Skip to main content
Top
Published in: Journal of Translational Medicine 1/2018

Open Access 01-12-2018 | Research

Recombinant mouse periostin ameliorates coronal sutures fusion in Twist1+/− mice

Authors: Shanshan Bai, Dong Li, Liang Xu, Huichuan Duan, Jie Yuan, Min Wei

Published in: Journal of Translational Medicine | Issue 1/2018

Login to get access

Abstract

Background

Saethre–Chotzen syndrome is an autosomal dominantly inherited disorder caused by mutations in the twist family basic helix-loop-helix transcription factor 1 (TWIST1) gene. Surgical procedures are frequently required to reduce morphological and functional defects in patients with Saethre–Chotzen syndrome. Therefore, the development of noninvasive procedures to treat Saethre–Chotzen syndrome is critical. We identified that periostin, which is an extracellular matrix protein that plays an important role in both bone and connective tissues, is downregulated in craniosynostosis patients.

Methods

We aimed to verify the effects of different concentrations (0, 50, 100, and 200 μg/l) of recombinant mouse periostin in Twist1+/− mice (a mouse model of Saethre–Chotzen syndrome) coronal suture cells in vitro and in vivo. Cell proliferation, migration, and osteogenic differentiation were observed and detected. Twist1+/− mice were also injected with recombinant mouse periostin to verify the treatment effects.

Results

Cell Counting Kit-8 results showed that recombinant mouse periostin inhibited the proliferation of suture-derived cells in a time- and concentration-dependent manner. Cell migration was also suppressed when treated with recombinant mouse periostin. Real-time quantitative PCR and Western blotting results suggested that messenger ribonucleic acid and protein expression of alkaline phosphatase, bone sialoprotein, collagen type I, and osteocalcin were all downregulated after treatment with recombinant mouse periostin. However, the expression of Wnt-3a, Wnt-1, and β-catenin were upregulated. The in vivo results demonstrated that periostin-treated Twist1+/− mice showed patent coronal sutures in comparison with non-treated Twist1+/− mice which have coronal craniosynostosis.

Conclusion

Our results suggest that recombinant mouse periostin can inhibit coronal suture cell proliferation and migration and suppress osteogenic differentiation of suture-derived cells via Wnt canonical signaling, as well as ameliorate coronal suture fusion in Twist1+/− mice.
Appendix
Available only for authorised users
Literature
2.
go back to reference Cray JJ Jr, Burrows AM, Vecchione L, Kinsella CR Jr, Losee JE, Moursi AM, Siegel MI, Cooper GM, Mooney MP. Relaxin does not rescue coronal suture fusion in craniosynostotic rabbits. Cleft Palate Craniofac J. 2012;49:e46–54.CrossRefPubMed Cray JJ Jr, Burrows AM, Vecchione L, Kinsella CR Jr, Losee JE, Moursi AM, Siegel MI, Cooper GM, Mooney MP. Relaxin does not rescue coronal suture fusion in craniosynostotic rabbits. Cleft Palate Craniofac J. 2012;49:e46–54.CrossRefPubMed
3.
go back to reference de Heer IM, de Klein A, van den Ouweland AM, Vermeij-Keers C, Woundters CH, Vaandrager JM, Hovius SE, Hoogeboom JM. Clinical and genetic analysis of patients with Saethre–Chotzen syndrome. Plast Reconstr Surg. 2005;115:1894–902.CrossRefPubMed de Heer IM, de Klein A, van den Ouweland AM, Vermeij-Keers C, Woundters CH, Vaandrager JM, Hovius SE, Hoogeboom JM. Clinical and genetic analysis of patients with Saethre–Chotzen syndrome. Plast Reconstr Surg. 2005;115:1894–902.CrossRefPubMed
4.
go back to reference Reid CS, McMorrow LE, McDonald-McGinn DM, Grace KJ, Ramos FJ, Zackai EH, et al. Saethre–Chotzen syndrome with familial translocation at chromosome 7p22. Am J Med Genet. 1993;47(5):637–9.CrossRefPubMed Reid CS, McMorrow LE, McDonald-McGinn DM, Grace KJ, Ramos FJ, Zackai EH, et al. Saethre–Chotzen syndrome with familial translocation at chromosome 7p22. Am J Med Genet. 1993;47(5):637–9.CrossRefPubMed
5.
go back to reference Wilkie AO, Yang SP, Summers D, Poole MD, Reardon W, Winter RM. Saethre–Chotzen syndrome associated with balanced translocations involving 7p21: three further families. J Med Genet. 1995;32:174–80.CrossRefPubMedPubMedCentral Wilkie AO, Yang SP, Summers D, Poole MD, Reardon W, Winter RM. Saethre–Chotzen syndrome associated with balanced translocations involving 7p21: three further families. J Med Genet. 1995;32:174–80.CrossRefPubMedPubMedCentral
6.
go back to reference Kosty J, Vogel TW. Insights into the development of molecular therapies for craniosynostosis. Neurosurg Focus. 2015;38:E2.CrossRefPubMed Kosty J, Vogel TW. Insights into the development of molecular therapies for craniosynostosis. Neurosurg Focus. 2015;38:E2.CrossRefPubMed
7.
go back to reference Zhao H, Feng J, Ho TV, Grimes W, Urata M, Chai Y. The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nat Cell Biol. 2015;17:386–96.CrossRefPubMedPubMedCentral Zhao H, Feng J, Ho TV, Grimes W, Urata M, Chai Y. The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nat Cell Biol. 2015;17:386–96.CrossRefPubMedPubMedCentral
8.
go back to reference Shastin D, Peacock S, Guruswamy V, et al. A proposal for a new classification of complications in craniosynostosis surgery. J Neurosurg Pediatr. 2017;19:675–83.CrossRefPubMed Shastin D, Peacock S, Guruswamy V, et al. A proposal for a new classification of complications in craniosynostosis surgery. J Neurosurg Pediatr. 2017;19:675–83.CrossRefPubMed
9.
go back to reference Wang JC, Nagy L, Demke JC. Syndromic craniosynostosis. Facial Plast Surg Clin N Am. 2016;24:531–43.CrossRef Wang JC, Nagy L, Demke JC. Syndromic craniosynostosis. Facial Plast Surg Clin N Am. 2016;24:531–43.CrossRef
10.
go back to reference Kashima TG, Nishiyama T, Shimazu K, Shimazaki M, Kii I, Grigoriadis AE, Fukayama M, Kudo A. Periostin, a novel marker of intramembranous ossification, is expressed in fibrous dysplasia and in c-Fos-overexpressing bone lesions. Hum Pathol. 2009;40:226–37.CrossRefPubMed Kashima TG, Nishiyama T, Shimazu K, Shimazaki M, Kii I, Grigoriadis AE, Fukayama M, Kudo A. Periostin, a novel marker of intramembranous ossification, is expressed in fibrous dysplasia and in c-Fos-overexpressing bone lesions. Hum Pathol. 2009;40:226–37.CrossRefPubMed
11.
go back to reference Connerney J, Andreeva V, Leshem Y, Muentener C, Mercado MA, Spicer DB. Twist1 dimer selection regulates cranial suture patterning and fusion. Dev Dyn. 2006;235:1345–57.CrossRefPubMed Connerney J, Andreeva V, Leshem Y, Muentener C, Mercado MA, Spicer DB. Twist1 dimer selection regulates cranial suture patterning and fusion. Dev Dyn. 2006;235:1345–57.CrossRefPubMed
12.
go back to reference James AW, Levi B, Xu Y, Carre AL, Longaker MT. Retinoic acid enhances osteogenesis in cranial suture-derived mesenchymal cells: potential mechanisms of retinoid-induced craniosynostosis. Plast Reconstr Surg. 2010;125:1352–61.CrossRefPubMedPubMedCentral James AW, Levi B, Xu Y, Carre AL, Longaker MT. Retinoic acid enhances osteogenesis in cranial suture-derived mesenchymal cells: potential mechanisms of retinoid-induced craniosynostosis. Plast Reconstr Surg. 2010;125:1352–61.CrossRefPubMedPubMedCentral
13.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–8.CrossRefPubMed
14.
go back to reference Cray JJ Jr, Durham EL, Smalley MA, Finegold DN, Siegel MI, Losee JE, Mooney MP, Cooper GM. The effects of testosterone on craniosynostotic calvarial cells: a test of the gene/environmental model of craniofacial anomalies. Orthod Craniofac Res. 2011;14:149–55.CrossRefPubMed Cray JJ Jr, Durham EL, Smalley MA, Finegold DN, Siegel MI, Losee JE, Mooney MP, Cooper GM. The effects of testosterone on craniosynostotic calvarial cells: a test of the gene/environmental model of craniofacial anomalies. Orthod Craniofac Res. 2011;14:149–55.CrossRefPubMed
15.
go back to reference Sharma A, Patel N, Arora S, Ramachandran R. Child with Saethre–Chotzen syndrome: anesthetic management and literature review. Acta Anaesthesiol Belg. 2014;65:179–82.PubMed Sharma A, Patel N, Arora S, Ramachandran R. Child with Saethre–Chotzen syndrome: anesthetic management and literature review. Acta Anaesthesiol Belg. 2014;65:179–82.PubMed
16.
go back to reference Qin Q, Xu Y, He T, Qin C, Xu J. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res. 2012;22:90–106.CrossRefPubMed Qin Q, Xu Y, He T, Qin C, Xu J. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res. 2012;22:90–106.CrossRefPubMed
17.
go back to reference Goodnough LH, Dinuoscio GJ, Atit RP. Twist1 contributes to cranial bone initiation and dermal condensation by maintaining Wnt signaling responsiveness. Dev Dyn. 2016;245:144–56.CrossRefPubMed Goodnough LH, Dinuoscio GJ, Atit RP. Twist1 contributes to cranial bone initiation and dermal condensation by maintaining Wnt signaling responsiveness. Dev Dyn. 2016;245:144–56.CrossRefPubMed
18.
go back to reference Kragl M, Roensch K, Nüsslein I, Tazaki A, Taniguchi Y, Tarui H, Hayashi T, Agata K, Tanaka EM. Muscle and connective tissue progenitor populations show distinct Twist1 and Twist3 expression profiles during axolotl limb regeneration. Dev Biol. 2013;373:196–204.CrossRefPubMed Kragl M, Roensch K, Nüsslein I, Tazaki A, Taniguchi Y, Tarui H, Hayashi T, Agata K, Tanaka EM. Muscle and connective tissue progenitor populations show distinct Twist1 and Twist3 expression profiles during axolotl limb regeneration. Dev Biol. 2013;373:196–204.CrossRefPubMed
19.
go back to reference Pettersson AT, Mejhert N, Jernås M, Carlsson LM, Dahlman I, Laurencikiene J, Arner P, Rydén M. Twist1 in human white adipose tissue and obesity. J Clin Endocrinol Metab. 2011;96:133–41.CrossRefPubMed Pettersson AT, Mejhert N, Jernås M, Carlsson LM, Dahlman I, Laurencikiene J, Arner P, Rydén M. Twist1 in human white adipose tissue and obesity. J Clin Endocrinol Metab. 2011;96:133–41.CrossRefPubMed
20.
go back to reference Watson MA, Ylagan LR, Trinkaus KM, Gillanders WE, Naughton MJ, Weilbaecher KN, Fleming TP, Aft RL. Isolation and molecular profiling of bone marrow micrometastases identifies TWIST1 as a marker of early tumor relapse in breast cancer patients. Clin Cancer Res. 2007;13:5001–9.CrossRefPubMedPubMedCentral Watson MA, Ylagan LR, Trinkaus KM, Gillanders WE, Naughton MJ, Weilbaecher KN, Fleming TP, Aft RL. Isolation and molecular profiling of bone marrow micrometastases identifies TWIST1 as a marker of early tumor relapse in breast cancer patients. Clin Cancer Res. 2007;13:5001–9.CrossRefPubMedPubMedCentral
21.
go back to reference Fortunati D, Reppe S, Fjeldheim AK, Nielsen M, Gautvik VT, Gautvik KM. Periostin is a collagen associated bone matrix protein regulated by parathyroid hormone. Matrix Biol. 2010;29:594–600.CrossRefPubMed Fortunati D, Reppe S, Fjeldheim AK, Nielsen M, Gautvik VT, Gautvik KM. Periostin is a collagen associated bone matrix protein regulated by parathyroid hormone. Matrix Biol. 2010;29:594–600.CrossRefPubMed
22.
go back to reference Parsons TE, Weinberg SM, Khaksarfard K, Howie RN, Elsalanty M, Yu JC, Cray JJ Jr. Craniofacial shape variation in Twist1+/− mutant mice. Anat Rec. 2014;297:826–33.CrossRef Parsons TE, Weinberg SM, Khaksarfard K, Howie RN, Elsalanty M, Yu JC, Cray JJ Jr. Craniofacial shape variation in Twist1+/− mutant mice. Anat Rec. 2014;297:826–33.CrossRef
23.
go back to reference Carver EA, Oram KF, Gridley T. Craniosynostosis in Twist heterozygous mice: a model for Saethre–Chotzen syndrome. Anat Rec. 2002;268:90–2.CrossRefPubMed Carver EA, Oram KF, Gridley T. Craniosynostosis in Twist heterozygous mice: a model for Saethre–Chotzen syndrome. Anat Rec. 2002;268:90–2.CrossRefPubMed
24.
go back to reference Behr B, Longaker MT, Quarto N. Craniosynostosis of coronal suture in twist1 mice occurs through endochondral ossification recapitulating the physiological closure of posterior frontal suture. Front Physiol. 2011;2:37.CrossRefPubMedPubMedCentral Behr B, Longaker MT, Quarto N. Craniosynostosis of coronal suture in twist1 mice occurs through endochondral ossification recapitulating the physiological closure of posterior frontal suture. Front Physiol. 2011;2:37.CrossRefPubMedPubMedCentral
25.
go back to reference Ratisoontorn C, Seto ML, Broughton KM, Cunningham ML. In vitro differentiation profile of osteoblasts derived from patients with Saethre–Chotzen syndrome. Bone. 2005;36:627–34.CrossRefPubMed Ratisoontorn C, Seto ML, Broughton KM, Cunningham ML. In vitro differentiation profile of osteoblasts derived from patients with Saethre–Chotzen syndrome. Bone. 2005;36:627–34.CrossRefPubMed
26.
go back to reference Oshima A, Tanabe H, Yan T, Lowe GN, Glackin CA, Kudo A. A novel mechanism for the regulation of osteoblast differentiation: transcription of periostin, a member of the fasciclin I family, is regulated by the bHLH transcription factor, twist. J Cell Biochem. 2002;86:792–804.CrossRefPubMed Oshima A, Tanabe H, Yan T, Lowe GN, Glackin CA, Kudo A. A novel mechanism for the regulation of osteoblast differentiation: transcription of periostin, a member of the fasciclin I family, is regulated by the bHLH transcription factor, twist. J Cell Biochem. 2002;86:792–804.CrossRefPubMed
27.
go back to reference Merle B, Garnero P. The multiple facets of periostin in bone metabolism. Osteoporos Int. 2012;23:1199–212.CrossRefPubMed Merle B, Garnero P. The multiple facets of periostin in bone metabolism. Osteoporos Int. 2012;23:1199–212.CrossRefPubMed
28.
go back to reference Thapa N, Lee BH, Kim IS. TGFBIp/βig-h3 protein: a versatile matrix molecule induced by TGF-beta. Int J Biochem Cell Biol. 2007;39:2183–94.CrossRefPubMed Thapa N, Lee BH, Kim IS. TGFBIp/βig-h3 protein: a versatile matrix molecule induced by TGF-beta. Int J Biochem Cell Biol. 2007;39:2183–94.CrossRefPubMed
29.
go back to reference Ting MC, Wu NL, Roybal PG, Sun J, Liu L, Yen Y, Maxson RE Jr. EphA4 as an effector of Twist1 in the guidance of osteogenic precursor cells during calvarial bone growth and in craniosynostosis. Development. 2009;136:855–64.CrossRefPubMedPubMedCentral Ting MC, Wu NL, Roybal PG, Sun J, Liu L, Yen Y, Maxson RE Jr. EphA4 as an effector of Twist1 in the guidance of osteogenic precursor cells during calvarial bone growth and in craniosynostosis. Development. 2009;136:855–64.CrossRefPubMedPubMedCentral
30.
go back to reference Ishii M, Sun J, Ting MC, Maxson RE. The development of the calvarial bones and sutures and the pathophysiology of craniosynostosis. Curr Top Dev Biol. 2015;115:131–56.CrossRefPubMed Ishii M, Sun J, Ting MC, Maxson RE. The development of the calvarial bones and sutures and the pathophysiology of craniosynostosis. Curr Top Dev Biol. 2015;115:131–56.CrossRefPubMed
31.
go back to reference Isono T, Kim CJ, Ando Y, Sakurai H, Okada Y, Inoue H. Suppression of cell invasiveness by periostin via TAB 1/TAK1. Int J Oncol. 2009;35:425–32.PubMed Isono T, Kim CJ, Ando Y, Sakurai H, Okada Y, Inoue H. Suppression of cell invasiveness by periostin via TAB 1/TAK1. Int J Oncol. 2009;35:425–32.PubMed
32.
go back to reference Zhang XW, Zhang BY, Wang SW, Gong DJ, Han L, Xu ZY, Liu XH. Twist-related protein 1 negatively regulated osteoblastic transdifferentiation of human aortic valve interstitial cells by directly inhibiting runt-related transcription factor 2. J Thorac Cardiovasc Surg. 2014;148:1700–8.CrossRefPubMed Zhang XW, Zhang BY, Wang SW, Gong DJ, Han L, Xu ZY, Liu XH. Twist-related protein 1 negatively regulated osteoblastic transdifferentiation of human aortic valve interstitial cells by directly inhibiting runt-related transcription factor 2. J Thorac Cardiovasc Surg. 2014;148:1700–8.CrossRefPubMed
33.
go back to reference Matsuzawa M, Arai C, Nomura Y, Murata T, Yamakoshi Y, Oida S, Hanada N, Nakamura Y. Periostin of human periodontal ligament fibroblasts promotes migration of human mesenchymal stem cell through the αvβ3 integrin/FAK/PI3K/Akt pathway. J Periodontal Res. 2015;50:855–63.CrossRefPubMed Matsuzawa M, Arai C, Nomura Y, Murata T, Yamakoshi Y, Oida S, Hanada N, Nakamura Y. Periostin of human periodontal ligament fibroblasts promotes migration of human mesenchymal stem cell through the αvβ3 integrin/FAK/PI3K/Akt pathway. J Periodontal Res. 2015;50:855–63.CrossRefPubMed
34.
go back to reference Bonnet N, Standley KN, Bianchi EN, Stadelmann V, Foti M, Conway SJ, Ferrari SL. The matricellular protein periostin is required for sost inhibition and the anabolic response to mechanical loading and physical activity. J Biol Chem. 2009;284:35939–50.CrossRefPubMedPubMedCentral Bonnet N, Standley KN, Bianchi EN, Stadelmann V, Foti M, Conway SJ, Ferrari SL. The matricellular protein periostin is required for sost inhibition and the anabolic response to mechanical loading and physical activity. J Biol Chem. 2009;284:35939–50.CrossRefPubMedPubMedCentral
35.
go back to reference Duan P, Bonewald LF. The role of the wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth. Int J Biochem Cell Biol. 2016;77:23–9.CrossRefPubMedPubMedCentral Duan P, Bonewald LF. The role of the wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth. Int J Biochem Cell Biol. 2016;77:23–9.CrossRefPubMedPubMedCentral
37.
go back to reference Lv J, Sun X, Ma J, Ma X, Xing G, Wang Y, Sun L, Wang J, Li F, Li Y. Involvement of periostin–sclerostin–Wnt/β-catenin signaling pathway in the prevention of neurectomy-induced bone loss by naringin. Biochem Biophys Res Commun. 2015;468:587–93.CrossRefPubMed Lv J, Sun X, Ma J, Ma X, Xing G, Wang Y, Sun L, Wang J, Li F, Li Y. Involvement of periostin–sclerostin–Wnt/β-catenin signaling pathway in the prevention of neurectomy-induced bone loss by naringin. Biochem Biophys Res Commun. 2015;468:587–93.CrossRefPubMed
38.
go back to reference Bonnet N, Garnero P, Ferrari S. Periostin action in the bone. Mol Cell Endocrinol. 2016;432:75–82.CrossRefPubMed Bonnet N, Garnero P, Ferrari S. Periostin action in the bone. Mol Cell Endocrinol. 2016;432:75–82.CrossRefPubMed
39.
go back to reference Behr B, Longaker MT, Quarto N. Differential activation of canonical Wnt signaling determines cranial sutures fate: a novel mechanism for sagittal suture craniosynostosis. Dev Biol. 2010;344:922–40.CrossRefPubMed Behr B, Longaker MT, Quarto N. Differential activation of canonical Wnt signaling determines cranial sutures fate: a novel mechanism for sagittal suture craniosynostosis. Dev Biol. 2010;344:922–40.CrossRefPubMed
40.
go back to reference Behr B, Longaker MT, Quarto N. Absence of endochondral ossification and craniosynostosis in posterior frontal cranial sutures of Axin2(−/−) mice. PLoS ONE. 2013;8:e70240.CrossRefPubMedPubMedCentral Behr B, Longaker MT, Quarto N. Absence of endochondral ossification and craniosynostosis in posterior frontal cranial sutures of Axin2(−/−) mice. PLoS ONE. 2013;8:e70240.CrossRefPubMedPubMedCentral
41.
go back to reference Zhang L, Chen P, Chen L, Weng T, Zhang S, Zhou X, Zhang B, Liu L. Inhibited Wnt signaling causes age-dependent abnormalities in the bone matrix mineralization in the Apert syndrome FGFR2(S252W/+) mice. PLoS ONE. 2015;10:e112716.CrossRefPubMedPubMedCentral Zhang L, Chen P, Chen L, Weng T, Zhang S, Zhou X, Zhang B, Liu L. Inhibited Wnt signaling causes age-dependent abnormalities in the bone matrix mineralization in the Apert syndrome FGFR2(S252W/+) mice. PLoS ONE. 2015;10:e112716.CrossRefPubMedPubMedCentral
Metadata
Title
Recombinant mouse periostin ameliorates coronal sutures fusion in Twist1+/− mice
Authors
Shanshan Bai
Dong Li
Liang Xu
Huichuan Duan
Jie Yuan
Min Wei
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2018
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-018-1454-2

Other articles of this Issue 1/2018

Journal of Translational Medicine 1/2018 Go to the issue