Skip to main content
Top
Published in: Journal of Translational Medicine 1/2018

Open Access 01-12-2018 | Research

Generation of GHR-modified pigs as Laron syndrome models via a dual-sgRNAs/Cas9 system and somatic cell nuclear transfer

Authors: Honghao Yu, Weihu Long, Xuezeng Zhang, Kaixiang Xu, Jianxiong Guo, Heng Zhao, Honghui Li, Yubo Qing, Weirong Pan, Baoyu Jia, Hong-Ye Zhao, Xingxu Huang, Hong-Jiang Wei

Published in: Journal of Translational Medicine | Issue 1/2018

Login to get access

Abstract

Background

Laron syndrome is an autosomal disease resulting from mutations in the growth hormone receptor (GHR) gene. The only therapeutic treatment for Laron syndrome is recombinant insulin-like growth factor I (IGF-I), which has been shown to have various side effects. The improved Laron syndrome models are important for better understanding the pathogenesis of the disease and developing corresponding therapeutics. Pigs have become attractive biomedical models for human condition due to similarities in anatomy, physiology, and metabolism relative to humans, which could serve as an appropriate model for Laron syndrome.

Methods

To further improve the GHR knockout (GHRKO) efficiency and explore the feasibility of precise DNA deletion at targeted sites, the dual-sgRNAs/Cas9 system was designed to target GHR exon 3 in pig fetal fibroblasts (PFFs). The vectors encoding sgRNAs and Cas9 were co-transfected into PFFs by electroporation and GHRKO cell lines were established by single cell cloning culture. Two biallelic knockout cell lines were selected as the donor cell line for somatic cell nuclear transfer for the generation of GHRKO pigs. The genotype of colonies, cloned fetuses and piglets were identified by T7 endonuclease I (T7ENI) assay and sequencing. The GHR expression in the fibroblasts and piglets was analyzed by confocal microscopy, quantitative polymerase chain reaction (q-PCR), western blotting (WB) and immunohistochemical (IHC) staining. The phenotype of GHRKO pigs was recapitulated through level detection of IGF-I and glucose, and measurement of body weight and body size. GHRKO F1 generation were generated by crossing with wild-type pigs, and their genotype was detected by T7ENI assay and sequencing. GHRKO F2 generation was obtained via self-cross of GHRKO F1 pigs. Their genotypes of GHRKO F2 generation was also detected by Sanger sequencing.

Results

In total, 19 of 20 single-cell colonies exhibited biallelic modified GHR (95%), and the efficiency of DNA deletion mediated by dual-sgRNAs/Cas9 was as high as 90% in 40 GHR alleles of 20 single-cell colonies. Two types of GHR allelic single-cell colonies (GHR47/1, GHR47/46) were selected as donor cells for the generation of GHRKO pigs. The reconstructed embryos were transferred into 15 recipient gilts, resulting in 15 GHRKO newborn piglets and 2 fetuses. The GHRKO pigs exhibited slow growth rates and small body sizes. From birth to 13 months old, the average body weight of wild-type pigs varied from 0.6 to 89.5 kg, but that of GHRKO pigs varied from only 0.9 to 37.0 kg. Biochemically, the knockout pigs exhibited decreased serum levels of IGF-I and glucose. Furthermore, the GHRKO pigs had normal reproduction ability, as eighteen GHRKO F1 piglets were obtained via mating a GHRKO pig with wild-type pigs and five GHRKO F2 piglets were obtained by self-cross of F1 generation, indicating that modified GHR alleles can pass to the next generation via germline transmission.

Conclusion

The dual-sgRNAs/Cas9 is a reliable system for DNA deletion and that GHRKO pigs conform to typical phenotypes of those observed in Laron patients, suggesting that these pigs could serve as an appropriate model for Laron syndrome.
Appendix
Available only for authorised users
Literature
1.
go back to reference Laron Z, Pertzelan A, Mannheimer S. Genetic pituitary dwarfism with high serum concentation of growth hormone–a new inborn error of metabolism? Isr J Med Sci. 1966;2:152–5.PubMed Laron Z, Pertzelan A, Mannheimer S. Genetic pituitary dwarfism with high serum concentation of growth hormone–a new inborn error of metabolism? Isr J Med Sci. 1966;2:152–5.PubMed
2.
go back to reference Ghizzoni L, Duquesnoy P, Torresani T, Vottero A, Goossens M, Bernasconi S. Isolated growth hormone deficiency type IA associated with a 45-kilobase gene deletion within the human growth hormone gene cluster in an Italian family. Pediatr Res. 1994;36:654–9.CrossRefPubMed Ghizzoni L, Duquesnoy P, Torresani T, Vottero A, Goossens M, Bernasconi S. Isolated growth hormone deficiency type IA associated with a 45-kilobase gene deletion within the human growth hormone gene cluster in an Italian family. Pediatr Res. 1994;36:654–9.CrossRefPubMed
3.
go back to reference Woods KA, Fraser NC, Postel-Vinay MC, Savage MO, Clark AJ. A homozygous splice site mutation affecting the intracellular domain of the growth hormone (GH) receptor resulting in Laron syndrome with elevated GH-binding protein. J Clin Endocrinol Metab. 1996;81:1686–90.PubMed Woods KA, Fraser NC, Postel-Vinay MC, Savage MO, Clark AJ. A homozygous splice site mutation affecting the intracellular domain of the growth hormone (GH) receptor resulting in Laron syndrome with elevated GH-binding protein. J Clin Endocrinol Metab. 1996;81:1686–90.PubMed
4.
go back to reference Li F, Li Y, Liu H, Zhang X, Liu C, Tian K, Bolund L, Dou H, Yang W, Yang H, et al. Transgenic Wuzhishan minipigs designed to express a dominant-negative porcine growth hormone receptor display small stature and a perturbed insulin/IGF-1 pathway. Transgenic Res. 2015;24:1029–42.CrossRefPubMed Li F, Li Y, Liu H, Zhang X, Liu C, Tian K, Bolund L, Dou H, Yang W, Yang H, et al. Transgenic Wuzhishan minipigs designed to express a dominant-negative porcine growth hormone receptor display small stature and a perturbed insulin/IGF-1 pathway. Transgenic Res. 2015;24:1029–42.CrossRefPubMed
5.
go back to reference Fintini D, Brufani C, Cappa M. Profile of mecasermin for the long-term treatment of growth failure in children and adolescents with severe primary IGF-1 deficiency. Ther Clin Risk Manag. 2009;5:553–9.PubMedPubMedCentral Fintini D, Brufani C, Cappa M. Profile of mecasermin for the long-term treatment of growth failure in children and adolescents with severe primary IGF-1 deficiency. Ther Clin Risk Manag. 2009;5:553–9.PubMedPubMedCentral
6.
go back to reference Hull KL, Fraser RA, Marsh JA, Harvey S. Growth hormone receptor gene expression in sex-linked dwarf Leghorn chickens: evidence against a gene deletion. J Endocrinol. 1993;137:91–8.CrossRefPubMed Hull KL, Fraser RA, Marsh JA, Harvey S. Growth hormone receptor gene expression in sex-linked dwarf Leghorn chickens: evidence against a gene deletion. J Endocrinol. 1993;137:91–8.CrossRefPubMed
7.
go back to reference Agarwal SK, Cogburn LA, Burnside J. Dysfunctional growth hormone receptor in a strain of sex-linked dwarf chicken: evidence for a mutation in the intracellular domain. J Endocrinol. 1994;142:427–34.CrossRefPubMed Agarwal SK, Cogburn LA, Burnside J. Dysfunctional growth hormone receptor in a strain of sex-linked dwarf chicken: evidence for a mutation in the intracellular domain. J Endocrinol. 1994;142:427–34.CrossRefPubMed
8.
go back to reference Zhou Y, Xu BC, Maheshwari HG, He L, Reed M, Lozykowski M, Okada S, Cataldo L, Coschigamo K, Wagner TE, et al. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc Natl Acad Sci USA. 1997;94:13215–20.CrossRefPubMedPubMedCentral Zhou Y, Xu BC, Maheshwari HG, He L, Reed M, Lozykowski M, Okada S, Cataldo L, Coschigamo K, Wagner TE, et al. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc Natl Acad Sci USA. 1997;94:13215–20.CrossRefPubMedPubMedCentral
9.
go back to reference Hull KL, Harvey S. Growth hormone resistance: clinical states and animal models. J Endocrinol. 1999;163:165–72.CrossRefPubMed Hull KL, Harvey S. Growth hormone resistance: clinical states and animal models. J Endocrinol. 1999;163:165–72.CrossRefPubMed
10.
go back to reference Litten-Brown JC, Corson AM, Clarke L. Porcine models for the metabolic syndrome, digestive and bone disorders: a general overview. Animal. 2010;4:899–920.CrossRefPubMed Litten-Brown JC, Corson AM, Clarke L. Porcine models for the metabolic syndrome, digestive and bone disorders: a general overview. Animal. 2010;4:899–920.CrossRefPubMed
11.
go back to reference Kopchick JJ, Laron Z. Is the Laron mouse an accurate model of Laron syndrome? Mol Genet Metab. 1999;68:232–6.CrossRefPubMed Kopchick JJ, Laron Z. Is the Laron mouse an accurate model of Laron syndrome? Mol Genet Metab. 1999;68:232–6.CrossRefPubMed
12.
go back to reference Bassols A, Costa C, Eckersall PD, Osada J, Sabria J, Tibau J. The pig as an animal model for human pathologies: a proteomics perspective. Proteomics Clin Appl. 2014;8:715–31.CrossRefPubMed Bassols A, Costa C, Eckersall PD, Osada J, Sabria J, Tibau J. The pig as an animal model for human pathologies: a proteomics perspective. Proteomics Clin Appl. 2014;8:715–31.CrossRefPubMed
13.
go back to reference Nakamura K, Fujii W, Tsuboi M, Tanihata J, Teramoto N, Takeuchi S, Naito K, Yamanouchi K, Nishihara M. Generation of muscular dystrophy model rats with a CRISPR/Cas system. Sci Rep. 2014;4:5635.CrossRefPubMedPubMedCentral Nakamura K, Fujii W, Tsuboi M, Tanihata J, Teramoto N, Takeuchi S, Naito K, Yamanouchi K, Nishihara M. Generation of muscular dystrophy model rats with a CRISPR/Cas system. Sci Rep. 2014;4:5635.CrossRefPubMedPubMedCentral
14.
go back to reference Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell. 2014;156:836–43.CrossRefPubMed Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell. 2014;156:836–43.CrossRefPubMed
15.
go back to reference Tang X, Wang G, Liu X, Han X, Li Z, Ran G, Li Z, Song Q, Ji Y, Wang H, et al. Overexpression of porcine lipoprotein-associated phospholipase A2 in swine. Biochem Biophys Res Commun. 2015;465:507–11.CrossRefPubMed Tang X, Wang G, Liu X, Han X, Li Z, Ran G, Li Z, Song Q, Ji Y, Wang H, et al. Overexpression of porcine lipoprotein-associated phospholipase A2 in swine. Biochem Biophys Res Commun. 2015;465:507–11.CrossRefPubMed
16.
go back to reference Wang X, Yu H, Lei A, Zhou J, Zeng W, Zhu H, Dong Z, Niu Y, Shi B, Cai B, et al. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci Rep. 2015;5:13878.CrossRefPubMedPubMedCentral Wang X, Yu H, Lei A, Zhou J, Zeng W, Zhu H, Dong Z, Niu Y, Shi B, Cai B, et al. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci Rep. 2015;5:13878.CrossRefPubMedPubMedCentral
17.
go back to reference Yu HH, Zhao H, Qing YB, Pan WR, Jia BY, Zhao HY, Huang XX, Wei HJ. Porcine zygote injection with Cas9/sgRNA results in DMD-modified pig with muscle dystrophy. Int J Mol Sci. 2016;17:1668.CrossRefPubMedCentral Yu HH, Zhao H, Qing YB, Pan WR, Jia BY, Zhao HY, Huang XX, Wei HJ. Porcine zygote injection with Cas9/sgRNA results in DMD-modified pig with muscle dystrophy. Int J Mol Sci. 2016;17:1668.CrossRefPubMedCentral
18.
go back to reference Zhou X, Wang L, Du Y, Xie F, Li L, Liu Y, Liu C, Wang S, Zhang S, Huang X, et al. Efficient generation of gene-modified pigs harboring precise orthologous human mutation via CRISPR/Cas9-induced homology-directed repair in zygotes. Hum Mutat. 2016;37:110–8.CrossRefPubMed Zhou X, Wang L, Du Y, Xie F, Li L, Liu Y, Liu C, Wang S, Zhang S, Huang X, et al. Efficient generation of gene-modified pigs harboring precise orthologous human mutation via CRISPR/Cas9-induced homology-directed repair in zygotes. Hum Mutat. 2016;37:110–8.CrossRefPubMed
19.
go back to reference Zhao Y, Zhang C, Liu W, Gao W, Liu C, Song G, Li WX, Mao L, Chen B, Xu Y, et al. An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci Rep. 2016;6:23890.CrossRefPubMedPubMedCentral Zhao Y, Zhang C, Liu W, Gao W, Liu C, Song G, Li WX, Mao L, Chen B, Xu Y, et al. An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci Rep. 2016;6:23890.CrossRefPubMedPubMedCentral
20.
go back to reference Canver MC, Bauer DE, Dass A, Yien YY, Chung J, Masuda T, Maeda T, Paw BH, Orkin SH. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J Biol Chem. 2017;292:2556.CrossRefPubMedPubMedCentral Canver MC, Bauer DE, Dass A, Yien YY, Chung J, Masuda T, Maeda T, Paw BH, Orkin SH. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J Biol Chem. 2017;292:2556.CrossRefPubMedPubMedCentral
21.
go back to reference Xie N, Gong H, Suhl JA, Chopra P, Wang T, Warren ST. Reactivation of FMR1 by CRISPR/Cas9-mediated deletion of the expanded CGG-repeat of the fragile X chromosome. PLoS ONE. 2016;11:0165499. Xie N, Gong H, Suhl JA, Chopra P, Wang T, Warren ST. Reactivation of FMR1 by CRISPR/Cas9-mediated deletion of the expanded CGG-repeat of the fragile X chromosome. PLoS ONE. 2016;11:0165499.
22.
go back to reference Hara S, Kato T, Goto Y, Kubota S, Tamano M, Terao M, Takada S. Microinjection-based generation of mutant mice with a double mutation and a 0.5 Mb deletion in their genome by the CRISPR/Cas9 system. J Reprod Dev. 2016;62:531–6.CrossRefPubMedPubMedCentral Hara S, Kato T, Goto Y, Kubota S, Tamano M, Terao M, Takada S. Microinjection-based generation of mutant mice with a double mutation and a 0.5 Mb deletion in their genome by the CRISPR/Cas9 system. J Reprod Dev. 2016;62:531–6.CrossRefPubMedPubMedCentral
23.
go back to reference Hu W, Lian L, Su B, Zhang Y. Genetic diversity of Yunnan local pig breeds inferred from blood protein electrophoresis. Biochem Genet. 1998;36:207–12.CrossRefPubMed Hu W, Lian L, Su B, Zhang Y. Genetic diversity of Yunnan local pig breeds inferred from blood protein electrophoresis. Biochem Genet. 1998;36:207–12.CrossRefPubMed
24.
go back to reference Sun H, Guo T, Liu L, Yu Z, Xu W, Chen W, Shen L, Wang J, Dou X. Ischemic postconditioning inhibits apoptosis after acute myocardial infarction in pigs. Heart Surg Forum. 2010;13:E305–10.CrossRefPubMed Sun H, Guo T, Liu L, Yu Z, Xu W, Chen W, Shen L, Wang J, Dou X. Ischemic postconditioning inhibits apoptosis after acute myocardial infarction in pigs. Heart Surg Forum. 2010;13:E305–10.CrossRefPubMed
26.
go back to reference Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z, Zhang X, Zhang P, Huang X. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res. 2013;23:720–3.CrossRefPubMedPubMedCentral Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z, Zhang X, Zhang P, Huang X. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res. 2013;23:720–3.CrossRefPubMedPubMedCentral
27.
go back to reference Wei H, Qing Y, Pan W, Zhao H, Li H, Cheng W, Zhao L, Xu C, Li H, Li S, et al. Comparison of the efficiency of Banna miniature inbred pig somatic cell nuclear transfer among different donor cells. PLoS ONE. 2013;8:e57728.CrossRefPubMedPubMedCentral Wei H, Qing Y, Pan W, Zhao H, Li H, Cheng W, Zhao L, Xu C, Li H, Li S, et al. Comparison of the efficiency of Banna miniature inbred pig somatic cell nuclear transfer among different donor cells. PLoS ONE. 2013;8:e57728.CrossRefPubMedPubMedCentral
28.
go back to reference Li H, Wang G, Hao Z, Zhang G, Qing Y, Liu S, Qing L, Pan W, Chen L, Liu G, et al. Generation of biallelic knock-out sheep via gene-editing and somatic cell nuclear transfer. Sci Rep. 2016;6:33675.CrossRefPubMedPubMedCentral Li H, Wang G, Hao Z, Zhang G, Qing Y, Liu S, Qing L, Pan W, Chen L, Liu G, et al. Generation of biallelic knock-out sheep via gene-editing and somatic cell nuclear transfer. Sci Rep. 2016;6:33675.CrossRefPubMedPubMedCentral
29.
go back to reference Flisikowska T, Kind A, Schnieke A. Genetically modified pigs to model human diseases. J Appl Genet. 2014;55:53–64.CrossRefPubMed Flisikowska T, Kind A, Schnieke A. Genetically modified pigs to model human diseases. J Appl Genet. 2014;55:53–64.CrossRefPubMed
30.
go back to reference Martiniakova M, Grosskopf B, Omelka R, Vondrakova M, Bauerova M. Differences among species in compact bone tissue microstructure of mammalian skeleton: use of a discriminant function analysis for species identification. J Forensic Sci. 2006;51:1235–9.CrossRefPubMed Martiniakova M, Grosskopf B, Omelka R, Vondrakova M, Bauerova M. Differences among species in compact bone tissue microstructure of mammalian skeleton: use of a discriminant function analysis for species identification. J Forensic Sci. 2006;51:1235–9.CrossRefPubMed
31.
go back to reference Chung CS, Etherton TD, Wiggins JP. Stimulation of swine growth by porcine growth hormone. J Anim Sci. 1985;60:118–30.CrossRefPubMed Chung CS, Etherton TD, Wiggins JP. Stimulation of swine growth by porcine growth hormone. J Anim Sci. 1985;60:118–30.CrossRefPubMed
32.
go back to reference Han J, Zhang J, Chen L, Shen B, Zhou J, Hu B, Du Y, Tate PH, Huang X, Zhang W. Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biol. 2014;11:829–35.CrossRefPubMedPubMedCentral Han J, Zhang J, Chen L, Shen B, Zhou J, Hu B, Du Y, Tate PH, Huang X, Zhang W. Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biol. 2014;11:829–35.CrossRefPubMedPubMedCentral
33.
go back to reference Song Y, Xu Y, Deng J, Chen M, Lu Y, Wang Y, Yao H, Zhou L, Liu Z, Lai L, Li Z. CRISPR/Cas9-mediated mutation of tyrosinase (Tyr) 3′ UTR induce graying in rabbit. Sci Rep. 2017;7:1569.CrossRefPubMedPubMedCentral Song Y, Xu Y, Deng J, Chen M, Lu Y, Wang Y, Yao H, Zhou L, Liu Z, Lai L, Li Z. CRISPR/Cas9-mediated mutation of tyrosinase (Tyr) 3′ UTR induce graying in rabbit. Sci Rep. 2017;7:1569.CrossRefPubMedPubMedCentral
34.
go back to reference Zhou J, Wang J, Shen B, Chen L, Su Y, Yang J, Zhang W, Tian X, Huang X. Dual sgRNAs facilitate CRISPR/Cas9-mediated mouse genome targeting. FEBS J. 2014;281:1717–25.CrossRefPubMed Zhou J, Wang J, Shen B, Chen L, Su Y, Yang J, Zhang W, Tian X, Huang X. Dual sgRNAs facilitate CRISPR/Cas9-mediated mouse genome targeting. FEBS J. 2014;281:1717–25.CrossRefPubMed
35.
go back to reference Brooks AJ, Waters MJ. The growth hormone receptor: mechanism of activation and clinical implications. Nat Rev Endocrinol. 2010;6:515–25.CrossRefPubMed Brooks AJ, Waters MJ. The growth hormone receptor: mechanism of activation and clinical implications. Nat Rev Endocrinol. 2010;6:515–25.CrossRefPubMed
36.
37.
go back to reference Gluckman PD, Pinal CS. Regulation of fetal growth by the somatotrophic axis. J Nutr. 2003;133:1741s–6s.PubMed Gluckman PD, Pinal CS. Regulation of fetal growth by the somatotrophic axis. J Nutr. 2003;133:1741s–6s.PubMed
38.
go back to reference Handwerger S, Freemark M. The roles of placental growth hormone and placental lactogen in the regulation of human fetal growth and development. J Pediatr Endocrinol Metab. 2000;13:343–56.CrossRefPubMed Handwerger S, Freemark M. The roles of placental growth hormone and placental lactogen in the regulation of human fetal growth and development. J Pediatr Endocrinol Metab. 2000;13:343–56.CrossRefPubMed
39.
go back to reference Fernandez-Perez L, de Mirecki-Garrido M, Guerra B, Diaz M, Diaz-Chico JC. Sex steroids and growth hormone interactions. Endocrinol Nutr. 2016;63:171–80.CrossRefPubMed Fernandez-Perez L, de Mirecki-Garrido M, Guerra B, Diaz M, Diaz-Chico JC. Sex steroids and growth hormone interactions. Endocrinol Nutr. 2016;63:171–80.CrossRefPubMed
Metadata
Title
Generation of GHR-modified pigs as Laron syndrome models via a dual-sgRNAs/Cas9 system and somatic cell nuclear transfer
Authors
Honghao Yu
Weihu Long
Xuezeng Zhang
Kaixiang Xu
Jianxiong Guo
Heng Zhao
Honghui Li
Yubo Qing
Weirong Pan
Baoyu Jia
Hong-Ye Zhao
Xingxu Huang
Hong-Jiang Wei
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2018
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-018-1409-7

Other articles of this Issue 1/2018

Journal of Translational Medicine 1/2018 Go to the issue