Skip to main content
Top
Published in: Journal of Translational Medicine 1/2019

Open Access 01-12-2019 | Arterial Occlusive Disease | Research

Overexpression of scavenger receptor and infiltration of macrophage in epicardial adipose tissue of patients with ischemic heart disease and diabetes

Authors: Concepción Santiago-Fernández, Luis M. Pérez-Belmonte, Mercedes Millán-Gómez, Inmaculada Moreno-Santos, Fernando Carrasco-Chinchilla, Amalio Ruiz-Salas, Luis Morcillo-Hidalgo, José M. Melero, Lourdes Garrido-Sánchez, Manuel Jiménez-Navarro

Published in: Journal of Translational Medicine | Issue 1/2019

Login to get access

Abstract

Background

Oxidized low-density lipoproteins and scavenger receptors (SRs) play an important role in the formation and development of atherosclerotic plaques. However, little is known about their presence in epicardial adipose tissue (EAT). The objective of the study was to evaluate the mRNA expression of different SRs in EAT of patients with ischemic heart disease (IHD), stratifying by diabetes status and its association with clinical and biochemical variables.

Methods

We analyzed the mRNA expression of SRs (LOX-1, MSR1, CXCL16, CD36 and CL-P1) and macrophage markers (CD68, CD11c and CD206) in EAT from 45 patients with IHD (23 with type 2 diabetes mellitus (T2DM) and 22 without T2DM) and 23 controls without IHD or T2DM.

Results

LOX-1, CL-P1, CD68 and CD11c mRNA expression were significantly higher in diabetic patients with IHD when compared with those without T2DM and control patients. MSR1, CXCL16, CD36 and CD206 showed no significant differences. In IHD patients, LOX-1 (OR 2.9; 95% CI 1.6–6.7; P = 0.019) and CD68 mRNA expression (OR 1.7; 95% CI 0.98–4.5; P = 0.049) were identified as independent risk factors associated with T2DM. Glucose and glycated hemoglobin were also shown to be risk factors.

Conclusions

SRs mRNA expression is found in EAT. LOX-1 and CD68 and were higher in IHD patients with T2DM and were identified as a cardiovascular risk factor of T2DM. This study suggests the importance of EAT in coronary atherosclerosis among patients with T2DM.
Literature
1.
go back to reference Nichols M, Townsend N, Scarborough P, Rayner M. Cardiovascular disease in Europe 2014: epidemiological update. Eur Heart J. 2014;35:2950–9.CrossRef Nichols M, Townsend N, Scarborough P, Rayner M. Cardiovascular disease in Europe 2014: epidemiological update. Eur Heart J. 2014;35:2950–9.CrossRef
2.
go back to reference Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135:146–603.CrossRef Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135:146–603.CrossRef
3.
go back to reference Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25.CrossRef Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25.CrossRef
5.
go back to reference Albuquerque FN, Somers VK, Blume G, Miranda W, Korenfeld Y, Calvin AD, et al. Usefulness of epicardial adipose tissue as predictor of cardiovascular events in patients with coronary artery disease. Am J Cardiol. 2012;110:1100–5.CrossRef Albuquerque FN, Somers VK, Blume G, Miranda W, Korenfeld Y, Calvin AD, et al. Usefulness of epicardial adipose tissue as predictor of cardiovascular events in patients with coronary artery disease. Am J Cardiol. 2012;110:1100–5.CrossRef
6.
go back to reference Pérez-Belmonte LM, Moreno-Santos I, Cabrera-Bueno F, Sánchez-Espín G, Castellano D, Such M, et al. Expression of sterol regulatory element-binding proteins in epicardial adipose tissue in patients with coronary artery disease and diabetes mellitus: preliminary study. Int J Med Sci. 2017;14:268–74.CrossRef Pérez-Belmonte LM, Moreno-Santos I, Cabrera-Bueno F, Sánchez-Espín G, Castellano D, Such M, et al. Expression of sterol regulatory element-binding proteins in epicardial adipose tissue in patients with coronary artery disease and diabetes mellitus: preliminary study. Int J Med Sci. 2017;14:268–74.CrossRef
7.
go back to reference Franssens BT, Nathoe HM, Visseren FL, van der Graaf Y, Leiner T, SMART Study Group. Relation of epicardial adipose tissue radiodensity to coronary artery calcium on cardiac computed tomography in patients at high risk for cardiovascular disease. Am J Cardiol. 2017;119:1359–65.CrossRef Franssens BT, Nathoe HM, Visseren FL, van der Graaf Y, Leiner T, SMART Study Group. Relation of epicardial adipose tissue radiodensity to coronary artery calcium on cardiac computed tomography in patients at high risk for cardiovascular disease. Am J Cardiol. 2017;119:1359–65.CrossRef
8.
go back to reference Chen WJ, Danad I, Raijmakers PG, Halbmeijer R, Harms HJ, Lammertsma AA, et al. Effect of type 2 diabetes mellitus on epicardial adipose tissue volume and coronary vasomotor function. Am J Cardiol. 2014;113:90–7.CrossRef Chen WJ, Danad I, Raijmakers PG, Halbmeijer R, Harms HJ, Lammertsma AA, et al. Effect of type 2 diabetes mellitus on epicardial adipose tissue volume and coronary vasomotor function. Am J Cardiol. 2014;113:90–7.CrossRef
9.
go back to reference Iozzo P. Myocardial, perivascular, and epicardial fat. Diabetes Care. 2011;34:371–9.CrossRef Iozzo P. Myocardial, perivascular, and epicardial fat. Diabetes Care. 2011;34:371–9.CrossRef
10.
go back to reference Iacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappaterreno A, et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic síndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab. 2003;88:5163–8.CrossRef Iacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappaterreno A, et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic síndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab. 2003;88:5163–8.CrossRef
11.
go back to reference Chang L, Villacorta L, Li R, Hamblin M, Xu W, Dou C, et al. Loss of perivascular adipose tissue on peroxisome proliferator activated receptor-gamma deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation. 2012;126:1067–78.CrossRef Chang L, Villacorta L, Li R, Hamblin M, Xu W, Dou C, et al. Loss of perivascular adipose tissue on peroxisome proliferator activated receptor-gamma deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation. 2012;126:1067–78.CrossRef
12.
go back to reference Moreno-Santos I, Pérez-Belmonte LM, Macías-González M, Mataró MJ, Castellano D, López-Garrido M, et al. Type 2 diabetes is associated with decreased PGC1α expression in epicardial adipose tissue of patients with coronary artery disease. J Transl Med. 2016;14:243.CrossRef Moreno-Santos I, Pérez-Belmonte LM, Macías-González M, Mataró MJ, Castellano D, López-Garrido M, et al. Type 2 diabetes is associated with decreased PGC1α expression in epicardial adipose tissue of patients with coronary artery disease. J Transl Med. 2016;14:243.CrossRef
13.
go back to reference Dozio E, Malavazos AE, Vianello E, Briganti S, Dogliotti G, Bandera F, et al. Interleukin-15 and soluble interleukin-15 receptor alpha in coronary artery disease patients: association with epicardial fat and indices of adipose tissue distribution. PLoS ONE. 2014;9:e90960.CrossRef Dozio E, Malavazos AE, Vianello E, Briganti S, Dogliotti G, Bandera F, et al. Interleukin-15 and soluble interleukin-15 receptor alpha in coronary artery disease patients: association with epicardial fat and indices of adipose tissue distribution. PLoS ONE. 2014;9:e90960.CrossRef
14.
go back to reference Dozio E, Vianello E, Briganti S, Fink B, Malavazos AE, Scognamiglio ET, et al. Increased reactive oxygen species production in epicardial adipose tissues from coronary artery disease patients is associated with brown-to-white adipocyte trans-differentiation. Int J Cardiol. 2014;174:413–4.CrossRef Dozio E, Vianello E, Briganti S, Fink B, Malavazos AE, Scognamiglio ET, et al. Increased reactive oxygen species production in epicardial adipose tissues from coronary artery disease patients is associated with brown-to-white adipocyte trans-differentiation. Int J Cardiol. 2014;174:413–4.CrossRef
15.
go back to reference Malavazos AE, Corsi MM, Ermetici F, Coman C, Sardanelli F, Rossi A, et al. Proinflammatory cytokines and cardiac abnormalities in uncomplicated obesity: relationship with abdominal fat deposition. Nutr Metab Cardiovasc Dis. 2007;17:294–302.CrossRef Malavazos AE, Corsi MM, Ermetici F, Coman C, Sardanelli F, Rossi A, et al. Proinflammatory cytokines and cardiac abnormalities in uncomplicated obesity: relationship with abdominal fat deposition. Nutr Metab Cardiovasc Dis. 2007;17:294–302.CrossRef
16.
go back to reference Gurses KM, Ozmen F, Kocyigit D, Yersal N, Bilgic E, Kaya E, et al. Netrin-1 is associated with macrophage infiltration and polarization in human epicardial adipose tissue in coronary artery disease. J Cardiol. 2017;69:851–8.CrossRef Gurses KM, Ozmen F, Kocyigit D, Yersal N, Bilgic E, Kaya E, et al. Netrin-1 is associated with macrophage infiltration and polarization in human epicardial adipose tissue in coronary artery disease. J Cardiol. 2017;69:851–8.CrossRef
17.
go back to reference Hirata Y, Kurobe H, Akaike M, Chikugo F, Hori T, Bando Y, et al. Enhanced inflammation in epicardial fat in patients with coronary artery disease. Int Heart J. 2011;52:139–42.CrossRef Hirata Y, Kurobe H, Akaike M, Chikugo F, Hori T, Bando Y, et al. Enhanced inflammation in epicardial fat in patients with coronary artery disease. Int Heart J. 2011;52:139–42.CrossRef
18.
go back to reference Konishi M, Sugiyama S, Sato Y, Oshima S, Sugamura K, Nozaki T, et al. Pericardial fat inflammation correlates with coronary artery disease. Atherosclerosis. 2010;213:649–55.CrossRef Konishi M, Sugiyama S, Sato Y, Oshima S, Sugamura K, Nozaki T, et al. Pericardial fat inflammation correlates with coronary artery disease. Atherosclerosis. 2010;213:649–55.CrossRef
19.
go back to reference Farias-Itao DS, Pasqualucci CA, Nishizawa A, Silva LF, Campos FM, Silva KC, et al. Perivascular adipose tissue inflammation and coronary artery disease: an autopsy study protocol. JMIR Res Protoc. 2016;18:e211.CrossRef Farias-Itao DS, Pasqualucci CA, Nishizawa A, Silva LF, Campos FM, Silva KC, et al. Perivascular adipose tissue inflammation and coronary artery disease: an autopsy study protocol. JMIR Res Protoc. 2016;18:e211.CrossRef
20.
go back to reference Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, et al. Human epicardial adipose tissue is a source of inflammatory mediator. Circulation. 2003;108:2460–6.CrossRef Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, et al. Human epicardial adipose tissue is a source of inflammatory mediator. Circulation. 2003;108:2460–6.CrossRef
21.
go back to reference Holvoet P, Mertens A, Verhamme P, Bogaerts K, Beyens G, Verhaeghe R, et al. Circulating oxidized LDL is a useful marker for identifying patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2001;21:844–8.CrossRef Holvoet P, Mertens A, Verhamme P, Bogaerts K, Beyens G, Verhaeghe R, et al. Circulating oxidized LDL is a useful marker for identifying patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2001;21:844–8.CrossRef
22.
go back to reference Keaney JF Jr, Larson MG, Vasan RS, Wilson PW, Lipinska I, Corey D, et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol. 2003;23:434–9.CrossRef Keaney JF Jr, Larson MG, Vasan RS, Wilson PW, Lipinska I, Corey D, et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol. 2003;23:434–9.CrossRef
23.
go back to reference Santos-Gallego CG, Picatoste B, Badimón JJ. Pathophysiology of acute coronary syndrome. Curr Atheroscler Rep. 2014;16:401.CrossRef Santos-Gallego CG, Picatoste B, Badimón JJ. Pathophysiology of acute coronary syndrome. Curr Atheroscler Rep. 2014;16:401.CrossRef
24.
go back to reference Martín-Fuentes P, Civeira F, Recalde D, García-Otín AL, Jarauta E, Marzo I, et al. Individual variation of scavenger receptor expression in human macrophages with oxidized low-density lipoprotein is associated with a differential inflammatory response. J Immunol. 2007;179:3242–8.CrossRef Martín-Fuentes P, Civeira F, Recalde D, García-Otín AL, Jarauta E, Marzo I, et al. Individual variation of scavenger receptor expression in human macrophages with oxidized low-density lipoprotein is associated with a differential inflammatory response. J Immunol. 2007;179:3242–8.CrossRef
25.
go back to reference Abumrad NA, El-Maghrabi MR, Amri EZ, Lopez E, Grimaldi PA. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem. 1993;268:17665–8.PubMed Abumrad NA, El-Maghrabi MR, Amri EZ, Lopez E, Grimaldi PA. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem. 1993;268:17665–8.PubMed
26.
go back to reference Zani IA, Stephen SL, Mughal NA, Russell D, Homer-Vanniasinkam S, Wheatcroft SB, et al. Scavenger receptor structure and function in health and disease. Cells. 2015;4:178–201.CrossRef Zani IA, Stephen SL, Mughal NA, Russell D, Homer-Vanniasinkam S, Wheatcroft SB, et al. Scavenger receptor structure and function in health and disease. Cells. 2015;4:178–201.CrossRef
27.
go back to reference Kuniyasu A, Hayashi S, Nakayama H. Adipocytes recognize and degrade oxidized low density lipoprotein through CD36. Biochem Biophys Res Commun. 2002;295:319–23.CrossRef Kuniyasu A, Hayashi S, Nakayama H. Adipocytes recognize and degrade oxidized low density lipoprotein through CD36. Biochem Biophys Res Commun. 2002;295:319–23.CrossRef
28.
go back to reference Gensini GGMD. Chapter x. The pathological anatomy of the coronary arteries of man. In: Gensini GG, editor. Coronary arteriography. Mount Kisco: Futura Publishing Co.; 1975. p. 271–4. Gensini GGMD. Chapter x. The pathological anatomy of the coronary arteries of man. In: Gensini GG, editor. Coronary arteriography. Mount Kisco: Futura Publishing Co.; 1975. p. 271–4.
29.
go back to reference Iacobellis G, Bianco AC. Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol Metab. 2011;22:450–7.CrossRef Iacobellis G, Bianco AC. Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol Metab. 2011;22:450–7.CrossRef
30.
go back to reference Garrido-Sánchez L, Vendrell J, Fernández-García D, Ceperuelo-Mallafré V, Chacón MR, Ocaña-Wilhelmi L, et al. De novo lipogenesis in adipose tissue is associated with course of morbid obesity after bariatric surgery. PLoS ONE. 2012;7:e31280.CrossRef Garrido-Sánchez L, Vendrell J, Fernández-García D, Ceperuelo-Mallafré V, Chacón MR, Ocaña-Wilhelmi L, et al. De novo lipogenesis in adipose tissue is associated with course of morbid obesity after bariatric surgery. PLoS ONE. 2012;7:e31280.CrossRef
31.
go back to reference García-Fuentes E, Santiago-Fernández C, Gutiérrez-Repiso C, Mayas MD, Oliva-Olivera W, Coín-Aragüez L, et al. Hypoxia is associated with a lower expression of genes involved in lipogenesis in visceral adipose tissue. J Transl Med. 2015;13:373.CrossRef García-Fuentes E, Santiago-Fernández C, Gutiérrez-Repiso C, Mayas MD, Oliva-Olivera W, Coín-Aragüez L, et al. Hypoxia is associated with a lower expression of genes involved in lipogenesis in visceral adipose tissue. J Transl Med. 2015;13:373.CrossRef
32.
go back to reference Garrido-Sánchez L, Tomé M, Santiago-Fernández C, García-Serrano S, García-Fuentes E, Tinahones FJ. Adipose tissue biomarkers involved in early resolution of type 2 diabetes after bariatric surgery. Surg Obes Relat Dis. 2017;13:70–7.CrossRef Garrido-Sánchez L, Tomé M, Santiago-Fernández C, García-Serrano S, García-Fuentes E, Tinahones FJ. Adipose tissue biomarkers involved in early resolution of type 2 diabetes after bariatric surgery. Surg Obes Relat Dis. 2017;13:70–7.CrossRef
33.
go back to reference Ashraf MZ, Sahu A. Scavenger receptors: a key player in cardiovascular diseases. Biomol Concepts. 2012;3:371–80.CrossRef Ashraf MZ, Sahu A. Scavenger receptors: a key player in cardiovascular diseases. Biomol Concepts. 2012;3:371–80.CrossRef
34.
go back to reference Pothineni NVK, Karathanasis SK, Ding Z, Arulandu A, Varughese KI, Mehta JL. LOX-1 in atherosclerosis and myocardial ischemia: biology, genetics, and modulation. J Am Coll Cardiol. 2017;69:2759–68.CrossRef Pothineni NVK, Karathanasis SK, Ding Z, Arulandu A, Varughese KI, Mehta JL. LOX-1 in atherosclerosis and myocardial ischemia: biology, genetics, and modulation. J Am Coll Cardiol. 2017;69:2759–68.CrossRef
35.
go back to reference Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and aterosclerosis. Mediators Inflamm. 2013;2013:152786.CrossRef Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and aterosclerosis. Mediators Inflamm. 2013;2013:152786.CrossRef
36.
go back to reference Zeya B, Arjuman A, Chandra NC. Lectin-like oxidized low-density lipoprotein (LDL) receptor (LOX-1): a chameleon receptor for oxidized LDL. Biochemistry. 2016;55:4437–44.CrossRef Zeya B, Arjuman A, Chandra NC. Lectin-like oxidized low-density lipoprotein (LDL) receptor (LOX-1): a chameleon receptor for oxidized LDL. Biochemistry. 2016;55:4437–44.CrossRef
37.
go back to reference Taye A, Saad AH, Kumar AH, Morawietz H. Effect of apocynin on NADPH oxidase-mediated oxidative stress-LOX-1-ENOS pathway in human endothelial cells exposed to high glucose. Eur J Pharmacol. 2010;627:42–8.CrossRef Taye A, Saad AH, Kumar AH, Morawietz H. Effect of apocynin on NADPH oxidase-mediated oxidative stress-LOX-1-ENOS pathway in human endothelial cells exposed to high glucose. Eur J Pharmacol. 2010;627:42–8.CrossRef
38.
go back to reference Yan M, Mehta JL, Zhang W, Hu C. LOX-1, oxidative stress and inflammation: a novel mechanism for diabetic cardiovascular complications. Cardiovasc Drugs Ther. 2011;25:451–9.CrossRef Yan M, Mehta JL, Zhang W, Hu C. LOX-1, oxidative stress and inflammation: a novel mechanism for diabetic cardiovascular complications. Cardiovasc Drugs Ther. 2011;25:451–9.CrossRef
39.
go back to reference Renie G, Maingrette F, Li L. Diabetic vasculopathy and the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). Curr Diabetes Rev. 2007;3:103–10.CrossRef Renie G, Maingrette F, Li L. Diabetic vasculopathy and the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). Curr Diabetes Rev. 2007;3:103–10.CrossRef
40.
go back to reference Li D, Williams V, Liu L, Chen H, Sawamura T, Romeo F, et al. Expression of lectin-like oxidized low-density lipoprotein receptors during ischemia-reperfusion and its role in determination of apoptosis and left ventricular dysfuncion. J Am Coll Cardiol. 2003;41:1048–55.CrossRef Li D, Williams V, Liu L, Chen H, Sawamura T, Romeo F, et al. Expression of lectin-like oxidized low-density lipoprotein receptors during ischemia-reperfusion and its role in determination of apoptosis and left ventricular dysfuncion. J Am Coll Cardiol. 2003;41:1048–55.CrossRef
41.
go back to reference Lu J, Wang X, Wang W, Muniyappa H, Hu C, Mitra S, et al. LOX-1 abrogation reduces cardiac hypertrophy and collagen accumulation following chronic ischemia in the mouse. Gene Ther. 2012;19:522–31.CrossRef Lu J, Wang X, Wang W, Muniyappa H, Hu C, Mitra S, et al. LOX-1 abrogation reduces cardiac hypertrophy and collagen accumulation following chronic ischemia in the mouse. Gene Ther. 2012;19:522–31.CrossRef
42.
go back to reference Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav. 2008;94:206–21.CrossRef Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav. 2008;94:206–21.CrossRef
43.
go back to reference Bambace C, Sepe A, Zoico E, Telesca M, Olioso D, Venturi S, et al. Inflammatory profile in subcutaneous and epicardial adipose tissue in men with and without diabetes. Heart Vessels. 2014;29:42–8.CrossRef Bambace C, Sepe A, Zoico E, Telesca M, Olioso D, Venturi S, et al. Inflammatory profile in subcutaneous and epicardial adipose tissue in men with and without diabetes. Heart Vessels. 2014;29:42–8.CrossRef
44.
go back to reference Kitagawa T, Yamamoto H, Sentani K, Takahashi S, Tsushima H, Senoo A, et al. The relationship between inflammation and neoangiogenesis of epicardial adipose tissue and coronary atherosclerosis based on computed tomography analysis. Atherosclerosis. 2015;243:293–9.CrossRef Kitagawa T, Yamamoto H, Sentani K, Takahashi S, Tsushima H, Senoo A, et al. The relationship between inflammation and neoangiogenesis of epicardial adipose tissue and coronary atherosclerosis based on computed tomography analysis. Atherosclerosis. 2015;243:293–9.CrossRef
45.
go back to reference Antonopoulos AS, Sanna F, Sabharwal N, Thomas S, Oikonomou EK, Herdman L, et al. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med. 2017;9:398.CrossRef Antonopoulos AS, Sanna F, Sabharwal N, Thomas S, Oikonomou EK, Herdman L, et al. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med. 2017;9:398.CrossRef
46.
go back to reference Hansen SW, Ohtani K, Roy N, Wakamiya N. The collectins CL-L1, Cl-K1 and CL-P1, and their roles in complement and innate immunity. Innmunobiology. 2016;221:1058–67.CrossRef Hansen SW, Ohtani K, Roy N, Wakamiya N. The collectins CL-L1, Cl-K1 and CL-P1, and their roles in complement and innate immunity. Innmunobiology. 2016;221:1058–67.CrossRef
47.
go back to reference Roy N, Ohtani K, Hidaka Y, Amano Y, Matsuda Y, Mori K, et al. Three pentraxins C-reactive protein, serum amyloid p component and pentraxin 3 mediate complement activation using Collectin CL-P1. Biochim Biophys Acta. 2017;1861:1–14.CrossRef Roy N, Ohtani K, Hidaka Y, Amano Y, Matsuda Y, Mori K, et al. Three pentraxins C-reactive protein, serum amyloid p component and pentraxin 3 mediate complement activation using Collectin CL-P1. Biochim Biophys Acta. 2017;1861:1–14.CrossRef
48.
go back to reference Jang S, Ohtani K, Fukuoh A, Yoshizaki T, Fukuda M, Motomura W, et al. Scavenger receptor collectin placenta 1 (CL-P1) predominantly mediates zymosan phagocytosis by human vascular endothelial cells. J Biol Chem. 2009;286:3956–65.CrossRef Jang S, Ohtani K, Fukuoh A, Yoshizaki T, Fukuda M, Motomura W, et al. Scavenger receptor collectin placenta 1 (CL-P1) predominantly mediates zymosan phagocytosis by human vascular endothelial cells. J Biol Chem. 2009;286:3956–65.CrossRef
49.
go back to reference Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol. 2013;13:621–34.CrossRef Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol. 2013;13:621–34.CrossRef
50.
go back to reference ESC Guidelines on diabetes. Prediabetes and cardiovascular diseases. Eur Heart J. 2013;34:3035–87.CrossRef ESC Guidelines on diabetes. Prediabetes and cardiovascular diseases. Eur Heart J. 2013;34:3035–87.CrossRef
51.
go back to reference Castelvecchio S, Menicanti L, Garatti A, Tramarin R, Volpe M, Parolari A, et al. Myocardial revascularization for patients with diabetes: coronary artery bypass grafting or percutaneous coronary intervention? Ann Thorac Surg. 2016;102:1012–22.CrossRef Castelvecchio S, Menicanti L, Garatti A, Tramarin R, Volpe M, Parolari A, et al. Myocardial revascularization for patients with diabetes: coronary artery bypass grafting or percutaneous coronary intervention? Ann Thorac Surg. 2016;102:1012–22.CrossRef
52.
go back to reference Tu B, Rich B, Labos C, Brophy JM. Coronary revascularization in diabetic patients: a systematic review and Bayesian network meta-analysis. Ann Intern Med. 2014;161:724–32.CrossRef Tu B, Rich B, Labos C, Brophy JM. Coronary revascularization in diabetic patients: a systematic review and Bayesian network meta-analysis. Ann Intern Med. 2014;161:724–32.CrossRef
53.
go back to reference Jiménez-Navarro MF, López-Jiménez F, Barsness G, Lennon RJ, Sandhu GS, Prasad A. Long-term prognosis of complete percutaneous coronary revascularization in patients with diabetes and multivessel disease. Heart. 2015;101:1233–9.CrossRef Jiménez-Navarro MF, López-Jiménez F, Barsness G, Lennon RJ, Sandhu GS, Prasad A. Long-term prognosis of complete percutaneous coronary revascularization in patients with diabetes and multivessel disease. Heart. 2015;101:1233–9.CrossRef
Metadata
Title
Overexpression of scavenger receptor and infiltration of macrophage in epicardial adipose tissue of patients with ischemic heart disease and diabetes
Authors
Concepción Santiago-Fernández
Luis M. Pérez-Belmonte
Mercedes Millán-Gómez
Inmaculada Moreno-Santos
Fernando Carrasco-Chinchilla
Amalio Ruiz-Salas
Luis Morcillo-Hidalgo
José M. Melero
Lourdes Garrido-Sánchez
Manuel Jiménez-Navarro
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2019
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-019-1842-2

Other articles of this Issue 1/2019

Journal of Translational Medicine 1/2019 Go to the issue