Skip to main content
Top
Published in: Journal of Translational Medicine 1/2019

Open Access 01-12-2019 | Infertility | Review

The evolving role of genetic tests in reproductive medicine

Authors: Federica Cariati, Valeria D’Argenio, Rossella Tomaiuolo

Published in: Journal of Translational Medicine | Issue 1/2019

Login to get access

Abstract

Infertility is considered a major public health issue, and approximately 1 out of 6 people worldwide suffer from infertility during their reproductive lifespans. Thanks to technological advances, genetic tests are becoming increasingly relevant in reproductive medicine. More genetic tests are required to identify the cause of male and/or female infertility, identify carriers of inherited diseases and plan antenatal testing. Furthermore, genetic tests provide direction toward the most appropriate assisted reproductive techniques. Nevertheless, the use of molecular analysis in this field is still fragmented and cumbersome. The aim of this review is to highlight the conditions in which a genetic evaluation (counselling and testing) plays a role in improving the reproductive outcomes of infertile couples. We conducted a review of the literature, and starting from the observation of specific signs and symptoms, we describe the available molecular tests. To conceive a child, both partners' reproductive systems need to function in a precisely choreographed manner. Hence to treat infertility, it is key to assess both partners. Our results highlight the increasing importance of molecular testing in reproductive medicine.
Literature
2.
go back to reference World Health Organization. WHO Laboratory Manual for the examination and processing of human semen. Geneva: World Health Organization; 2010. World Health Organization. WHO Laboratory Manual for the examination and processing of human semen. Geneva: World Health Organization; 2010.
3.
go back to reference Ferlin A, Arredi B, Foresta C. Genetic causes of male infertility. Reprod Toxicol. 2006;22:133–41.PubMedCrossRef Ferlin A, Arredi B, Foresta C. Genetic causes of male infertility. Reprod Toxicol. 2006;22:133–41.PubMedCrossRef
4.
go back to reference Mastantuoni E, Saccone G, Al-Kouatly HB, Paternoster M, D’Alessandro P, Arduino B, et al. Expanded carrier screening: a current perspective. Eur J Obstet Gynecol Reprod Biol. 2018;230:41–54.PubMedCrossRef Mastantuoni E, Saccone G, Al-Kouatly HB, Paternoster M, D’Alessandro P, Arduino B, et al. Expanded carrier screening: a current perspective. Eur J Obstet Gynecol Reprod Biol. 2018;230:41–54.PubMedCrossRef
5.
go back to reference Cariati F, Savarese M, D’Argenio V, Salvatore F, Tomaiuolo R. The SEeMORE strategy: single-tube electrophoresis analysis-based genotyping to detect monogenic diseases rapidly and effectively from conception until birth. Clin Chem Lab Med. 2017;56:40–50.PubMedCrossRef Cariati F, Savarese M, D’Argenio V, Salvatore F, Tomaiuolo R. The SEeMORE strategy: single-tube electrophoresis analysis-based genotyping to detect monogenic diseases rapidly and effectively from conception until birth. Clin Chem Lab Med. 2017;56:40–50.PubMedCrossRef
6.
go back to reference Griffin DK, Ogur C. Chromosomal analysis in IVF: just how useful is it? Reproduction. 2018;156:F29–50.PubMedCrossRef Griffin DK, Ogur C. Chromosomal analysis in IVF: just how useful is it? Reproduction. 2018;156:F29–50.PubMedCrossRef
7.
go back to reference Hussein N, Weng SF, Kai J, Qureshi N. Preconception risk assessment for thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease. Cochrane Database Syst Rev. 2015;8:1–29. Hussein N, Weng SF, Kai J, Qureshi N. Preconception risk assessment for thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease. Cochrane Database Syst Rev. 2015;8:1–29.
8.
go back to reference Demain LAM, Conway GS, Newman WG. Genetics of mitochondrial dysfunction and infertility. Clin Genet. 2017;91:199–207.PubMedCrossRef Demain LAM, Conway GS, Newman WG. Genetics of mitochondrial dysfunction and infertility. Clin Genet. 2017;91:199–207.PubMedCrossRef
9.
go back to reference Committee on Ethics, American College of Obstetricians and Gynecologists, Committee on Genetics, American College of Obstetricians and Gynecologists. ACOG Committee Opinion No. 410: ethical issues in genetic testing. Obstet Gynecol. 2008;111:1495–502.CrossRef Committee on Ethics, American College of Obstetricians and Gynecologists, Committee on Genetics, American College of Obstetricians and Gynecologists. ACOG Committee Opinion No. 410: ethical issues in genetic testing. Obstet Gynecol. 2008;111:1495–502.CrossRef
10.
go back to reference Silber SJ. The Y chromosome in the era of intracytoplasmic sperm injection: a personal review. Fertil Steril. 2011;95:2439–48.PubMedCrossRef Silber SJ. The Y chromosome in the era of intracytoplasmic sperm injection: a personal review. Fertil Steril. 2011;95:2439–48.PubMedCrossRef
11.
go back to reference Gravholt CH, Chang S, Wallentin M, Fedder J, Moore P, Skakkebæk A. Klinefelter syndrome: integrating genetics, neuropsychology, and endocrinology. Endocr Rev. 2018;39:389–423.PubMedCrossRef Gravholt CH, Chang S, Wallentin M, Fedder J, Moore P, Skakkebæk A. Klinefelter syndrome: integrating genetics, neuropsychology, and endocrinology. Endocr Rev. 2018;39:389–423.PubMedCrossRef
12.
go back to reference Maiburg M, Repping S, Giltay J. The genetic origin of Klinefelter syndrome and its effect on spermatogenesis. Fertil Steril. 2012;98:253–60.PubMedCrossRef Maiburg M, Repping S, Giltay J. The genetic origin of Klinefelter syndrome and its effect on spermatogenesis. Fertil Steril. 2012;98:253–60.PubMedCrossRef
13.
go back to reference Barseghyan H, Délot E, Vilain E. New genomic technologies: an aid for diagnosis of disorders of sex development. Horm Metab Res. 2015;47:312–20.PubMedCrossRef Barseghyan H, Délot E, Vilain E. New genomic technologies: an aid for diagnosis of disorders of sex development. Horm Metab Res. 2015;47:312–20.PubMedCrossRef
14.
15.
go back to reference Vetro A, Dehghani MR, Kraoua L, Giorda R, Beri S, Cardarelli L, et al. Testis development in the absence of SRY: chromosomal rearrangements at SOX9 and SOX3. Eur J Hum Genet. 2014;23:1025–32.PubMedPubMedCentralCrossRef Vetro A, Dehghani MR, Kraoua L, Giorda R, Beri S, Cardarelli L, et al. Testis development in the absence of SRY: chromosomal rearrangements at SOX9 and SOX3. Eur J Hum Genet. 2014;23:1025–32.PubMedPubMedCentralCrossRef
16.
go back to reference Sutton E, Hughes J, White S, Sekido R, Tan J, Arboleda V, et al. Identification of SOX3 as an XX male sex reversal gene in mice and humans. J Clin Invest. 2011;121:328–41.PubMedCrossRef Sutton E, Hughes J, White S, Sekido R, Tan J, Arboleda V, et al. Identification of SOX3 as an XX male sex reversal gene in mice and humans. J Clin Invest. 2011;121:328–41.PubMedCrossRef
17.
go back to reference Moalem S, Babul-Hirji R, Stavropolous DJ, Wherrett D, Bägli DJ, Thomas P, et al. XX male sex reversal with genital abnormalities associated with a de novo SOX3 gene duplication. Am J Med Genet. 2012;158A:1759–64.PubMedCrossRef Moalem S, Babul-Hirji R, Stavropolous DJ, Wherrett D, Bägli DJ, Thomas P, et al. XX male sex reversal with genital abnormalities associated with a de novo SOX3 gene duplication. Am J Med Genet. 2012;158A:1759–64.PubMedCrossRef
18.
go back to reference Lim SL, Qu ZP, Kortschak RD, Lawrence DM, Geoghegan J, Hempfling A-L, et al. HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse. PLoS Genet. 2015;23(11):e1005620.CrossRef Lim SL, Qu ZP, Kortschak RD, Lawrence DM, Geoghegan J, Hempfling A-L, et al. HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse. PLoS Genet. 2015;23(11):e1005620.CrossRef
19.
go back to reference Tuerlings JH, de France HF, Hamers A, Hordijk R, Van Hemel JO, Hansson K, et al. Chromosome studies in 1792 males prior to intra-cytoplasmic sperm injection: the Dutch experience. Eur J Hum Genet. 1998;6:194–200.PubMedCrossRef Tuerlings JH, de France HF, Hamers A, Hordijk R, Van Hemel JO, Hansson K, et al. Chromosome studies in 1792 males prior to intra-cytoplasmic sperm injection: the Dutch experience. Eur J Hum Genet. 1998;6:194–200.PubMedCrossRef
20.
go back to reference Dul EC, Groen H, van Ravenswaaij Arts CM, Dijkhuizen T, van Echten-Arends J, Land JA. The prevalence of chromosomal abnormalities in subgroups of infertile men. Hum Reprod. 2012;27:36–43.PubMedCrossRef Dul EC, Groen H, van Ravenswaaij Arts CM, Dijkhuizen T, van Echten-Arends J, Land JA. The prevalence of chromosomal abnormalities in subgroups of infertile men. Hum Reprod. 2012;27:36–43.PubMedCrossRef
21.
go back to reference Hempel H, Buchholz T. Rare syndromes associated with infertility. J Reproduktionsmed Endokrinol. 2009;6:24–6. Hempel H, Buchholz T. Rare syndromes associated with infertility. J Reproduktionsmed Endokrinol. 2009;6:24–6.
22.
go back to reference Quaynor SD, Bosley ME, Duckworth CG, Porter KR, Kim SH, Kim HG, et al. Targeted next generation sequencing approach identifies eighteen new candidate genes in normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Mol Cell Endocrinol. 2016;437:86–96.PubMedCrossRef Quaynor SD, Bosley ME, Duckworth CG, Porter KR, Kim SH, Kim HG, et al. Targeted next generation sequencing approach identifies eighteen new candidate genes in normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Mol Cell Endocrinol. 2016;437:86–96.PubMedCrossRef
23.
24.
go back to reference Leitch CC, Zaghloul NA, Davis EE, Stoetzel C, Diaz-Font A, Rix S, et al. Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet–Biedl syndrome. Nat Genet. 2008;40:443–8.PubMedCrossRef Leitch CC, Zaghloul NA, Davis EE, Stoetzel C, Diaz-Font A, Rix S, et al. Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet–Biedl syndrome. Nat Genet. 2008;40:443–8.PubMedCrossRef
25.
go back to reference Green JS, Parfrey PS, Harnett JD, Farid NR, Cramer BC, Johnson G, et al. The cardinal manifestations of Bardet–Biedl syndrome, a form of Laurence–Moon–Biedl syndrome. N Engl J Med. 1989;321:1002–9.PubMedCrossRef Green JS, Parfrey PS, Harnett JD, Farid NR, Cramer BC, Johnson G, et al. The cardinal manifestations of Bardet–Biedl syndrome, a form of Laurence–Moon–Biedl syndrome. N Engl J Med. 1989;321:1002–9.PubMedCrossRef
26.
go back to reference Raffin-Sanson ML, Oudet B, Salenave S, Brailly-Tabard S, Pehuet M, et al. A man with a DAX1/NR0B1 mutation, normal puberty, and an intact hypothalamic–pituitary–gonadal axis but deteriorating oligospermia during long-term follow-up. Europ J Endocr. 2013;168:K45–50.CrossRef Raffin-Sanson ML, Oudet B, Salenave S, Brailly-Tabard S, Pehuet M, et al. A man with a DAX1/NR0B1 mutation, normal puberty, and an intact hypothalamic–pituitary–gonadal axis but deteriorating oligospermia during long-term follow-up. Europ J Endocr. 2013;168:K45–50.CrossRef
27.
go back to reference Al-Semari A, Bohlega S. Autosomal-recessive syndrome with alopecia, hypogonadism, progressive extra-pyramidal disorder, white matter disease, sensory neural deafness, diabetes mellitus, and low IGF1. Am J Med Genet. 2007;43A:149–60.CrossRef Al-Semari A, Bohlega S. Autosomal-recessive syndrome with alopecia, hypogonadism, progressive extra-pyramidal disorder, white matter disease, sensory neural deafness, diabetes mellitus, and low IGF1. Am J Med Genet. 2007;43A:149–60.CrossRef
28.
go back to reference Husain N, Yuan Q, Yen YC, Pletnikova O, Sally DQ, Worley P, et al. TRIAD3/RNF216 mutations associated with Gordon Holmes syndrome lead to synaptic and cognitive impairments via Arc misregulation. Aging Cell. 2017;16:281–92.PubMedCrossRef Husain N, Yuan Q, Yen YC, Pletnikova O, Sally DQ, Worley P, et al. TRIAD3/RNF216 mutations associated with Gordon Holmes syndrome lead to synaptic and cognitive impairments via Arc misregulation. Aging Cell. 2017;16:281–92.PubMedCrossRef
29.
go back to reference Santens P, Van Damme T, Steyaert W, Willaert A, Sablonniere B, De Paepe A, et al. RNF216 mutations as a novel cause of autosomal recessive Huntington-like disorder. Neurology. 2015;84:1760–6.PubMedCrossRef Santens P, Van Damme T, Steyaert W, Willaert A, Sablonniere B, De Paepe A, et al. RNF216 mutations as a novel cause of autosomal recessive Huntington-like disorder. Neurology. 2015;84:1760–6.PubMedCrossRef
30.
go back to reference Margolin DH, Kousi M, Chan Y-M, Lim ET, Schmahmann JD, Hadjivassiliou M, et al. Ataxia, dementia, and hypogonadotropism caused by disordered ubiquitination. N Eng J Med. 2013;368:1992–2003.CrossRef Margolin DH, Kousi M, Chan Y-M, Lim ET, Schmahmann JD, Hadjivassiliou M, et al. Ataxia, dementia, and hypogonadotropism caused by disordered ubiquitination. N Eng J Med. 2013;368:1992–2003.CrossRef
31.
go back to reference Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996;13:399–408.PubMedCrossRef Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996;13:399–408.PubMedCrossRef
32.
go back to reference Morrison ED, Brandhagen DJ, Phatak PD, Barton JC, Krawitt EL, El-Serag HB, et al. Serum ferritin level predicts advanced hepatic fibrosis among U.S. patients with phenotypic hemochromatosis. Ann Intern Med. 2003;138:627–33.PubMedCrossRef Morrison ED, Brandhagen DJ, Phatak PD, Barton JC, Krawitt EL, El-Serag HB, et al. Serum ferritin level predicts advanced hepatic fibrosis among U.S. patients with phenotypic hemochromatosis. Ann Intern Med. 2003;138:627–33.PubMedCrossRef
33.
go back to reference Adams PC, Barton JC, Guo H, Alter D, Speechley M. Serum ferritin is a biomarker for liver mortality in the Hemochromatosis and Iron Overload Screening Study. Ann Hepatol. 2015;14:348–53.PubMedCrossRef Adams PC, Barton JC, Guo H, Alter D, Speechley M. Serum ferritin is a biomarker for liver mortality in the Hemochromatosis and Iron Overload Screening Study. Ann Hepatol. 2015;14:348–53.PubMedCrossRef
34.
go back to reference Adams PC, Reboussin DM, Barton JC, McLaren CE, Eckfeldt JH, McLaren GD, et al. Hemochromatosis and iron-overload screening in a racially diverse population. N Engl J Med. 2005;352:1769–78.PubMedCrossRef Adams PC, Reboussin DM, Barton JC, McLaren CE, Eckfeldt JH, McLaren GD, et al. Hemochromatosis and iron-overload screening in a racially diverse population. N Engl J Med. 2005;352:1769–78.PubMedCrossRef
35.
go back to reference Boehmer AL, Brinkmann O, Bruggenwirth H, van Assendelft C, Otten BJ, Verleun-Mooijman MC, et al. Genotype versus phenotype in families with androgen insensitivity syndrome. J Clin Endocrinol Metab. 2001;86:4151–60.PubMedCrossRef Boehmer AL, Brinkmann O, Bruggenwirth H, van Assendelft C, Otten BJ, Verleun-Mooijman MC, et al. Genotype versus phenotype in families with androgen insensitivity syndrome. J Clin Endocrinol Metab. 2001;86:4151–60.PubMedCrossRef
36.
go back to reference Bianca S, Cataliotti A, Bartoloni G, Torrente I, Barrano B, Boemi G, et al. Prenatal diagnosis of androgen insensitivity syndrome. Fetal Diagn Ther. 2009;26:167–9.PubMedCrossRef Bianca S, Cataliotti A, Bartoloni G, Torrente I, Barrano B, Boemi G, et al. Prenatal diagnosis of androgen insensitivity syndrome. Fetal Diagn Ther. 2009;26:167–9.PubMedCrossRef
37.
go back to reference Paula FJ, Dick-de-Paula I, Pontes A, Schmitt FC, Mendonça BB, Foss MC. Hyperandrogenism due to 3 beta-hydroxysteroid dehydrogenase deficiency with accessory adrenocortical tissue: a hormonal and metabolic evaluation. Braz J Med Biol Res. 1994;27:1149–58.PubMed Paula FJ, Dick-de-Paula I, Pontes A, Schmitt FC, Mendonça BB, Foss MC. Hyperandrogenism due to 3 beta-hydroxysteroid dehydrogenase deficiency with accessory adrenocortical tissue: a hormonal and metabolic evaluation. Braz J Med Biol Res. 1994;27:1149–58.PubMed
38.
go back to reference Deladoëy J, Flück C, Büyükgebiz A, Kuhlmann BV, Eblé A, Hindmarsh PC, et al. “Hot spot” in the PROP1 gene responsible for combined pituitary hormone deficiency. J Clin Endocrinol Metab. 1999;84:1645–50.PubMed Deladoëy J, Flück C, Büyükgebiz A, Kuhlmann BV, Eblé A, Hindmarsh PC, et al. “Hot spot” in the PROP1 gene responsible for combined pituitary hormone deficiency. J Clin Endocrinol Metab. 1999;84:1645–50.PubMed
39.
go back to reference Abrão MG, Leite MV, Carvalho LR, Billerbeck AE, Nishi MY, Barbosa AS, et al. Combined pituitary hormone deficiency (CPHD) due to a complete PROP1 deletion. Clin Endocrinol. 2006;65:294–300.CrossRef Abrão MG, Leite MV, Carvalho LR, Billerbeck AE, Nishi MY, Barbosa AS, et al. Combined pituitary hormone deficiency (CPHD) due to a complete PROP1 deletion. Clin Endocrinol. 2006;65:294–300.CrossRef
40.
go back to reference Lee PA, Houk CP, Ahmed SF, Hughes IA, International Consensus Conference on Intersex organized by the Lawson Wilkins Pediatric Endocrine Society and the European Society for Paediatric Endocrinology. Consensus statement on management of intersex disorders. International Consensus Conference on Intersex. Pediatrics. 2006;118:e488–500.PubMedCrossRef Lee PA, Houk CP, Ahmed SF, Hughes IA, International Consensus Conference on Intersex organized by the Lawson Wilkins Pediatric Endocrine Society and the European Society for Paediatric Endocrinology. Consensus statement on management of intersex disorders. International Consensus Conference on Intersex. Pediatrics. 2006;118:e488–500.PubMedCrossRef
41.
42.
go back to reference Hochberg Z, Chayen R, Reiss N, Falik Z, Makler A, Munichor M, et al. Clinical, biochemical, and genetic findings in a large pedigree of male and female patients with 5-alpha-reductase 2 deficiency. J Clin Endocr Metab. 1996;81:2821–7.PubMed Hochberg Z, Chayen R, Reiss N, Falik Z, Makler A, Munichor M, et al. Clinical, biochemical, and genetic findings in a large pedigree of male and female patients with 5-alpha-reductase 2 deficiency. J Clin Endocr Metab. 1996;81:2821–7.PubMed
43.
go back to reference Canto P, Escudero I, Soderlund D, Nishimura E, Carranza-Lira S, Gutierrez J, et al. A novel mutation of the insulin-like 3 gene in patients with cryptorchidism. J Hum Genet. 2003;48:86–90.PubMedCrossRef Canto P, Escudero I, Soderlund D, Nishimura E, Carranza-Lira S, Gutierrez J, et al. A novel mutation of the insulin-like 3 gene in patients with cryptorchidism. J Hum Genet. 2003;48:86–90.PubMedCrossRef
44.
go back to reference Ferlin A, Simonato M, Bartoloni L, Rizzo G, Bettella A, Dottorini T, et al. The INSL3-LGR8/GREAT ligand-receptor pair in human cryptorchidism. J Clin Endocr Metab. 2003;88:4273–9.PubMedCrossRef Ferlin A, Simonato M, Bartoloni L, Rizzo G, Bettella A, Dottorini T, et al. The INSL3-LGR8/GREAT ligand-receptor pair in human cryptorchidism. J Clin Endocr Metab. 2003;88:4273–9.PubMedCrossRef
45.
go back to reference Auchus RJ. Steroid 17-hydroxylase and 17,20-lyase deficiencies, genetic and pharmacologic. J Steroid Biochem Molec Biol. 2017;165:71–8.PubMedCrossRef Auchus RJ. Steroid 17-hydroxylase and 17,20-lyase deficiencies, genetic and pharmacologic. J Steroid Biochem Molec Biol. 2017;165:71–8.PubMedCrossRef
46.
go back to reference McCandless SE, Committee on Genetics. Clinical report-health supervision for children with Prader–Willi syndrome. Pediatrics. 2011;127:195–204.PubMedCrossRef McCandless SE, Committee on Genetics. Clinical report-health supervision for children with Prader–Willi syndrome. Pediatrics. 2011;127:195–204.PubMedCrossRef
47.
go back to reference Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. Prader–Willi syndrome. Genet Med. 2012;14:10–26.PubMedCrossRef Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. Prader–Willi syndrome. Genet Med. 2012;14:10–26.PubMedCrossRef
51.
go back to reference Patek CE, Little MH, Fleming S, Miles C, Charlieu J-P, Clarke AR, et al. A zinc finger truncation of murine WT1 results in the characteristic urogenital abnormalities of Denys–Drash syndrome. Proc Nat Acad Sci. 1999;96:2931–6.PubMedCrossRefPubMedCentral Patek CE, Little MH, Fleming S, Miles C, Charlieu J-P, Clarke AR, et al. A zinc finger truncation of murine WT1 results in the characteristic urogenital abnormalities of Denys–Drash syndrome. Proc Nat Acad Sci. 1999;96:2931–6.PubMedCrossRefPubMedCentral
52.
go back to reference Seidel NE, Arlen AM, Smith EA, Kirsch AJ. Clinical manifestations and management of prune–belly syndrome in a large contemporary pediatric population. Urology. 2015;85:211–5.PubMedCrossRef Seidel NE, Arlen AM, Smith EA, Kirsch AJ. Clinical manifestations and management of prune–belly syndrome in a large contemporary pediatric population. Urology. 2015;85:211–5.PubMedCrossRef
53.
54.
go back to reference Conte FA, Grumbach MM, Ito Y, Fisher CR, Simpson ER. A syndrome of female pseudohermaphrodism, hypergonadotropic hypogonadism, and multicystic ovaries associated with missense mutations in the gene encoding aromatase (P450arom). J Clin Endocr Metab. 1994;78:1287–92.PubMed Conte FA, Grumbach MM, Ito Y, Fisher CR, Simpson ER. A syndrome of female pseudohermaphrodism, hypergonadotropic hypogonadism, and multicystic ovaries associated with missense mutations in the gene encoding aromatase (P450arom). J Clin Endocr Metab. 1994;78:1287–92.PubMed
55.
go back to reference Jones MEE, Boon WC, McInnes K, Maffei L, Carani C, Simpson ER. Recognizing rare disorders: aromatase deficiency. Nat Clin Pract Endocr Metab. 2007;3:414–21.CrossRef Jones MEE, Boon WC, McInnes K, Maffei L, Carani C, Simpson ER. Recognizing rare disorders: aromatase deficiency. Nat Clin Pract Endocr Metab. 2007;3:414–21.CrossRef
56.
go back to reference Guo YW, Chiu CY, Liu CL, Jap TS, Lin LY. Novel mutation of RUNX2 gene in a patient with cleidocranial dysplasia. Int J Clin Exp Pathol. 2015;8:1057–62.PubMedPubMedCentral Guo YW, Chiu CY, Liu CL, Jap TS, Lin LY. Novel mutation of RUNX2 gene in a patient with cleidocranial dysplasia. Int J Clin Exp Pathol. 2015;8:1057–62.PubMedPubMedCentral
57.
go back to reference Ling C, Huang J, Yan Z, Li Y, Ohzeki M, Ishiai M. Bloom syndrome complex promotes FANCM recruitment to stalled replication forks and facilitates both repair and traverse of DNA interstrand crosslinks. Cell Discov. 2016;2:16047.PubMedPubMedCentralCrossRef Ling C, Huang J, Yan Z, Li Y, Ohzeki M, Ishiai M. Bloom syndrome complex promotes FANCM recruitment to stalled replication forks and facilitates both repair and traverse of DNA interstrand crosslinks. Cell Discov. 2016;2:16047.PubMedPubMedCentralCrossRef
58.
go back to reference Giabicani E, Boule M, Galliani E, Netchine I. Sleep apneas in Silver Russell syndrome: a constant finding. Horm Res Paediatr. 2015;84(Suppl 1):262. Giabicani E, Boule M, Galliani E, Netchine I. Sleep apneas in Silver Russell syndrome: a constant finding. Horm Res Paediatr. 2015;84(Suppl 1):262.
59.
go back to reference Wakeling EL, Brioude F, Lokulo-Sodipe O, O’Connell SM, Salem J, Bliek J, et al. Diagnosis and management of Silver-Russell syndrome: first international consensus statement. Nat Rev Endocrinol. 2017;13:105–24.PubMedCrossRef Wakeling EL, Brioude F, Lokulo-Sodipe O, O’Connell SM, Salem J, Bliek J, et al. Diagnosis and management of Silver-Russell syndrome: first international consensus statement. Nat Rev Endocrinol. 2017;13:105–24.PubMedCrossRef
60.
go back to reference Marshall CR, Scherer SW, Zariwala MA, Lau L, Paton TA, Stockley T. Whole-exome sequencing and targeted copy number analysis in primary ciliary dyskinesia. G3 (Bethesda). 2015;5:1775–81.PubMedCentralCrossRef Marshall CR, Scherer SW, Zariwala MA, Lau L, Paton TA, Stockley T. Whole-exome sequencing and targeted copy number analysis in primary ciliary dyskinesia. G3 (Bethesda). 2015;5:1775–81.PubMedCentralCrossRef
61.
go back to reference Kamsteeg EJ, Kress W, Catalli C, Hertz JM, Witsch-Baumgartner M, Buckley MF, et al. Best practice guidelines and recommendations on the molecular diagnosis of myotonic dystrophy types 1 and 2. Eur J Hum Genet. 2012;20:1203–8.PubMedPubMedCentralCrossRef Kamsteeg EJ, Kress W, Catalli C, Hertz JM, Witsch-Baumgartner M, Buckley MF, et al. Best practice guidelines and recommendations on the molecular diagnosis of myotonic dystrophy types 1 and 2. Eur J Hum Genet. 2012;20:1203–8.PubMedPubMedCentralCrossRef
62.
go back to reference Kitao H, Takata M. Fanconi anemia: a disorder defective in the DNA damage response. Int J Hematol. 2011;93:417–24.PubMedCrossRef Kitao H, Takata M. Fanconi anemia: a disorder defective in the DNA damage response. Int J Hematol. 2011;93:417–24.PubMedCrossRef
64.
go back to reference Ghedir H, Ibala-Romdhane S, Okutman O, Viot G, Saad A, Viville S. Identification of a new DPY19L2 mutation and a better definition of DPY19L2 deletion breakpoints leading to globozoospermia. Mol Hum Reprod. 2016;22:35–45.PubMedCrossRef Ghedir H, Ibala-Romdhane S, Okutman O, Viot G, Saad A, Viville S. Identification of a new DPY19L2 mutation and a better definition of DPY19L2 deletion breakpoints leading to globozoospermia. Mol Hum Reprod. 2016;22:35–45.PubMedCrossRef
65.
go back to reference Perrin A, Coat C, Nguyen MH, Talagas M, Morel F, Amice J, et al. Molecular cytogenetic and genetic aspects of globozoospermia: a review. Andrologia. 2013;45:1–9.PubMedCrossRef Perrin A, Coat C, Nguyen MH, Talagas M, Morel F, Amice J, et al. Molecular cytogenetic and genetic aspects of globozoospermia: a review. Andrologia. 2013;45:1–9.PubMedCrossRef
66.
go back to reference Ben Khelifa M, Coutton C, Blum MG, Abada F, Harbuz R, Zouari R, et al. Identification of a new recurrent aurora kinase C mutation in both European and African men with macrozoospermia. Hum Reprod. 2012;27:3337–46.PubMedCrossRef Ben Khelifa M, Coutton C, Blum MG, Abada F, Harbuz R, Zouari R, et al. Identification of a new recurrent aurora kinase C mutation in both European and African men with macrozoospermia. Hum Reprod. 2012;27:3337–46.PubMedCrossRef
67.
go back to reference Eloualid A, Rouba H, Rhaissi H, Barakat A, Louanjli N, Bashamboo A, et al. Prevalence of the Aurora kinase C c.144delC mutation in infertile Moroccan men. Fertil Steril. 2014;101:1086–90.PubMedCrossRef Eloualid A, Rouba H, Rhaissi H, Barakat A, Louanjli N, Bashamboo A, et al. Prevalence of the Aurora kinase C c.144delC mutation in infertile Moroccan men. Fertil Steril. 2014;101:1086–90.PubMedCrossRef
68.
go back to reference Ounis L, Zoghmar A, Coutton C, Rouabah L, Hachemi M, Martinez D, et al. Mutations of the aurora kinase C gene causing macrozoospermia are the most frequent genetic cause of male infertility in Algerian men. Asian J Androl. 2015;17:68–73.PubMedCrossRef Ounis L, Zoghmar A, Coutton C, Rouabah L, Hachemi M, Martinez D, et al. Mutations of the aurora kinase C gene causing macrozoospermia are the most frequent genetic cause of male infertility in Algerian men. Asian J Androl. 2015;17:68–73.PubMedCrossRef
69.
go back to reference Amiri-Yekta A, Coutton C, Kherraf Z-E, Karaouzène T, Le Tanno P, Sanatiet MH, et al. Whole-exome sequencing of familial cases of multiple morphological abnormalities of the sperm flagella (MMAF) reveals new DNAH1 mutations. Hum Reprod. 2016;31:2872–80.PubMedCrossRef Amiri-Yekta A, Coutton C, Kherraf Z-E, Karaouzène T, Le Tanno P, Sanatiet MH, et al. Whole-exome sequencing of familial cases of multiple morphological abnormalities of the sperm flagella (MMAF) reveals new DNAH1 mutations. Hum Reprod. 2016;31:2872–80.PubMedCrossRef
70.
go back to reference Zenteno JC, Canto P, Kofman-Alfaro S, Mendez JP. Evidence for genetic heterogeneity in male pseudohermaphroditism due to Leydig cell hypoplasia. J Clin Endocr Metab. 1999;84:3803–6.PubMed Zenteno JC, Canto P, Kofman-Alfaro S, Mendez JP. Evidence for genetic heterogeneity in male pseudohermaphroditism due to Leydig cell hypoplasia. J Clin Endocr Metab. 1999;84:3803–6.PubMed
71.
go back to reference Wu S-M, Chan W-Y. Male pseudohermaphroditism due to inactivating luteinizing hormone receptor mutations. Arch Med Res. 1999;30:495–500.PubMedCrossRef Wu S-M, Chan W-Y. Male pseudohermaphroditism due to inactivating luteinizing hormone receptor mutations. Arch Med Res. 1999;30:495–500.PubMedCrossRef
72.
go back to reference Avenarius MR, Hildebrand MS, Zhang Y, Meyer NC, Smith LL, Kahrizi K, et al. Human male infertility caused by mutations in the CATSPER1 channel protein. Am J Hum Genet. 2009;84:505–10.PubMedPubMedCentralCrossRef Avenarius MR, Hildebrand MS, Zhang Y, Meyer NC, Smith LL, Kahrizi K, et al. Human male infertility caused by mutations in the CATSPER1 channel protein. Am J Hum Genet. 2009;84:505–10.PubMedPubMedCentralCrossRef
73.
go back to reference Takasaki N, Tachibana K, Ogasawara S, Matsuzaki H, Hagiuda J, Ishikawa H, et al. A heterozygous mutation of GALNTL5 affects male infertility with impairment of sperm motility. Proc Natl Acad Sci USA. 2014;111:1120–5.PubMedCrossRefPubMedCentral Takasaki N, Tachibana K, Ogasawara S, Matsuzaki H, Hagiuda J, Ishikawa H, et al. A heterozygous mutation of GALNTL5 affects male infertility with impairment of sperm motility. Proc Natl Acad Sci USA. 2014;111:1120–5.PubMedCrossRefPubMedCentral
74.
go back to reference Zhang Y, Malekpour M, Al-Madani N, Kahrizi K, Zanganeh M, Lohr NJ, et al. Sensorineural deafness and male infertility: a contiguous gene deletion syndrome. J Med Genet. 2007;44:233–40.PubMedCrossRef Zhang Y, Malekpour M, Al-Madani N, Kahrizi K, Zanganeh M, Lohr NJ, et al. Sensorineural deafness and male infertility: a contiguous gene deletion syndrome. J Med Genet. 2007;44:233–40.PubMedCrossRef
75.
go back to reference Gu X, Guo L, Ji H, Sun S, Chai R, Wang L, et al. Genetic testing for sporadic hearing loss using targeted massively parallel sequencing identifies 10 novel mutations. Clin Genet. 2015;87:588–93.PubMedCrossRef Gu X, Guo L, Ji H, Sun S, Chai R, Wang L, et al. Genetic testing for sporadic hearing loss using targeted massively parallel sequencing identifies 10 novel mutations. Clin Genet. 2015;87:588–93.PubMedCrossRef
76.
go back to reference Okutman O, Muller J, Baert Y, Serdarogullari M, Gultomruk M, Piton A, et al. Exome sequencing reveals a nonsense mutation in TEX15 causing spermatogenic failure in a Turkish family. Hum Mol Genet. 2015;24:5581–8.PubMedCrossRef Okutman O, Muller J, Baert Y, Serdarogullari M, Gultomruk M, Piton A, et al. Exome sequencing reveals a nonsense mutation in TEX15 causing spermatogenic failure in a Turkish family. Hum Mol Genet. 2015;24:5581–8.PubMedCrossRef
77.
go back to reference Yatsenko AN, Georgiadis AP, Röpke A, Berman AJ, Jaffe T, Olszewska M, et al. X-linked TEX11 mutations, meiotic arrest, and azoospermia in infertile men. N Engl J Med. 2015;372:2097–107.PubMedPubMedCentralCrossRef Yatsenko AN, Georgiadis AP, Röpke A, Berman AJ, Jaffe T, Olszewska M, et al. X-linked TEX11 mutations, meiotic arrest, and azoospermia in infertile men. N Engl J Med. 2015;372:2097–107.PubMedPubMedCentralCrossRef
78.
go back to reference Colombo R, Pontoglio A, Bini M. Two novel TEX15 mutations in a family with nonobstructive azoospermia. Gynecol Obstet Invest. 2017;82:283–6.PubMedCrossRef Colombo R, Pontoglio A, Bini M. Two novel TEX15 mutations in a family with nonobstructive azoospermia. Gynecol Obstet Invest. 2017;82:283–6.PubMedCrossRef
79.
go back to reference Choi Y, Jeon S, Choi M, Lee MH, Park M, Lee DR, et al. Mutations in SOHLH1 gene associate with nonobstructive azoospermia. Hum Mutat. 2010;31:788–93.PubMedCrossRef Choi Y, Jeon S, Choi M, Lee MH, Park M, Lee DR, et al. Mutations in SOHLH1 gene associate with nonobstructive azoospermia. Hum Mutat. 2010;31:788–93.PubMedCrossRef
80.
go back to reference Miyamoto T, Hasuike S, Yogev L, Maduro MR, Ishikawa M, et al. Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet. 2003;362:1714–9.PubMedCrossRef Miyamoto T, Hasuike S, Yogev L, Maduro MR, Ishikawa M, et al. Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet. 2003;362:1714–9.PubMedCrossRef
81.
go back to reference Venables JP, Elliott DJ, Makarova OV, Makarov EM, Cooke HJ, Eperon IC. RBMY, a probable human spermatogenesis factor, and other hnRNP G proteins interact with Tra2-beta and affect splicing. Hum Mol Genet. 2000;9:685–94.PubMedCrossRef Venables JP, Elliott DJ, Makarova OV, Makarov EM, Cooke HJ, Eperon IC. RBMY, a probable human spermatogenesis factor, and other hnRNP G proteins interact with Tra2-beta and affect splicing. Hum Mol Genet. 2000;9:685–94.PubMedCrossRef
82.
go back to reference Saxena R, de Vries JWA, Repping S, Alagappan RK, Skaletsky H, Brown LG, et al. Four DAZ genes in two clusters found in the AZFc region of the human Y chromosome. Genomics. 2000;67:256–67.PubMedCrossRef Saxena R, de Vries JWA, Repping S, Alagappan RK, Skaletsky H, Brown LG, et al. Four DAZ genes in two clusters found in the AZFc region of the human Y chromosome. Genomics. 2000;67:256–67.PubMedCrossRef
83.
go back to reference Yu J, Chen Z, Ni Y, Li Z. CFTR mutations in men with congenital bilateral absence of the vas deferens (CBAVD): a systemic review and meta-analysis. Hum Reprod. 2012;27:25–35.PubMedCrossRef Yu J, Chen Z, Ni Y, Li Z. CFTR mutations in men with congenital bilateral absence of the vas deferens (CBAVD): a systemic review and meta-analysis. Hum Reprod. 2012;27:25–35.PubMedCrossRef
84.
go back to reference Tomaiuolo R, Fausto M, Elce A, Strina I, Ranieri A, Amato F, et al. Enhanced frequency of CFTR gene variants in couples who are candidates for assisted reproductive technology treatment. Clin Chem Lab Med. 2011;49:1289–93.PubMedCrossRef Tomaiuolo R, Fausto M, Elce A, Strina I, Ranieri A, Amato F, et al. Enhanced frequency of CFTR gene variants in couples who are candidates for assisted reproductive technology treatment. Clin Chem Lab Med. 2011;49:1289–93.PubMedCrossRef
85.
go back to reference Amato F, Bellia C, Cardillo G, Castaldo G, Ciaccio M, Elce A, et al. Extensive molecular analysis of patients bearing CFTR-related disorders. J Mol Diagn. 2012;14:81–9.PubMedCrossRef Amato F, Bellia C, Cardillo G, Castaldo G, Ciaccio M, Elce A, et al. Extensive molecular analysis of patients bearing CFTR-related disorders. J Mol Diagn. 2012;14:81–9.PubMedCrossRef
86.
go back to reference Tomaiuolo R, Nardiello P, Martinelli P, Sacchetti L, Salvatore F, Castaldo G. Prenatal diagnosis of cystic fibrosis: an experience of 181 cases. Clin Chem Lab Med. 2013;51:2227–32.PubMedCrossRef Tomaiuolo R, Nardiello P, Martinelli P, Sacchetti L, Salvatore F, Castaldo G. Prenatal diagnosis of cystic fibrosis: an experience of 181 cases. Clin Chem Lab Med. 2013;51:2227–32.PubMedCrossRef
87.
go back to reference Ríos Orbañanos I, Vela Desojo A, Martinez-Indart L, Grau Bolado G, Rodriguez Estevez A, Rica Echevarria I. Turner syndrome: from birth to adulthood. Endocrinol Nutr. 2015;62:499–506.PubMedCrossRef Ríos Orbañanos I, Vela Desojo A, Martinez-Indart L, Grau Bolado G, Rodriguez Estevez A, Rica Echevarria I. Turner syndrome: from birth to adulthood. Endocrinol Nutr. 2015;62:499–506.PubMedCrossRef
88.
go back to reference Rossetti R, Ferrari I, Bonomi M, Persani L. Genetics of primary ovarian insufficiency. Clin Genet. 2017;91:183–98.PubMedCrossRef Rossetti R, Ferrari I, Bonomi M, Persani L. Genetics of primary ovarian insufficiency. Clin Genet. 2017;91:183–98.PubMedCrossRef
89.
go back to reference Qin Y, Jiao X, Simpson JL, Chen Z-J. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update. 2015;21:787–808.PubMedPubMedCentralCrossRef Qin Y, Jiao X, Simpson JL, Chen Z-J. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update. 2015;21:787–808.PubMedPubMedCentralCrossRef
90.
go back to reference Jenkinson EM, Rehman AU, Walsh T, Clayton-Smith J, Lee K, Morell RJ, et al. Perrault syndrome is caused by recessive mutations in CLPP, encoding a mitochondrial ATP-dependent chambered protease. Am J Hum Genet. 2013;92:605–13.PubMedPubMedCentralCrossRef Jenkinson EM, Rehman AU, Walsh T, Clayton-Smith J, Lee K, Morell RJ, et al. Perrault syndrome is caused by recessive mutations in CLPP, encoding a mitochondrial ATP-dependent chambered protease. Am J Hum Genet. 2013;92:605–13.PubMedPubMedCentralCrossRef
91.
go back to reference Huang N, Pandey AV, Agrawal V, Reardon W, Lapunzina PD, Mowat D, et al. Diversity and function of mutations in P450 oxidoreductase in patients with Antley–Bixler syndrome and disordered steroidogenesis. Am J Hum Genet. 2005;76:729–49.PubMedPubMedCentralCrossRef Huang N, Pandey AV, Agrawal V, Reardon W, Lapunzina PD, Mowat D, et al. Diversity and function of mutations in P450 oxidoreductase in patients with Antley–Bixler syndrome and disordered steroidogenesis. Am J Hum Genet. 2005;76:729–49.PubMedPubMedCentralCrossRef
92.
go back to reference Shackleton C, Marcos J, Malunowicz EM, Szarras-Czapnik M, Jira P, Taylor NF, et al. Biochemical diagnosis of Antley–Bixler syndrome by steroid analysis. Am J Med Genet. 2004;128A:223–31.PubMedCrossRef Shackleton C, Marcos J, Malunowicz EM, Szarras-Czapnik M, Jira P, Taylor NF, et al. Biochemical diagnosis of Antley–Bixler syndrome by steroid analysis. Am J Med Genet. 2004;128A:223–31.PubMedCrossRef
93.
go back to reference Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocr Metab. 2004;89:2745–9.PubMedCrossRef Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocr Metab. 2004;89:2745–9.PubMedCrossRef
94.
go back to reference Chen Z-J, Zhao H, He L, Shi Y, Qin Y, Shi Y, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet. 2011;43:55–9.PubMedCrossRef Chen Z-J, Zhao H, He L, Shi Y, Qin Y, Shi Y, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet. 2011;43:55–9.PubMedCrossRef
95.
go back to reference Murdoch S, Djuric U, Mazhar B, Seoud M, Khan R, Kuick R, et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet. 2006;38:300–2.PubMedCrossRef Murdoch S, Djuric U, Mazhar B, Seoud M, Khan R, Kuick R, et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet. 2006;38:300–2.PubMedCrossRef
96.
go back to reference Fallahian M, Sebire NJ, Savage PM, Seckl MJ, Fisher RA. Mutations in NLRP7 and KHDC3L confer a complete hydatidiform mole phenotype on digynic triploid conceptions. Hum Mutat. 2013;34:301–8.PubMedCrossRef Fallahian M, Sebire NJ, Savage PM, Seckl MJ, Fisher RA. Mutations in NLRP7 and KHDC3L confer a complete hydatidiform mole phenotype on digynic triploid conceptions. Hum Mutat. 2013;34:301–8.PubMedCrossRef
97.
go back to reference Biason-Lauber A, De Filippo G, Konrad D, Scarano G, Nazzaro A, Schoenle EJ. WNT4 deficiency—a clinical phenotype distinct from the classic Mayer–Rokitansky–Kuster–Hauser syndrome: a case report. Hum Reprod. 2007;22:224–9.PubMedCrossRef Biason-Lauber A, De Filippo G, Konrad D, Scarano G, Nazzaro A, Schoenle EJ. WNT4 deficiency—a clinical phenotype distinct from the classic Mayer–Rokitansky–Kuster–Hauser syndrome: a case report. Hum Reprod. 2007;22:224–9.PubMedCrossRef
98.
go back to reference Biason-Lauber A, Konrad D, Navratil F, Schoenle EJ. A WNT4 mutation associated with mullerian-duct regression and virilization in a 46,XX woman. N Eng J Med. 2004;351:792–8.CrossRef Biason-Lauber A, Konrad D, Navratil F, Schoenle EJ. A WNT4 mutation associated with mullerian-duct regression and virilization in a 46,XX woman. N Eng J Med. 2004;351:792–8.CrossRef
99.
go back to reference Philibert P, Biason-Lauber A, Rouzier R, Pienkowski C, Paris F, Konrad D, et al. Identification and functional analysis of a new WNT4 gene mutation among 28 adolescent girls with primary amenorrhea and mullerian duct abnormalities: a French collaborative study. J Clin Endocr Metab. 2008;93:895–900.PubMedCrossRef Philibert P, Biason-Lauber A, Rouzier R, Pienkowski C, Paris F, Konrad D, et al. Identification and functional analysis of a new WNT4 gene mutation among 28 adolescent girls with primary amenorrhea and mullerian duct abnormalities: a French collaborative study. J Clin Endocr Metab. 2008;93:895–900.PubMedCrossRef
100.
go back to reference Brucker SY, Frank L, Eisenbeis S, Henes M, Wallwiener D, Riess O, et al. Sequence variants in ESR1 and OXTR are associated with Mayer–Rokitansky–Küster–Hauser syndrome. Acta Obstet Gynecol Scand. 2017;96:1338–46.PubMedCrossRef Brucker SY, Frank L, Eisenbeis S, Henes M, Wallwiener D, Riess O, et al. Sequence variants in ESR1 and OXTR are associated with Mayer–Rokitansky–Küster–Hauser syndrome. Acta Obstet Gynecol Scand. 2017;96:1338–46.PubMedCrossRef
101.
go back to reference Henes M, Jurow L, Peter A, Schoenfisch B, Taran FA, Huebner M, et al. Hyperandrogenemia and ovarian reserve in patients with Mayer–Rokitansky–Küster–Hauser syndrome type 1 and 2: potential influences on ovarian stimulation. Arch Gynecol Obstet. 2018;297:513–20.PubMedCrossRef Henes M, Jurow L, Peter A, Schoenfisch B, Taran FA, Huebner M, et al. Hyperandrogenemia and ovarian reserve in patients with Mayer–Rokitansky–Küster–Hauser syndrome type 1 and 2: potential influences on ovarian stimulation. Arch Gynecol Obstet. 2018;297:513–20.PubMedCrossRef
102.
go back to reference Waschk DE, Tewes AC, Römer T, Hucke J, Kapczuk K, Schippert C, et al. Mutations in WNT9B are associated with Mayer–Rokitansky–Küster–Hauser syndrome. Clin Genet. 2016;89:590–6.PubMedCrossRef Waschk DE, Tewes AC, Römer T, Hucke J, Kapczuk K, Schippert C, et al. Mutations in WNT9B are associated with Mayer–Rokitansky–Küster–Hauser syndrome. Clin Genet. 2016;89:590–6.PubMedCrossRef
103.
go back to reference Bracke A, Peeters K, Punjabi U, Hoogewijs D, Dewilde S. A search for molecular mechanisms underlying male idiopathic infertility. Reprod Biomed Online. 2018;36:327–39.PubMedCrossRef Bracke A, Peeters K, Punjabi U, Hoogewijs D, Dewilde S. A search for molecular mechanisms underlying male idiopathic infertility. Reprod Biomed Online. 2018;36:327–39.PubMedCrossRef
104.
go back to reference Ventimiglia E, Montorsi F, Salonia A. Comorbidities and male infertility: a worrisome picture. Curr Opin Urol. 2016;26:146–51.PubMedCrossRef Ventimiglia E, Montorsi F, Salonia A. Comorbidities and male infertility: a worrisome picture. Curr Opin Urol. 2016;26:146–51.PubMedCrossRef
105.
go back to reference Jungwirth A, Diemer T, Kopa Z, Krausz C, Tournaye H. European Association of Urology guidelines on Male Infertility: the 2012 update. Eur Urol. 2012;62:324–32.PubMedCrossRef Jungwirth A, Diemer T, Kopa Z, Krausz C, Tournaye H. European Association of Urology guidelines on Male Infertility: the 2012 update. Eur Urol. 2012;62:324–32.PubMedCrossRef
107.
108.
go back to reference Krausz C, Escamilla AR, Chianese CK. Genetics of male infertility: from research to clinic. Reproduction. 2015;150:R159–74.PubMedCrossRef Krausz C, Escamilla AR, Chianese CK. Genetics of male infertility: from research to clinic. Reproduction. 2015;150:R159–74.PubMedCrossRef
109.
go back to reference Pylyp LY, Spinenko LO, Verhoglyad NV, Kashevarova OO, Zukin VD. Chromosomal abnormalities in patients with infertility. Cytol Genet. 2015;49:33–9.CrossRef Pylyp LY, Spinenko LO, Verhoglyad NV, Kashevarova OO, Zukin VD. Chromosomal abnormalities in patients with infertility. Cytol Genet. 2015;49:33–9.CrossRef
110.
go back to reference Krausz C, Degl’Innocenti S. Y chromosome and male infertility: update, 2006. Front Biosci. 2006;11:3049–61.PubMedCrossRef Krausz C, Degl’Innocenti S. Y chromosome and male infertility: update, 2006. Front Biosci. 2006;11:3049–61.PubMedCrossRef
111.
go back to reference Krausz C, Hoefsloot L, Simoni M, Tüttelmann F, European Academy of Andrology, European Molecular Genetics Quality Network. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: state-of-the-art 2013. Andrology. 2014;2:5–19.PubMedCrossRef Krausz C, Hoefsloot L, Simoni M, Tüttelmann F, European Academy of Andrology, European Molecular Genetics Quality Network. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: state-of-the-art 2013. Andrology. 2014;2:5–19.PubMedCrossRef
112.
go back to reference Stuppia L, Gatta V, Calabrese G, Guanciali Franchi P, Morizio E, Bombieri C, et al. A quarter of men with idiopathic oligo-azoospermia display chromosomal abnormalities and microdeletions of different types in interval 6 of Yq11. Hum Genet. 1998;102:566–70.PubMedCrossRef Stuppia L, Gatta V, Calabrese G, Guanciali Franchi P, Morizio E, Bombieri C, et al. A quarter of men with idiopathic oligo-azoospermia display chromosomal abnormalities and microdeletions of different types in interval 6 of Yq11. Hum Genet. 1998;102:566–70.PubMedCrossRef
113.
go back to reference Patsalis PC, Sismani C, Quintana-Murci L, Taleb-Bekkouche F, Krausz C, McElreavey K. Effects of transmission of Y chromosome AZFc deletions. Lancet. 2002;360:1222–4.PubMedCrossRef Patsalis PC, Sismani C, Quintana-Murci L, Taleb-Bekkouche F, Krausz C, McElreavey K. Effects of transmission of Y chromosome AZFc deletions. Lancet. 2002;360:1222–4.PubMedCrossRef
114.
go back to reference Asero P, Calogero AE, Condorelli RA, Mongioi L, Vicari E, Lanzafame F, et al. Relevance of genetic investigation in male infertility. J Endocrinol Investig. 2014;37:415–27.CrossRef Asero P, Calogero AE, Condorelli RA, Mongioi L, Vicari E, Lanzafame F, et al. Relevance of genetic investigation in male infertility. J Endocrinol Investig. 2014;37:415–27.CrossRef
115.
go back to reference Kuroda-Kawaguchi T, Skaletsky H, Brown LG, Minx PJ, Cordum HS, Waterston RH, et al. The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nat Genet. 2001;29:279–86.PubMedCrossRef Kuroda-Kawaguchi T, Skaletsky H, Brown LG, Minx PJ, Cordum HS, Waterston RH, et al. The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nat Genet. 2001;29:279–86.PubMedCrossRef
116.
go back to reference Ferlin A, Garolla A, Foresta C. Chromosome abnormalities in sperm of individuals with constitutional sex chromosomal abnormalities. Cytogenet Genome Res. 2005;111:310–6.PubMedCrossRef Ferlin A, Garolla A, Foresta C. Chromosome abnormalities in sperm of individuals with constitutional sex chromosomal abnormalities. Cytogenet Genome Res. 2005;111:310–6.PubMedCrossRef
117.
go back to reference Schultz N, Hamra FK, Garbers DL. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci USA. 2003;100:12201–6.PubMedCrossRefPubMedCentral Schultz N, Hamra FK, Garbers DL. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci USA. 2003;100:12201–6.PubMedCrossRefPubMedCentral
118.
go back to reference Aston KI. Genetic susceptibility to male infertility: news from genome-wide association studies. Andrology. 2014;2:315–21.PubMedCrossRef Aston KI. Genetic susceptibility to male infertility: news from genome-wide association studies. Andrology. 2014;2:315–21.PubMedCrossRef
119.
go back to reference Morin SJ, Eccles J, Iturriaga A, Zimmerman RS. Translocations, inversions and other chromosome rearrangements. Fertil Steril. 2017;107:19–26.PubMedCrossRef Morin SJ, Eccles J, Iturriaga A, Zimmerman RS. Translocations, inversions and other chromosome rearrangements. Fertil Steril. 2017;107:19–26.PubMedCrossRef
121.
go back to reference Oktay K, Bedoschi G, Berkowitz K, Bronson R, Kashani B, McGovern P, et al. Fertility preservation in women with turner syndrome: a comprehensive review and practical guidelines. J Pediatr Adolesc Gynecol. 2016;29:409–16.PubMedCrossRef Oktay K, Bedoschi G, Berkowitz K, Bronson R, Kashani B, McGovern P, et al. Fertility preservation in women with turner syndrome: a comprehensive review and practical guidelines. J Pediatr Adolesc Gynecol. 2016;29:409–16.PubMedCrossRef
122.
go back to reference Collins J, Diedrich K, Franks S, Geraedts JPM, Jacobs PA, Karges B, et al. Genetic aspects of female reproduction. Hum Reprod Update. 2008;14:293–307.CrossRef Collins J, Diedrich K, Franks S, Geraedts JPM, Jacobs PA, Karges B, et al. Genetic aspects of female reproduction. Hum Reprod Update. 2008;14:293–307.CrossRef
123.
124.
go back to reference D’Argenio V, Nunziato M, D’Uonno N, Borrillo F, Vallone R, Conforti A, et al. Indications and limitations for preimplantation genetic diagnosis. Biochim Clin. 2017;41:314–21. D’Argenio V, Nunziato M, D’Uonno N, Borrillo F, Vallone R, Conforti A, et al. Indications and limitations for preimplantation genetic diagnosis. Biochim Clin. 2017;41:314–21.
125.
go back to reference Man L, Lekovich J, Rosenwaks Z, Gerhardt J. Fragile X-associated diminished ovarian reserve and primary ovarian insufficiency from molecular mechanisms to clinical manifestations. Front Mol Neurosci. 2017;10:290.PubMedPubMedCentralCrossRef Man L, Lekovich J, Rosenwaks Z, Gerhardt J. Fragile X-associated diminished ovarian reserve and primary ovarian insufficiency from molecular mechanisms to clinical manifestations. Front Mol Neurosci. 2017;10:290.PubMedPubMedCentralCrossRef
126.
go back to reference Hoyos LR, Thakur M. Fragile X premutation in women: recognizing the health challenges beyond primary ovarian insufficiency. Assist Reprod Genet. 2017;34:315–23.CrossRef Hoyos LR, Thakur M. Fragile X premutation in women: recognizing the health challenges beyond primary ovarian insufficiency. Assist Reprod Genet. 2017;34:315–23.CrossRef
127.
128.
go back to reference Committee on Genetics. Committee opinion No. 691: carrier screening for genetic conditions. Obstet Gynecol. 2017;129:e41–55.CrossRef Committee on Genetics. Committee opinion No. 691: carrier screening for genetic conditions. Obstet Gynecol. 2017;129:e41–55.CrossRef
130.
go back to reference Mathijssen IB, Holtkamp KCA, Ottenheim CPE, van Eeten-Nijman JMC, Lakeman P, Meijers-Heijboer H, et al. Preconception carrier screening for multiple disorders: evaluation of a screening offer in a Dutch founder population. Eur J Hum Genet. 2018;26:166–75.PubMedPubMedCentralCrossRef Mathijssen IB, Holtkamp KCA, Ottenheim CPE, van Eeten-Nijman JMC, Lakeman P, Meijers-Heijboer H, et al. Preconception carrier screening for multiple disorders: evaluation of a screening offer in a Dutch founder population. Eur J Hum Genet. 2018;26:166–75.PubMedPubMedCentralCrossRef
132.
go back to reference Elce A, Boccia A, Cardillo G, Giordano S, Tomaiuolo R, Paolella G, et al. Three novel CFTR polymorphic repeats improve segregation analysis for cystic fibrosis. Clin Chem. 2009;55:1372.PubMedCrossRef Elce A, Boccia A, Cardillo G, Giordano S, Tomaiuolo R, Paolella G, et al. Three novel CFTR polymorphic repeats improve segregation analysis for cystic fibrosis. Clin Chem. 2009;55:1372.PubMedCrossRef
133.
go back to reference Allyse M, Minear MA, Berson E, Sridhar S, Rote M, Hung A, et al. Non-invasive prenatal testing: a review of international implementation and challenges. Int J Womens Health. 2015;7:113–26.PubMedPubMedCentralCrossRef Allyse M, Minear MA, Berson E, Sridhar S, Rote M, Hung A, et al. Non-invasive prenatal testing: a review of international implementation and challenges. Int J Womens Health. 2015;7:113–26.PubMedPubMedCentralCrossRef
135.
go back to reference Saba L, Masala M, Capponi V, Marceddu G, Massidda M, Rosatelli MC. Non-invasive prenatal diagnosis of beta-thalassemia by semiconductor sequencing: a feasibility study in the sardinian population. Eur J Hum Genet. 2017;25:600–7.PubMedPubMedCentralCrossRef Saba L, Masala M, Capponi V, Marceddu G, Massidda M, Rosatelli MC. Non-invasive prenatal diagnosis of beta-thalassemia by semiconductor sequencing: a feasibility study in the sardinian population. Eur J Hum Genet. 2017;25:600–7.PubMedPubMedCentralCrossRef
136.
go back to reference New M, Tong YK, Yuen T, Jiang P, Pina C, Chan KC, et al. Noninvasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma. J Clin Endocrinol Metab. 2014;99:E1022–30.PubMedPubMedCentralCrossRef New M, Tong YK, Yuen T, Jiang P, Pina C, Chan KC, et al. Noninvasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma. J Clin Endocrinol Metab. 2014;99:E1022–30.PubMedPubMedCentralCrossRef
137.
go back to reference Xu Y, Li X, Ge HJ, Xiao B, Zhang YY, Ying XM, et al. Haplotype-based approach for noninvasive prenatal tests of Duchenne muscular dystrophy using cell-free fetal DNA. Genet Med. 2015;17:889–96.PubMedCrossRef Xu Y, Li X, Ge HJ, Xiao B, Zhang YY, Ying XM, et al. Haplotype-based approach for noninvasive prenatal tests of Duchenne muscular dystrophy using cell-free fetal DNA. Genet Med. 2015;17:889–96.PubMedCrossRef
138.
go back to reference Liñán A, Lawrenz B, El Khatib I, Bayram A, Arnanz A, Rubio C, et al. Clinical reassessment of human embryo ploidy status between cleavage and blastocyst stage by Next Generation Sequencing. PLoS ONE. 2018;13:e0201652.PubMedPubMedCentralCrossRef Liñán A, Lawrenz B, El Khatib I, Bayram A, Arnanz A, Rubio C, et al. Clinical reassessment of human embryo ploidy status between cleavage and blastocyst stage by Next Generation Sequencing. PLoS ONE. 2018;13:e0201652.PubMedPubMedCentralCrossRef
139.
go back to reference Rubio C, Bellver J, Rodrigo L, Castillón G, Guillén A, Vidal C, et al. In vitro fertilization with preimplantation genetic diagnosis for aneuploidies in advanced maternal age: a randomized, controlled study. Fertil Steril. 2017;107:1122–9.PubMedCrossRef Rubio C, Bellver J, Rodrigo L, Castillón G, Guillén A, Vidal C, et al. In vitro fertilization with preimplantation genetic diagnosis for aneuploidies in advanced maternal age: a randomized, controlled study. Fertil Steril. 2017;107:1122–9.PubMedCrossRef
140.
go back to reference Munné S. Status of preimplantation genetic testing and embryo selection. Reprod Biomed Online. 2018;37:393–6.PubMedCrossRef Munné S. Status of preimplantation genetic testing and embryo selection. Reprod Biomed Online. 2018;37:393–6.PubMedCrossRef
141.
go back to reference Vanneste E, Melotte C, Voet T, Robberecht C, Debrock S, Pexsters A, et al. PGD for a complex chromosomal rearrangement by array comparative genomic hybridization. Hum Reprod. 2011;26:941–9.PubMedCrossRef Vanneste E, Melotte C, Voet T, Robberecht C, Debrock S, Pexsters A, et al. PGD for a complex chromosomal rearrangement by array comparative genomic hybridization. Hum Reprod. 2011;26:941–9.PubMedCrossRef
142.
go back to reference D’Argenio V, Tomaiuolo R, Cariati F. La, “whole genome amplification” su singola cellula. Biochim Clin. 2016;40:293–301. D’Argenio V, Tomaiuolo R, Cariati F. La, “whole genome amplification” su singola cellula. Biochim Clin. 2016;40:293–301.
143.
go back to reference Harton GL, De Rycke M, Fiorentino F, Moutou C, SenGupta S, Traeger-Synodinos J, et al. ESHRE PGD consortium best practice guidelines for amplification-based PGD. Hum Reprod. 2011;26:33–40.PubMedCrossRef Harton GL, De Rycke M, Fiorentino F, Moutou C, SenGupta S, Traeger-Synodinos J, et al. ESHRE PGD consortium best practice guidelines for amplification-based PGD. Hum Reprod. 2011;26:33–40.PubMedCrossRef
144.
go back to reference Handyside AH, Harton GL, Mariani B, Thornhill AR, Affara N, Shaw MA, et al. Karyomapping: a universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes. Med Genet. 2010;47:651–8.CrossRef Handyside AH, Harton GL, Mariani B, Thornhill AR, Affara N, Shaw MA, et al. Karyomapping: a universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes. Med Genet. 2010;47:651–8.CrossRef
145.
go back to reference Natesan SA, Handyside AH, Thornhill AR, Ottolini CS, Sage K, Summers MC, et al. Live birth after PGD with confirmation by a comprehensive approach (karyomapping) for simultaneous detection of monogenic and chromosomal disorders. Reprod Biomed Online. 2014;29:600–5.PubMedCrossRef Natesan SA, Handyside AH, Thornhill AR, Ottolini CS, Sage K, Summers MC, et al. Live birth after PGD with confirmation by a comprehensive approach (karyomapping) for simultaneous detection of monogenic and chromosomal disorders. Reprod Biomed Online. 2014;29:600–5.PubMedCrossRef
146.
go back to reference Thornhill AR, Handyside AH, Ottolini C, Natesan SA, Taylor J, Sage K, et al. Karyomapping-a comprehensive means of simultaneous monogenic and cytogenetic PGD: comparison with standard approaches in real time for Marfan syndrome. J Assist Reprod Genet. 2015;32:347–56.PubMedPubMedCentralCrossRef Thornhill AR, Handyside AH, Ottolini C, Natesan SA, Taylor J, Sage K, et al. Karyomapping-a comprehensive means of simultaneous monogenic and cytogenetic PGD: comparison with standard approaches in real time for Marfan syndrome. J Assist Reprod Genet. 2015;32:347–56.PubMedPubMedCentralCrossRef
147.
go back to reference Treff NR, Fedick A, Tao X, Devkota B, Taylor D, Scott RT. Evaluation of targeted next-generation sequencing–based preimplantation genetic diagnosis of monogenic disease. Fertil Steril. 2013;99:1377–84.PubMedCrossRef Treff NR, Fedick A, Tao X, Devkota B, Taylor D, Scott RT. Evaluation of targeted next-generation sequencing–based preimplantation genetic diagnosis of monogenic disease. Fertil Steril. 2013;99:1377–84.PubMedCrossRef
148.
go back to reference Peters BA, Kermani BG, Alferov O, Agarwal MR, McElwain MA, Gulbahce N, et al. Detection and phasing of single base de novo mutations in biopsies from human in vitro fertilized embryos by advanced whole-genome sequencing. Genome Res. 2015;25:426–34.PubMedPubMedCentralCrossRef Peters BA, Kermani BG, Alferov O, Agarwal MR, McElwain MA, Gulbahce N, et al. Detection and phasing of single base de novo mutations in biopsies from human in vitro fertilized embryos by advanced whole-genome sequencing. Genome Res. 2015;25:426–34.PubMedPubMedCentralCrossRef
149.
go back to reference Kung A, Munne S, Bankowski B, Coates A, Wells D. Validation of next-generation sequencing for comprehensive chromosome screening of embryos. Reprod Biomed Online. 2015;31:760–9.PubMedCrossRef Kung A, Munne S, Bankowski B, Coates A, Wells D. Validation of next-generation sequencing for comprehensive chromosome screening of embryos. Reprod Biomed Online. 2015;31:760–9.PubMedCrossRef
150.
go back to reference Harper JC, Coonen E, De Rycke M, Harton G, Moutou C, Pehlivan T, et al. ESHRE PGD consortium data collection X: cycles from January to December 2007 with pregnancy follow-up to October 2008. Hum Reprod. 2010;25:2685–707.PubMedCrossRef Harper JC, Coonen E, De Rycke M, Harton G, Moutou C, Pehlivan T, et al. ESHRE PGD consortium data collection X: cycles from January to December 2007 with pregnancy follow-up to October 2008. Hum Reprod. 2010;25:2685–707.PubMedCrossRef
151.
go back to reference Brezina PR, Kutteh WH. Clinical applications of preimplantation genetic testing. Br Med J. 2015;350:g7611.CrossRef Brezina PR, Kutteh WH. Clinical applications of preimplantation genetic testing. Br Med J. 2015;350:g7611.CrossRef
152.
153.
go back to reference Wells D. Next-generation sequencing: the dawn of a new era for preimplantation genetic diagnostics. Fertil Steril. 2014;101:1250–1.PubMedCrossRef Wells D. Next-generation sequencing: the dawn of a new era for preimplantation genetic diagnostics. Fertil Steril. 2014;101:1250–1.PubMedCrossRef
154.
go back to reference Handyside AH. 24-chromosome copy number analysis: a comparison of available technologies. Fertil Steril. 2013;100:595–602.PubMedCrossRef Handyside AH. 24-chromosome copy number analysis: a comparison of available technologies. Fertil Steril. 2013;100:595–602.PubMedCrossRef
155.
go back to reference Martin J, Cervero A, Mir P, Martinez JAC, Pellicer A, Simón C, et al. The impact of next-generation sequencing technology on preimplantation genetic diagnosis and screening. Fertil Steril. 2013;99:1054–61.PubMedCrossRef Martin J, Cervero A, Mir P, Martinez JAC, Pellicer A, Simón C, et al. The impact of next-generation sequencing technology on preimplantation genetic diagnosis and screening. Fertil Steril. 2013;99:1054–61.PubMedCrossRef
156.
go back to reference Rubio C. Next-generation sequencing: challenges in reproductive genetics. Fertil Steril. 2014;101:1252–3.PubMedCrossRef Rubio C. Next-generation sequencing: challenges in reproductive genetics. Fertil Steril. 2014;101:1252–3.PubMedCrossRef
157.
go back to reference Sermon K. Novel technologies emerging for preimplantation genetic diagnosis and preimplantation genetic testing for aneuploidy. Expert Rev Mol Diagn. 2017;17:71–82.PubMedCrossRef Sermon K. Novel technologies emerging for preimplantation genetic diagnosis and preimplantation genetic testing for aneuploidy. Expert Rev Mol Diagn. 2017;17:71–82.PubMedCrossRef
158.
go back to reference Cariati F, D’Uonno N, Borrillo F, Iervolino S, Galdiero G, Tomaiuolo R. Bisphenol a: an emerging threat to male fertility. Reprod Biol Endocrinol. 2019;17:6.PubMedPubMedCentralCrossRef Cariati F, D’Uonno N, Borrillo F, Iervolino S, Galdiero G, Tomaiuolo R. Bisphenol a: an emerging threat to male fertility. Reprod Biol Endocrinol. 2019;17:6.PubMedPubMedCentralCrossRef
160.
go back to reference Eisenberg ML, Lathi RB, Baker VL, Westphal LM, Milki AA, Nangia AK. Frequency of the male infertility evaluation: data from the national survey of family growth. J Urol. 2013;189:1030–4.PubMedCrossRef Eisenberg ML, Lathi RB, Baker VL, Westphal LM, Milki AA, Nangia AK. Frequency of the male infertility evaluation: data from the national survey of family growth. J Urol. 2013;189:1030–4.PubMedCrossRef
161.
go back to reference Alviggi C, Conforti A, Santi D, Esteves SC, Andersen CY, Humaidan P, et al. Clinical relevance of genetic variants of gonadotrophins and their receptors in controlled ovarian stimulation: a systematic review and meta-analysis. Hum Reprod Update. 2018;24:599–614.PubMedCrossRef Alviggi C, Conforti A, Santi D, Esteves SC, Andersen CY, Humaidan P, et al. Clinical relevance of genetic variants of gonadotrophins and their receptors in controlled ovarian stimulation: a systematic review and meta-analysis. Hum Reprod Update. 2018;24:599–614.PubMedCrossRef
162.
go back to reference Harper JC, Aittomäki K, Borry P, Cornel MC, de Wert G, Dondorp W, Geraedts J, et al. Recent developments in genetics and medically assisted reproduction: from research to clinical applications. Eur J Hum Genet. 2018;26:12–33.PubMedCrossRef Harper JC, Aittomäki K, Borry P, Cornel MC, de Wert G, Dondorp W, Geraedts J, et al. Recent developments in genetics and medically assisted reproduction: from research to clinical applications. Eur J Hum Genet. 2018;26:12–33.PubMedCrossRef
Metadata
Title
The evolving role of genetic tests in reproductive medicine
Authors
Federica Cariati
Valeria D’Argenio
Rossella Tomaiuolo
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2019
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-019-2019-8

Other articles of this Issue 1/2019

Journal of Translational Medicine 1/2019 Go to the issue