Skip to main content
Top
Published in: Journal of Translational Medicine 1/2021

Open Access 01-12-2021 | Letter to the Editor

Analysis of microbial differences in amniotic fluid between advanced and normal age pregnant women

Authors: Ya Wang, Chunyu Luo, Yiwei Cheng, Li Li, Dong Liang, Ping Hu, Zhengfeng Xu

Published in: Journal of Translational Medicine | Issue 1/2021

Login to get access

Excerpt

Amniotic fluid (AF) has been considered sterile for nearly a century because no microorganisms were identified by traditional culture methods [1]. However, this opinion paradigm has been challenged by recent studies based on culture-independent sequencing techniques [24] and AF proteomics [5]. Recently, a conclusion that no microorganisms were present in the mid-trimester AF of healthy pregnancies was reached using culture-independent sequencing techniques [6] and seemed to settle the argument [7]. However, it could not explain why non-human proteins were identified in normal human AF supernatants [8] and why microbial exposure primes fetal immune cells in fetal tissues during fetal development [9]. …
Appendix
Available only for authorised users
Literature
1.
go back to reference Willyard C. Could baby’s first bacteria take root before birth? Nature. 2018;553:264–6.CrossRef Willyard C. Could baby’s first bacteria take root before birth? Nature. 2018;553:264–6.CrossRef
2.
go back to reference Lim ES, Rodriguez C, Holtz LR. Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community. Microbiome. 2018;6:87.CrossRef Lim ES, Rodriguez C, Holtz LR. Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community. Microbiome. 2018;6:87.CrossRef
3.
go back to reference Payne MS, Keelan JA, Stinson LF. Re: “Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community.” Microbiome. 2019;7:20.CrossRef Payne MS, Keelan JA, Stinson LF. Re: “Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community.” Microbiome. 2019;7:20.CrossRef
4.
go back to reference Lim ES, Rodriguez C, Holtz LR. Reply Re: “Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community.” Microbiome. 2019;7:21.CrossRef Lim ES, Rodriguez C, Holtz LR. Reply Re: “Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community.” Microbiome. 2019;7:21.CrossRef
5.
go back to reference Cho C-KJ, Shan SJ, Winsor EJ, Diamandis EP. Proteomics analysis of human amniotic fluid. Mol Cell Proteom. 2007;6:1406–15.CrossRef Cho C-KJ, Shan SJ, Winsor EJ, Diamandis EP. Proteomics analysis of human amniotic fluid. Mol Cell Proteom. 2007;6:1406–15.CrossRef
6.
go back to reference Liu Y, Li X, Zhu B, Zhao H, Ai Q, Tong Y, et al. Midtrimester amniotic fluid from healthy pregnancies has no microorganisms using multiple methods of microbiologic inquiry. Am J Obstet Gynecol. 2020;223:248.CrossRef Liu Y, Li X, Zhu B, Zhao H, Ai Q, Tong Y, et al. Midtrimester amniotic fluid from healthy pregnancies has no microorganisms using multiple methods of microbiologic inquiry. Am J Obstet Gynecol. 2020;223:248.CrossRef
7.
go back to reference Blaser MJ, Devkota S, McCoy KD, Relman DA, Yassour M, Young VB. Lessons learned from the prenatal microbiome controversy. Microbiome. 2021;9:1–7.CrossRef Blaser MJ, Devkota S, McCoy KD, Relman DA, Yassour M, Young VB. Lessons learned from the prenatal microbiome controversy. Microbiome. 2021;9:1–7.CrossRef
8.
go back to reference Tsangaris GT, Kolialexi A, Karamessinis PM, Anagnostopoulos AK, Antsaklis A, Fountoulakis M, et al. The normal human amniotic fluid supernatant proteome. Vivo. 2006;20:479–90. Tsangaris GT, Kolialexi A, Karamessinis PM, Anagnostopoulos AK, Antsaklis A, Fountoulakis M, et al. The normal human amniotic fluid supernatant proteome. Vivo. 2006;20:479–90.
9.
go back to reference Mishra A, Lai GC, Yao LJ, Aung TT, Shental N, Rotter-Maskowitz A, et al. Microbial exposure during early human development primes fetal immune cells. Cell. 2021;184:1–16.CrossRef Mishra A, Lai GC, Yao LJ, Aung TT, Shental N, Rotter-Maskowitz A, et al. Microbial exposure during early human development primes fetal immune cells. Cell. 2021;184:1–16.CrossRef
10.
go back to reference Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014;345:760–5.CrossRef Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014;345:760–5.CrossRef
11.
go back to reference Liu X, Song Y, Guo Z, Sun W, Liu J. A comprehensive profile and inter-individual variations analysis of the human normal amniotic fluid proteome. J Proteom. 2019;192:1–9.CrossRef Liu X, Song Y, Guo Z, Sun W, Liu J. A comprehensive profile and inter-individual variations analysis of the human normal amniotic fluid proteome. J Proteom. 2019;192:1–9.CrossRef
12.
go back to reference Heffner LJ. Advanced maternal age–how old is too old? N Engl J Med. 2004;351:1927–9.CrossRef Heffner LJ. Advanced maternal age–how old is too old? N Engl J Med. 2004;351:1927–9.CrossRef
13.
go back to reference Zhang X, Chen L, Wang X, Wang X, Jia M, Ni S, et al. Changes in maternal age and prevalence of congenital anomalies during the enactment of China’s universal two-child policy (2013–2017) in Zhejiang Province, China: an observational study. PLoS Med. 2020;17:1–19. Zhang X, Chen L, Wang X, Wang X, Jia M, Ni S, et al. Changes in maternal age and prevalence of congenital anomalies during the enactment of China’s universal two-child policy (2013–2017) in Zhejiang Province, China: an observational study. PLoS Med. 2020;17:1–19.
14.
go back to reference Gomez-Lopez N, Romero R, Garcia-Flores V, Xu Y, Leng Y, Alhousseini A, et al. Amniotic fluid neutrophils can phagocytize bacteria: a mechanism for microbial killing in the amniotic cavity. Am J Reprod Immunol. 2017;78:139–48.CrossRef Gomez-Lopez N, Romero R, Garcia-Flores V, Xu Y, Leng Y, Alhousseini A, et al. Amniotic fluid neutrophils can phagocytize bacteria: a mechanism for microbial killing in the amniotic cavity. Am J Reprod Immunol. 2017;78:139–48.CrossRef
15.
go back to reference Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6:23129.CrossRef Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6:23129.CrossRef
16.
go back to reference Jiménez E, Marín ML, Martín R, Odriozola JM, Olivares M, Xaus J, et al. Is meconium from healthy newborns actually sterile? Res Microbiol. 2008;159:187–93.CrossRef Jiménez E, Marín ML, Martín R, Odriozola JM, Olivares M, Xaus J, et al. Is meconium from healthy newborns actually sterile? Res Microbiol. 2008;159:187–93.CrossRef
17.
go back to reference Dennis Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CWG, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350:485–7.CrossRef Dennis Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CWG, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350:485–7.CrossRef
18.
go back to reference Vernon SD, Shukla SK, Conradt J, Unger ER, Reeves WC. Analysis of 16S rRNA gene sequences and circulating cell-free DNA fromplasma of chronic fatigue syndrome and non-fatigued subjects. BMC Microbiol. 2002;2:1–6.CrossRef Vernon SD, Shukla SK, Conradt J, Unger ER, Reeves WC. Analysis of 16S rRNA gene sequences and circulating cell-free DNA fromplasma of chronic fatigue syndrome and non-fatigued subjects. BMC Microbiol. 2002;2:1–6.CrossRef
19.
go back to reference Magrane M, UniProt Consortium. UniProt Knowledgebase: a hub of integrated protein data. Database. 2011;2011:bar009.CrossRef Magrane M, UniProt Consortium. UniProt Knowledgebase: a hub of integrated protein data. Database. 2011;2011:bar009.CrossRef
20.
go back to reference Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72.CrossRef Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72.CrossRef
Metadata
Title
Analysis of microbial differences in amniotic fluid between advanced and normal age pregnant women
Authors
Ya Wang
Chunyu Luo
Yiwei Cheng
Li Li
Dong Liang
Ping Hu
Zhengfeng Xu
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2021
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-021-02996-y

Other articles of this Issue 1/2021

Journal of Translational Medicine 1/2021 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.