ, Plank G. The role of fine-scale anatomical structure in the dynamics of reentry in computational models of the rabbit ventricles. J Physiol. 2012;590:4515–35.CrossRefPubMedCentralPubMed
53.
go back to reference Young AA, Legrice IJ, Young MA, Smaill BH. Extended confocal microscopy of myocardial laminae and collagen network. J Microsc. 1998;192:139–50.CrossRefPubMed Young AA, Legrice IJ, Young MA, Smaill BH. Extended confocal microscopy of myocardial laminae and collagen network. J Microsc. 1998;192:139–50.CrossRefPubMed
54.
go back to reference Smith RM, Matiukas A, Zemlin CW, Pertsov AM. Nondestructive optical determination of fiber organization in intact myocardial wall. Microsc Res Tech. 2008;71:510–6.CrossRefPubMedCentralPubMed Smith RM, Matiukas A, Zemlin CW, Pertsov AM. Nondestructive optical determination of fiber organization in intact myocardial wall. Microsc Res Tech. 2008;71:510–6.CrossRefPubMedCentralPubMed
55.
go back to reference Haibo N, Castro SJ, Stephenson RS, Jarvis JC, Lowe T, Hart G, et al. Extracting myofibre orientation from micro-CT images: An optimisation study. In: Computing in Cardiology Conference (CinC). 2013. 22–25 Sept. 2013. 2013: 823–826. Haibo N, Castro SJ, Stephenson RS, Jarvis JC, Lowe T, Hart G, et al. Extracting myofibre orientation from micro-CT images: An optimisation study. In: Computing in Cardiology Conference (CinC). 2013. 2225 Sept. 2013. 2013: 823–826.
56.
go back to reference Varray F, Wang L, Fanton L, Zhu Y-M, Magnin I. High Resolution Extraction of Local Human Cardiac Fibre Orientations. In: Ourselin S, Rueckert D, Smith N, editors. Functional Imaging and Modeling of the Heart. Volume 7945. Springer Berlin Heidelberg: Lecture Notes in Computer Science; 2013. p. 150–7.CrossRef Varray F, Wang L, Fanton L, Zhu Y-M, Magnin I. High Resolution Extraction of Local Human Cardiac Fibre Orientations. In: Ourselin S, Rueckert D, Smith N, editors. Functional Imaging and Modeling of the Heart. Volume 7945. Springer Berlin Heidelberg: Lecture Notes in Computer Science; 2013. p. 150–7.CrossRef
57.
go back to reference Lunkenheimer P, Niederer P, Sanchez-Quintana D, Murillo M, Smerup M. Models of Ventricular Structure and Function Reviewed for Clinical Cardiologists. J Cardiovasc Trans Res. 2013;6:176–86.CrossRef Lunkenheimer P, Niederer P, Sanchez-Quintana D, Murillo M, Smerup M. Models of Ventricular Structure and Function Reviewed for Clinical Cardiologists. J Cardiovasc Trans Res. 2013;6:176–86.CrossRef
58.
go back to reference Helm P, Beg MF, Miller MI, Winslow RL. Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging. Ann N Y Acad Sci. 2005;1047:296–307.CrossRefPubMed Helm P, Beg MF, Miller MI, Winslow RL. Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging. Ann N Y Acad Sci. 2005;1047:296–307.CrossRefPubMed
60.
go back to reference Hsu EW, Henriquez CS. Myocardial Fiber Orientation Mapping Using Reduced Encoding Diffusion Tensor Imaging. J Cardiovasc Magn Reson. 2001;3:339–48.CrossRefPubMed Hsu EW, Henriquez CS. Myocardial Fiber Orientation Mapping Using Reduced Encoding Diffusion Tensor Imaging. J Cardiovasc Magn Reson. 2001;3:339–48.CrossRefPubMed
61.
go back to reference Lee SC, Kim K, Kim J, Lee S, Han Yi J, Kim SW, et al. One micrometer resolution NMR microscopy. J Magn Reson. 2001;150:207–13.CrossRefPubMed Lee SC, Kim K, Kim J, Lee S, Han Yi J, Kim SW, et al. One micrometer resolution NMR microscopy. J Magn Reson. 2001;150:207–13.CrossRefPubMed
62.
go back to reference Geerts L, Bovendeerd P, Nicolay K, Arts T. Characterization of the normal cardiac myofiber field in goat measured with MR-diffusion tensor imaging. Am J Physiol Heart Circ Physiol. 2002;283:H139–45.CrossRefPubMed Geerts L, Bovendeerd P, Nicolay K, Arts T. Characterization of the normal cardiac myofiber field in goat measured with MR-diffusion tensor imaging. Am J Physiol Heart Circ Physiol. 2002;283:H139–45.CrossRefPubMed
63.
go back to reference Dierckx H, Benson AP, Gilbert SH, Ries ME, Holden AV, Verschelde H, et al. Intravoxel Fibre Structure of the Left Ventricular Free Wall and Posterior Left-Right Ventricular Insertion Site in Canine Myocardium Using Q-Ball Imaging. Functional Imaging and Modeling of the Heart, Proceedings. In Lect Notes Comput Sc. 2009;5528:495–504. Dierckx H, Benson AP, Gilbert SH, Ries ME, Holden AV, Verschelde H, et al. Intravoxel Fibre Structure of the Left Ventricular Free Wall and Posterior Left-Right Ventricular Insertion Site in Canine Myocardium Using Q-Ball Imaging. Functional Imaging and Modeling of the Heart, Proceedings. In Lect Notes Comput Sc. 2009;5528:495–504.
64.
go back to reference Scollan DF, Holmes A, Winslow R, Forder J. Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol. 1998;275:H2308–18.PubMed Scollan DF, Holmes A, Winslow R, Forder J. Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol. 1998;275:H2308–18.PubMed
65.
go back to reference Holmes AA, Scollan DF, Winslow RL. Direct histological validation of diffusion tensor MRI in formaldehyde-fixed myocardium. Magn Reson Med. 2000;44:157–61.CrossRefPubMed Holmes AA, Scollan DF, Winslow RL. Direct histological validation of diffusion tensor MRI in formaldehyde-fixed myocardium. Magn Reson Med. 2000;44:157–61.CrossRefPubMed
Metadata
Title
Comparison of diffusion tensor imaging by cardiovascular magnetic resonance and gadolinium enhanced 3D image intensity approaches to investigation of structural anisotropy in explanted rat hearts
Authors
Olivier Bernus
Aleksandra Radjenovic
Mark L Trew
Ian J LeGrice
Gregory B Sands
Derek R Magee
Bruce H Smaill
Stephen H Gilbert
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2015
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-015-0129-x

Other articles of this Issue 1/2015

Journal of Cardiovascular Magnetic Resonance 1/2015 Go to the issue