Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2015

Open Access 01-12-2015 | Research

Myocardial T2* mapping: influence of noise on accuracy and precision

Authors: Christopher M Sandino, Peter Kellman, Andrew E Arai, Michael S Hansen, Hui Xue

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2015

Login to get access

Abstract

Background

Pixel-wise, parametric T2* mapping is emerging as a means of automatic measurement of iron content in tissues. It enables quick, intuitive interpretation and provides the potential benefit of spatial context between tissues. However, pixel-wise mapping uses much lower SNR data to estimate T2* when compared to region-based mapping thereby decreasing both its accuracy and precision. In this study, the effects that noise has on the precision and accuracy of pixel-wise T2* mapping were investigated and techniques to mitigate those effects are proposed.

Methods

To study precision across T2* mapping techniques, a pipeline to estimate the pixel-wise standard deviation (SD) of the T2* based on the fit residuals is proposed. For validation, a Monte-Carlo analysis was performed in which T2* phantoms were scanned N = 64 times, the true SD was measured and compared to the estimated SD. To improve accuracy and precision, the automatic truncation method for mitigating noise bias was extended to pixel-wise fitting by using an SNR scaled image reconstruction and truncating low SNR measurements. Finally, the precision and accuracy of non-linear regression with and without automatic truncation, were investigated using Monte-Carlo simulations.

Results

Measured and estimated SD’s were >99.9% correlated for non-linear regression with and without truncation. Non-linear regression with automatic truncation was shown to be the best mapping technique for improving accuracy and precision in low T2* and low SNR measurements.

Conclusions

A method for applying an automatic truncation method to pixel-wise T2* mapping that reduces T2* overestimation due to noise bias was proposed. A formulation for estimating pixel-wise standard deviation (SD) maps for T2* that can serve as a quality map for interpreting images and for comparison of imaging protocols was also proposed and validated.
Literature
2.
go back to reference Khalil M, Enzinger C, Langkammer C, Tscherner M, Jehna M, Ropele S, et al. Quantitative assessment of brain iron by R2* relaxometry in patients with clinically isolated syndrome and relapsing – remitting multiple sclerosis. Mult Scler. 2009;15(April):1048–54.PubMedCrossRef Khalil M, Enzinger C, Langkammer C, Tscherner M, Jehna M, Ropele S, et al. Quantitative assessment of brain iron by R2* relaxometry in patients with clinically isolated syndrome and relapsing – remitting multiple sclerosis. Mult Scler. 2009;15(April):1048–54.PubMedCrossRef
3.
4.
go back to reference Anderson LJ, Holden S, Davis B, Prescott E, Charrier CC, Bunce NH, et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J. 2001;22:2171–9.PubMedCrossRef Anderson LJ, Holden S, Davis B, Prescott E, Charrier CC, Bunce NH, et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J. 2001;22:2171–9.PubMedCrossRef
5.
go back to reference Westwood M, Anderson LJ, Firmin DN, Gatehouse PD, Charrier CC, Wonke B, et al. A single breath-hold multiecho T2* cardiovascular magnetic resonance technique for diagnosis of myocardial iron overload. J Magn Reson Imaging. 2003;18:33–9.PubMedCrossRef Westwood M, Anderson LJ, Firmin DN, Gatehouse PD, Charrier CC, Wonke B, et al. A single breath-hold multiecho T2* cardiovascular magnetic resonance technique for diagnosis of myocardial iron overload. J Magn Reson Imaging. 2003;18:33–9.PubMedCrossRef
6.
go back to reference Carpenter J-P, He T, Kirk P, Roughton M, Anderson LJ, de Noronha SV, et al. On T2* magnetic resonance and cardiac iron. Circulation. 2011;123:1519–28.PubMedCentralPubMedCrossRef Carpenter J-P, He T, Kirk P, Roughton M, Anderson LJ, de Noronha SV, et al. On T2* magnetic resonance and cardiac iron. Circulation. 2011;123:1519–28.PubMedCentralPubMedCrossRef
7.
go back to reference Wood JC, Ghugre N. Magnetic resonance imaging assessment of excess iron in thalassemia, sickle cell disease and other iron overload diseases. Hemoglobin. 2008;32:85–96.PubMedCentralPubMedCrossRef Wood JC, Ghugre N. Magnetic resonance imaging assessment of excess iron in thalassemia, sickle cell disease and other iron overload diseases. Hemoglobin. 2008;32:85–96.PubMedCentralPubMedCrossRef
8.
go back to reference Saiviroonporn P, Viprakasit V, Boonyasirinant T, Khuhapinant A, Wood JC, Krittayaphong R. Comparison of the region-based and pixel-wise methods for cardiac T2* analysis in 50 transfusion-dependent Thai thalassemia patients. J Comput Assist Tomogr. 2011;35:375–81.PubMedCrossRef Saiviroonporn P, Viprakasit V, Boonyasirinant T, Khuhapinant A, Wood JC, Krittayaphong R. Comparison of the region-based and pixel-wise methods for cardiac T2* analysis in 50 transfusion-dependent Thai thalassemia patients. J Comput Assist Tomogr. 2011;35:375–81.PubMedCrossRef
9.
go back to reference He T, Zhang J, Carpenter J-P, Feng Y, Smith GC, Pennell DJ, et al. Automated truncation method for myocardial T2* measurement in thalassemia. J Magn Reson Imaging. 2013;37:479–83.PubMedCrossRef He T, Zhang J, Carpenter J-P, Feng Y, Smith GC, Pennell DJ, et al. Automated truncation method for myocardial T2* measurement in thalassemia. J Magn Reson Imaging. 2013;37:479–83.PubMedCrossRef
11.
go back to reference Wood JC, Enriquez C, Ghugre N, Tyzka JM, Carson S, Nelson MD, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood. 2005;106:1460–5.PubMedCentralPubMedCrossRef Wood JC, Enriquez C, Ghugre N, Tyzka JM, Carson S, Nelson MD, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood. 2005;106:1460–5.PubMedCentralPubMedCrossRef
12.
go back to reference He T, Gatehouse PD, Smith GC, Mohiaddin RH, Pennell DJ, Firmin DN. Myocardial T2* measurements in iron-overloaded thalassemia: An in vivo study to investigate optimal methods of quantification. Magn Reson Med. 2008;60:1082–9.PubMedCentralPubMedCrossRef He T, Gatehouse PD, Smith GC, Mohiaddin RH, Pennell DJ, Firmin DN. Myocardial T2* measurements in iron-overloaded thalassemia: An in vivo study to investigate optimal methods of quantification. Magn Reson Med. 2008;60:1082–9.PubMedCentralPubMedCrossRef
13.
go back to reference Constantinides CD, Atalar E, Mcveigh ER. Signal-to-Noise Measurements in Magnitude Images from NMR Phased Arrays of the. Magn Reson Med. 1997;38:852–7.PubMedCentralPubMedCrossRef Constantinides CD, Atalar E, Mcveigh ER. Signal-to-Noise Measurements in Magnitude Images from NMR Phased Arrays of the. Magn Reson Med. 1997;38:852–7.PubMedCentralPubMedCrossRef
14.
go back to reference Otto R, Ferguson MR, Marro K, Grinstead JW, Friedman SD. Limitations of using logarithmic transformation and linear fitting to estimate relaxation rates in iron-loaded liver. Pediatr Radiol. 2011;41:1259–65.PubMedCrossRef Otto R, Ferguson MR, Marro K, Grinstead JW, Friedman SD. Limitations of using logarithmic transformation and linear fitting to estimate relaxation rates in iron-loaded liver. Pediatr Radiol. 2011;41:1259–65.PubMedCrossRef
15.
go back to reference Kellman P, Xue H, Chow K, Spottiswoode BS, Arai AE, Thompson RB. Optimized saturation recovery protocols for T1-mapping in the heart: influence of sampling strategies on precision. J Cardiovasc Magn Reson. 2014;16:55.PubMedCentralPubMedCrossRef Kellman P, Xue H, Chow K, Spottiswoode BS, Arai AE, Thompson RB. Optimized saturation recovery protocols for T1-mapping in the heart: influence of sampling strategies on precision. J Cardiovasc Magn Reson. 2014;16:55.PubMedCentralPubMedCrossRef
16.
go back to reference Kellman P, Arai AE, Xue H. T1 and extracellular volume mapping in the heart: estimation of error maps and the influence of noise on precision. J Cardiovasc Magn Reson. 2013;15:56.PubMedCentralPubMedCrossRef Kellman P, Arai AE, Xue H. T1 and extracellular volume mapping in the heart: estimation of error maps and the influence of noise on precision. J Cardiovasc Magn Reson. 2013;15:56.PubMedCentralPubMedCrossRef
17.
go back to reference DuMouchel W, O’Brien F. Integrating a robust option into a multiple regression computing environment. Computing and graphics in statistics. 1991;41–48. DuMouchel W, O’Brien F. Integrating a robust option into a multiple regression computing environment. Computing and graphics in statistics. 1991;41–48.
18.
go back to reference Smith GC, Carpenter JP, He T, Alam MH, Firmin DN, Pennell DJ. Value of black blood T2* cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011;13:21.PubMedCentralPubMedCrossRef Smith GC, Carpenter JP, He T, Alam MH, Firmin DN, Pennell DJ. Value of black blood T2* cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011;13:21.PubMedCentralPubMedCrossRef
19.
go back to reference He T, Gatehouse PD, Kirk P, Tanner MA, Smith GC, Keegan J, et al. Black-blood T2* technique for myocardial iron measurement in thalassemia. J Magn Reson Imaging. 2007;25:1205–9.PubMedCrossRef He T, Gatehouse PD, Kirk P, Tanner MA, Smith GC, Keegan J, et al. Black-blood T2* technique for myocardial iron measurement in thalassemia. J Magn Reson Imaging. 2007;25:1205–9.PubMedCrossRef
20.
go back to reference Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7:308–13.CrossRef Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7:308–13.CrossRef
21.
go back to reference Hansen MS, Sørensen TS. Gadgetron: an open source framework for medical image reconstruction. Magn Reson Med. 2013;69:1768–76.PubMedCrossRef Hansen MS, Sørensen TS. Gadgetron: an open source framework for medical image reconstruction. Magn Reson Med. 2013;69:1768–76.PubMedCrossRef
22.
go back to reference Hernando D, Kellman P, Haldar JP, Liang Z-P. Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med. 2010;63:79–90.PubMedCentralPubMed Hernando D, Kellman P, Haldar JP, Liang Z-P. Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med. 2010;63:79–90.PubMedCentralPubMed
23.
24.
go back to reference Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med. 2008;60:1122–34.PubMedCentralPubMedCrossRef Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med. 2008;60:1122–34.PubMedCentralPubMedCrossRef
25.
go back to reference Hansen MS, Inati SJ, Kellman P. Noise propagation in region of interest measurements. Magn Reson Med. 2014. doi:10.1002/mrm.25194. Hansen MS, Inati SJ, Kellman P. Noise propagation in region of interest measurements. Magn Reson Med. 2014. doi:10.1002/mrm.25194.
Metadata
Title
Myocardial T2* mapping: influence of noise on accuracy and precision
Authors
Christopher M Sandino
Peter Kellman
Andrew E Arai
Michael S Hansen
Hui Xue
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2015
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-015-0115-3

Other articles of this Issue 1/2015

Journal of Cardiovascular Magnetic Resonance 1/2015 Go to the issue