Skip to main content
Top
Published in: Journal of Translational Medicine 1/2019

Open Access 01-12-2019 | Fatigue | Research

A possible role for mitochondrial-derived peptides humanin and MOTS-c in patients with Q fever fatigue syndrome and chronic fatigue syndrome

Authors: Ruud P. H. Raijmakers, Anne F. M. Jansen, Stephan P. Keijmel, Rob ter Horst, Megan E. Roerink, Boris Novakovic, Leo A. B. Joosten, Jos W. M. van der Meer, Mihai G. Netea, Chantal P. Bleeker-Rovers

Published in: Journal of Translational Medicine | Issue 1/2019

Login to get access

Abstract

Background

Q fever fatigue syndrome (QFS) is a well-documented state of prolonged fatigue following around 20% of acute Q fever infections. It has been hypothesized that low grade inflammation plays a role in its aetiology. In this study, we aimed to identify transcriptome profiles that could aid to better understand the pathophysiology of QFS.

Methods

RNA of monocytes was collected from QFS patients (n = 10), chronic fatigue syndrome patients (CFS, n = 10), Q fever seropositive controls (n = 10), and healthy controls (n = 10) who were age- (± 5 years) and sex-matched. Transcriptome analysis was performed using RNA sequencing.

Results

Mitochondrial-derived peptide (MDP)-coding genes MT-RNR2 (humanin) and MT-RNR1 (MOTS-c) were differentially expressed when comparing QFS (− 4.8 log2-fold-change P = 2.19 × 10−9 and − 4.9 log2-fold-change P = 4.69 × 10−8), CFS (− 5.2 log2-fold-change, P = 3.49 × 10−11 − 4.4 log2-fold-change, P = 2.71 × 10−9), and Q fever seropositive control (− 3.7 log2-fold-change P = 1.78 × 10−6 and − 3.2 log2-fold-change P = 1.12 × 10−5) groups with healthy controls, resulting in a decreased median production of humanin in QFS patients (371 pg/mL; Interquartile range, IQR, 325–384), CFS patients (364 pg/mL; IQR 316–387), and asymptomatic Q fever seropositive controls (354 pg/mL; 292–393).

Conclusions

Expression of MDP-coding genes MT-RNR1 (MOTS-c) and MT-RNR2 (humanin) is decreased in CFS, QFS, and, to a lesser extent, in Q fever seropositive controls, resulting in a decreased production of humanin. These novel peptides might indeed be important in the pathophysiology of both QFS and CFS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Eldin C, et al. From Q fever to Coxiella burnetii infection: a paradigm change. Clin Microbiol Rev. 2017;30(1):115–90.PubMedCrossRef Eldin C, et al. From Q fever to Coxiella burnetii infection: a paradigm change. Clin Microbiol Rev. 2017;30(1):115–90.PubMedCrossRef
4.
go back to reference Carey KL, et al. The Coxiella burnetii Dot/Icm system delivers a unique repertoire of type IV effectors into host cells and is required for intracellular replication. PLoS Pathog. 2011;7(5):e1002056.PubMedPubMedCentralCrossRef Carey KL, et al. The Coxiella burnetii Dot/Icm system delivers a unique repertoire of type IV effectors into host cells and is required for intracellular replication. PLoS Pathog. 2011;7(5):e1002056.PubMedPubMedCentralCrossRef
5.
go back to reference Kampschreur LM, et al. Chronic Q fever in the Netherlands five years after the start of the Q fever epidemic: results from the Dutch Chronic Q Fever Database. J Clin Microbiol. 2014;52:1637–43.PubMedPubMedCentralCrossRef Kampschreur LM, et al. Chronic Q fever in the Netherlands five years after the start of the Q fever epidemic: results from the Dutch Chronic Q Fever Database. J Clin Microbiol. 2014;52:1637–43.PubMedPubMedCentralCrossRef
7.
go back to reference Keijmel SP, et al. Effectiveness of long-term doxycycline treatment and cognitive-behavioral therapy on fatigue severity in patients with Q fever fatigue syndrome (Qure Study): a randomized controlled trial. Clin Infect Dis. 2017;64(8):998–1005.PubMedCrossRef Keijmel SP, et al. Effectiveness of long-term doxycycline treatment and cognitive-behavioral therapy on fatigue severity in patients with Q fever fatigue syndrome (Qure Study): a randomized controlled trial. Clin Infect Dis. 2017;64(8):998–1005.PubMedCrossRef
8.
go back to reference Penttila IA, et al. Cytokine dysregulation in the post-Q-fever fatigue syndrome. QJM. 1998;91(8):549–60.PubMedCrossRef Penttila IA, et al. Cytokine dysregulation in the post-Q-fever fatigue syndrome. QJM. 1998;91(8):549–60.PubMedCrossRef
9.
go back to reference Keijmel SP, et al. Altered interferon-gamma response in patients with Q-fever fatigue syndrome. J Infect. 2016;72(4):478–85.PubMedCrossRef Keijmel SP, et al. Altered interferon-gamma response in patients with Q-fever fatigue syndrome. J Infect. 2016;72(4):478–85.PubMedCrossRef
10.
go back to reference Raijmakers RPH, et al. Interferon-gamma and CXCL10 responses related to complaints in patients with Q fever fatigue syndrome. Eur J Clin Microbiol Infect Dis. 2018;37(7):1385–91.PubMedPubMedCentralCrossRef Raijmakers RPH, et al. Interferon-gamma and CXCL10 responses related to complaints in patients with Q fever fatigue syndrome. Eur J Clin Microbiol Infect Dis. 2018;37(7):1385–91.PubMedPubMedCentralCrossRef
11.
go back to reference Raijmakers RPH, et al. Cytokine profiles in patients with Q fever fatigue syndrome. J Infect. 2019;78(5):349–57.PubMedCrossRef Raijmakers RPH, et al. Cytokine profiles in patients with Q fever fatigue syndrome. J Infect. 2019;78(5):349–57.PubMedCrossRef
12.
go back to reference Keijmel SP, et al. A comparison of patients with Q fever fatigue syndrome and patients with chronic fatigue syndrome with a focus on inflammatory markers and possible fatigue perpetuating cognitions and behaviour. J Psychosom Res. 2015;79(4):295–302.PubMedCrossRef Keijmel SP, et al. A comparison of patients with Q fever fatigue syndrome and patients with chronic fatigue syndrome with a focus on inflammatory markers and possible fatigue perpetuating cognitions and behaviour. J Psychosom Res. 2015;79(4):295–302.PubMedCrossRef
13.
go back to reference Blundell S, et al. Chronic fatigue syndrome and circulating cytokines: a systematic review. Brain Behav Immun. 2015;50:186–95.PubMedCrossRef Blundell S, et al. Chronic fatigue syndrome and circulating cytokines: a systematic review. Brain Behav Immun. 2015;50:186–95.PubMedCrossRef
14.
go back to reference Montoya JG, et al. Cytokine signature associated with disease severity in chronic fatigue syndrome patients. Proc Natl Acad Sci USA. 2017;114(34):E7150–8.PubMedCrossRefPubMedCentral Montoya JG, et al. Cytokine signature associated with disease severity in chronic fatigue syndrome patients. Proc Natl Acad Sci USA. 2017;114(34):E7150–8.PubMedCrossRefPubMedCentral
16.
17.
go back to reference Venter M, et al. MtDNA population variation in myalgic encephalomyelitis/chronic fatigue syndrome in two populations: a study of mildly deleterious variants. Sci Rep. 2019;9(1):2914.PubMedPubMedCentralCrossRef Venter M, et al. MtDNA population variation in myalgic encephalomyelitis/chronic fatigue syndrome in two populations: a study of mildly deleterious variants. Sci Rep. 2019;9(1):2914.PubMedPubMedCentralCrossRef
18.
go back to reference Timen A, et al. Multidisciplinaire LCI-richtlijn Q-koorts-vermoeidheidssyndroom (QVS). In: Milieu RvVe, editor. Rijksinstituut voor Volksgezondheid en Milieu; 2011. p. 57. Timen A, et al. Multidisciplinaire LCI-richtlijn Q-koorts-vermoeidheidssyndroom (QVS). In: Milieu RvVe, editor. Rijksinstituut voor Volksgezondheid en Milieu; 2011. p. 57.
19.
go back to reference Vercoulen JH, et al. Dimensional assessment of chronic fatigue syndrome. J Psychosom Res. 1994;38(5):383–92.PubMedCrossRef Vercoulen JH, et al. Dimensional assessment of chronic fatigue syndrome. J Psychosom Res. 1994;38(5):383–92.PubMedCrossRef
20.
go back to reference de Bruin AF, et al. Sickness Impact Profile: the state of the art of a generic functional status measure. Soc Sci Med. 1992;35(8):1003–14.PubMedCrossRef de Bruin AF, et al. Sickness Impact Profile: the state of the art of a generic functional status measure. Soc Sci Med. 1992;35(8):1003–14.PubMedCrossRef
21.
go back to reference Clayton EW. Beyond myalgic encephalomyelitis/chronic fatigue syndrome: an IOM report on redefining an illness. JAMA. 2015;313(11):1101–2.PubMedCrossRef Clayton EW. Beyond myalgic encephalomyelitis/chronic fatigue syndrome: an IOM report on redefining an illness. JAMA. 2015;313(11):1101–2.PubMedCrossRef
22.
go back to reference Repnik U, Knezevic M, Jeras M. Simple and cost-effective isolation of monocytes from buffy coats. J Immunol Methods. 2003;278(1–2):283–92.PubMedCrossRef Repnik U, Knezevic M, Jeras M. Simple and cost-effective isolation of monocytes from buffy coats. J Immunol Methods. 2003;278(1–2):283–92.PubMedCrossRef
23.
go back to reference Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10.PubMedPubMedCentralCrossRef Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10.PubMedPubMedCentralCrossRef
25.
go back to reference Neylan TC, et al. Suppressed monocyte gene expression profile in men versus women with PTSD. Brain Behav Immun. 2011;25(3):524–31.PubMedCrossRef Neylan TC, et al. Suppressed monocyte gene expression profile in men versus women with PTSD. Brain Behav Immun. 2011;25(3):524–31.PubMedCrossRef
27.
go back to reference Lee C, et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 2015;21(3):443–54.PubMedPubMedCentralCrossRef Lee C, et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 2015;21(3):443–54.PubMedPubMedCentralCrossRef
30.
go back to reference Hashimoto Y, et al. Humanin inhibits neuronal cell death by interacting with a cytokine receptor complex or complexes involving CNTF receptor alpha/WSX-1/gp130. Mol Biol Cell. 2009;20(12):2864–73.PubMedPubMedCentralCrossRef Hashimoto Y, et al. Humanin inhibits neuronal cell death by interacting with a cytokine receptor complex or complexes involving CNTF receptor alpha/WSX-1/gp130. Mol Biol Cell. 2009;20(12):2864–73.PubMedPubMedCentralCrossRef
31.
go back to reference Zhao ST, Zhao L, Li JH. Neuroprotective peptide humanin inhibits inflammatory response in astrocytes induced by lipopolysaccharide. Neurochem Res. 2013;38(3):581–8.PubMedCrossRef Zhao ST, Zhao L, Li JH. Neuroprotective peptide humanin inhibits inflammatory response in astrocytes induced by lipopolysaccharide. Neurochem Res. 2013;38(3):581–8.PubMedCrossRef
32.
go back to reference Du C, et al. Circulating MOTS-c levels are decreased in obese male children and adolescents and associated with insulin resistance. Pediatr Diabetes. 2018;19:1058–64.CrossRef Du C, et al. Circulating MOTS-c levels are decreased in obese male children and adolescents and associated with insulin resistance. Pediatr Diabetes. 2018;19:1058–64.CrossRef
33.
go back to reference Cataldo LR, et al. Plasma MOTS-c levels are associated with insulin sensitivity in lean but not in obese individuals. J Investig Med. 2018;66:1019–22.PubMedCrossRef Cataldo LR, et al. Plasma MOTS-c levels are associated with insulin sensitivity in lean but not in obese individuals. J Investig Med. 2018;66:1019–22.PubMedCrossRef
34.
go back to reference Roerink ME, et al. Cytokine signatures in chronic fatigue syndrome patients: a Case Control Study and the effect of anakinra treatment. J Transl Med. 2017;15(1):267.PubMedPubMedCentralCrossRef Roerink ME, et al. Cytokine signatures in chronic fatigue syndrome patients: a Case Control Study and the effect of anakinra treatment. J Transl Med. 2017;15(1):267.PubMedPubMedCentralCrossRef
35.
go back to reference Booth NE, Myhill S, McLaren-Howard J. Mitochondrial dysfunction and the pathophysiology of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Int J Clin Exp Med. 2012;5(3):208–20.PubMedPubMedCentral Booth NE, Myhill S, McLaren-Howard J. Mitochondrial dysfunction and the pathophysiology of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Int J Clin Exp Med. 2012;5(3):208–20.PubMedPubMedCentral
38.
go back to reference Myhill S, Booth NE, McLaren-Howard J. Chronic fatigue syndrome and mitochondrial dysfunction. Int J Clin Exp Med. 2009;2(1):1–16.PubMedPubMedCentral Myhill S, Booth NE, McLaren-Howard J. Chronic fatigue syndrome and mitochondrial dysfunction. Int J Clin Exp Med. 2009;2(1):1–16.PubMedPubMedCentral
39.
go back to reference Gerwyn M, Maes M. Mechanisms explaining muscle fatigue and muscle pain in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a review of recent findings. Curr Rheumatol Rep. 2017;19(1):1.PubMedCrossRef Gerwyn M, Maes M. Mechanisms explaining muscle fatigue and muscle pain in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a review of recent findings. Curr Rheumatol Rep. 2017;19(1):1.PubMedCrossRef
40.
go back to reference de Vega WC, et al. Epigenetic modifications and glucocorticoid sensitivity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). BMC Med Genomics. 2017;10(1):11.PubMedPubMedCentralCrossRef de Vega WC, et al. Epigenetic modifications and glucocorticoid sensitivity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). BMC Med Genomics. 2017;10(1):11.PubMedPubMedCentralCrossRef
41.
go back to reference Pietrangelo T, et al. Transcription profile analysis of vastus lateralis muscle from patients with chronic fatigue syndrome. Int J Immunopathol Pharmacol. 2009;22(3):795–807.PubMedCrossRef Pietrangelo T, et al. Transcription profile analysis of vastus lateralis muscle from patients with chronic fatigue syndrome. Int J Immunopathol Pharmacol. 2009;22(3):795–807.PubMedCrossRef
42.
go back to reference Nakatomi Y, et al. Neuroinflammation in patients with chronic fatigue syndrome/myalgic encephalomyelitis: an (1)(1)C-(R)-PK11195 PET study. J Nucl Med. 2014;55(6):945–50.PubMedCrossRef Nakatomi Y, et al. Neuroinflammation in patients with chronic fatigue syndrome/myalgic encephalomyelitis: an (1)(1)C-(R)-PK11195 PET study. J Nucl Med. 2014;55(6):945–50.PubMedCrossRef
43.
go back to reference Cobb LJ, et al. Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers. Aging. 2016;8(4):796–809.PubMedPubMedCentralCrossRef Cobb LJ, et al. Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers. Aging. 2016;8(4):796–809.PubMedPubMedCentralCrossRef
44.
45.
go back to reference Cox TC, et al. Human erythroid 5-aminolevulinate synthase: promoter analysis and identification of an iron-responsive element in the mRNA. EMBO J. 1991;10(7):1891–902.PubMedPubMedCentralCrossRef Cox TC, et al. Human erythroid 5-aminolevulinate synthase: promoter analysis and identification of an iron-responsive element in the mRNA. EMBO J. 1991;10(7):1891–902.PubMedPubMedCentralCrossRef
46.
go back to reference Fitzsimons EJ, May A. The molecular basis of the sideroblastic anemias. Curr Opin Hematol. 1996;3(2):167–72.PubMedCrossRef Fitzsimons EJ, May A. The molecular basis of the sideroblastic anemias. Curr Opin Hematol. 1996;3(2):167–72.PubMedCrossRef
Metadata
Title
A possible role for mitochondrial-derived peptides humanin and MOTS-c in patients with Q fever fatigue syndrome and chronic fatigue syndrome
Authors
Ruud P. H. Raijmakers
Anne F. M. Jansen
Stephan P. Keijmel
Rob ter Horst
Megan E. Roerink
Boris Novakovic
Leo A. B. Joosten
Jos W. M. van der Meer
Mihai G. Netea
Chantal P. Bleeker-Rovers
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Fatigue
Published in
Journal of Translational Medicine / Issue 1/2019
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-019-1906-3

Other articles of this Issue 1/2019

Journal of Translational Medicine 1/2019 Go to the issue