Skip to main content
Top
Published in: Journal of Translational Medicine 1/2018

Open Access 01-12-2018 | Review

Hepcidin, an emerging and important player in brain iron homeostasis

Author: Driton Vela

Published in: Journal of Translational Medicine | Issue 1/2018

Login to get access

Abstract

Hepcidin is emerging as a new important factor in brain iron homeostasis. Studies suggest that there are two sources of hepcidin in the brain; one is local and the other comes from the circulation. Little is known about the molecular mediators of local hepcidin expression, but inflammation and iron-load have been shown to induce hepcidin expression in the brain. The most important source of hepcidin in the brain are glial cells. Role of hepcidin in brain functions has been observed during neuronal iron-load and brain hemorrhage, where secretion of abundant hepcidin is related with the severity of brain damage. This damage can be reversed by blocking systemic and local hepcidin secretion. Studies have yet to unveil its role in other brain conditions, but the rationale exists, since these conditions are characterized by overexpression of the factors that stimulate brain hepcidin expression, such as inflammation, hypoxia and iron-overload.
Literature
1.
go back to reference Pigeon C, Ilyin G, Courselaud B, et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem. 2001;276:7811–9.PubMedCrossRef Pigeon C, Ilyin G, Courselaud B, et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem. 2001;276:7811–9.PubMedCrossRef
2.
4.
go back to reference Houamel D, Ducrot N, Lefebvre T, et al. Hepcidin as a major component of renal antibacterial defenses against uropathogenic Escherichia coli. J Am Soc Nephrol. 2016;27:835–46.PubMedCrossRef Houamel D, Ducrot N, Lefebvre T, et al. Hepcidin as a major component of renal antibacterial defenses against uropathogenic Escherichia coli. J Am Soc Nephrol. 2016;27:835–46.PubMedCrossRef
5.
go back to reference Coffey R, Ganz T. Iron homeostasis: an anthropocentric perspective. J Biol Chem. 2017;292:12727–34.PubMedCrossRef Coffey R, Ganz T. Iron homeostasis: an anthropocentric perspective. J Biol Chem. 2017;292:12727–34.PubMedCrossRef
6.
go back to reference Bogdan AR, Miyazawa M, Hashimoto K, et al. Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci. 2016;41:274–86.PubMedCrossRef Bogdan AR, Miyazawa M, Hashimoto K, et al. Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci. 2016;41:274–86.PubMedCrossRef
7.
go back to reference Canali S, Zumbrennen-Bullough KB, Core AB, et al. Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice. Blood. 2017;129:405–14.PubMedPubMedCentralCrossRef Canali S, Zumbrennen-Bullough KB, Core AB, et al. Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice. Blood. 2017;129:405–14.PubMedPubMedCentralCrossRef
8.
go back to reference Steinbicker AU, Bartnikas TB, Lohmeyer LK, et al. Perturbation of hepcidin expression by BMP type I receptor deletion induces iron overload in mice. Blood. 2011;118:4224–30.PubMedPubMedCentralCrossRef Steinbicker AU, Bartnikas TB, Lohmeyer LK, et al. Perturbation of hepcidin expression by BMP type I receptor deletion induces iron overload in mice. Blood. 2011;118:4224–30.PubMedPubMedCentralCrossRef
9.
go back to reference Zhao N, Maxson JE, Zhang RH, et al. Neogenin facilitates the induction of hepcidin expression by hemojuvelin in the liver. J Biol Chem. 2016;291:12322–35.PubMedPubMedCentralCrossRef Zhao N, Maxson JE, Zhang RH, et al. Neogenin facilitates the induction of hepcidin expression by hemojuvelin in the liver. J Biol Chem. 2016;291:12322–35.PubMedPubMedCentralCrossRef
10.
go back to reference Wallace DF, Summerville L, Crampton EM, et al. Combined deletion of Hfe and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload. Hepatology. 2009;50:1992–2000.PubMedCrossRef Wallace DF, Summerville L, Crampton EM, et al. Combined deletion of Hfe and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload. Hepatology. 2009;50:1992–2000.PubMedCrossRef
11.
go back to reference Vadhan-Raj S, Abonour R, Goldman JW, et al. A first-in-human phase 1 study of a hepcidin monoclonal antibody, LY2787106, in cancer-associated anemia. J Hematol Oncol. 2017;10:73.PubMedPubMedCentralCrossRef Vadhan-Raj S, Abonour R, Goldman JW, et al. A first-in-human phase 1 study of a hepcidin monoclonal antibody, LY2787106, in cancer-associated anemia. J Hematol Oncol. 2017;10:73.PubMedPubMedCentralCrossRef
12.
13.
go back to reference Bacchetta J, Zaritsky JJ, Sea JL, et al. Suppression of iron-regulatory hepcidin by vitamin D. J Am Soc Nephrol. 2014;25:564–72.PubMedCrossRef Bacchetta J, Zaritsky JJ, Sea JL, et al. Suppression of iron-regulatory hepcidin by vitamin D. J Am Soc Nephrol. 2014;25:564–72.PubMedCrossRef
14.
go back to reference Sonnweber T, Nachbaur D, Schroll A, et al. Hypoxia induced downregulation of hepcidin is mediated by platelet derived growth factor BB. Gut. 2014;63:1951–9.PubMedCrossRef Sonnweber T, Nachbaur D, Schroll A, et al. Hypoxia induced downregulation of hepcidin is mediated by platelet derived growth factor BB. Gut. 2014;63:1951–9.PubMedCrossRef
15.
go back to reference Poli M, Girelli D, Campostrini N, et al. Heparin: a potent inhibitor of hepcidin expression in vitro and in vivo. Blood. 2011;117:997–1004.PubMedCrossRef Poli M, Girelli D, Campostrini N, et al. Heparin: a potent inhibitor of hepcidin expression in vitro and in vivo. Blood. 2011;117:997–1004.PubMedCrossRef
18.
go back to reference Xiong X-Y, Liu L, Wang F-X, et al. Toll-like receptor 4/MyD88-mediated signaling of hepcidin expression causing brain iron accumulation, oxidative injury, and cognitive impairment after intracerebral hemorrhage, clinical perspective. Circulation. 2016;134:1025–38.PubMedCrossRef Xiong X-Y, Liu L, Wang F-X, et al. Toll-like receptor 4/MyD88-mediated signaling of hepcidin expression causing brain iron accumulation, oxidative injury, and cognitive impairment after intracerebral hemorrhage, clinical perspective. Circulation. 2016;134:1025–38.PubMedCrossRef
19.
go back to reference Roelckel U, Leenders KL, von Ammon K, et al. Brain tumor iron uptake measured with positron emission tomography and 52Fe-citrate. J Neurooncol. 1996;29:157–65.CrossRef Roelckel U, Leenders KL, von Ammon K, et al. Brain tumor iron uptake measured with positron emission tomography and 52Fe-citrate. J Neurooncol. 1996;29:157–65.CrossRef
20.
go back to reference McCarthy RC, Kosman DJ. Mechanisms and regulation of iron trafficking across the capillary endothelial cells of the blood–brain barrier. Front Mol Neurosci. 2015;8:31.PubMedPubMedCentralCrossRef McCarthy RC, Kosman DJ. Mechanisms and regulation of iron trafficking across the capillary endothelial cells of the blood–brain barrier. Front Mol Neurosci. 2015;8:31.PubMedPubMedCentralCrossRef
21.
go back to reference McCarthy RC, Kosman DJ. Iron transport across the blood–brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy. Cell Mol Life Sci. 2015;72:709–27.PubMedCrossRef McCarthy RC, Kosman DJ. Iron transport across the blood–brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy. Cell Mol Life Sci. 2015;72:709–27.PubMedCrossRef
22.
go back to reference Bien-Ly N, Yu YJ, Bumbaca D, et al. Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J Exp Med. 2014;211:233–44.PubMedPubMedCentralCrossRef Bien-Ly N, Yu YJ, Bumbaca D, et al. Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J Exp Med. 2014;211:233–44.PubMedPubMedCentralCrossRef
24.
go back to reference McCarthy RC, Kosman DJ. Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells. PLoS ONE. 2014;9:e89003.PubMedPubMedCentralCrossRef McCarthy RC, Kosman DJ. Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells. PLoS ONE. 2014;9:e89003.PubMedPubMedCentralCrossRef
25.
26.
go back to reference Dringen R, Bishop GM, Koeppe M, et al. The pivotal role of astrocytes in the metabolism of iron in the brain. Neurochem Res. 2007;32:1884–90.PubMedCrossRef Dringen R, Bishop GM, Koeppe M, et al. The pivotal role of astrocytes in the metabolism of iron in the brain. Neurochem Res. 2007;32:1884–90.PubMedCrossRef
27.
go back to reference Pelizzoni I, Zacchetti D, Campanella A, et al. Iron uptake in quiescent and inflammation-activated astrocytes: a potentially neuroprotective control of iron burden. Biochim Biophys Acta Mol Basis Dis. 2013;1832:1326–33.CrossRef Pelizzoni I, Zacchetti D, Campanella A, et al. Iron uptake in quiescent and inflammation-activated astrocytes: a potentially neuroprotective control of iron burden. Biochim Biophys Acta Mol Basis Dis. 2013;1832:1326–33.CrossRef
29.
go back to reference Skjørringe T, Burkhart A, Johnsen KB, et al. Divalent metal transporter 1 (DMT1) in the brain: implications for a role in iron transport at the blood–brain barrier, and neuronal and glial pathology. Front Mol Neurosci. 2015;8:19.PubMedPubMedCentral Skjørringe T, Burkhart A, Johnsen KB, et al. Divalent metal transporter 1 (DMT1) in the brain: implications for a role in iron transport at the blood–brain barrier, and neuronal and glial pathology. Front Mol Neurosci. 2015;8:19.PubMedPubMedCentral
30.
go back to reference Ji C, Kosman DJ. Molecular mechanisms of non-transferrin-bound and transferrin-bound iron uptake in primary hippocampal neurons. J Neurochem. 2015;133:668–83.PubMedPubMedCentralCrossRef Ji C, Kosman DJ. Molecular mechanisms of non-transferrin-bound and transferrin-bound iron uptake in primary hippocampal neurons. J Neurochem. 2015;133:668–83.PubMedPubMedCentralCrossRef
31.
go back to reference Krause A, Neitz S, Mägert HJ, et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 2000;480:147–50.PubMedCrossRef Krause A, Neitz S, Mägert HJ, et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 2000;480:147–50.PubMedCrossRef
32.
go back to reference Zechel S, Huber-Wittmer K, von Bohlen und Halbach O. Distribution of the iron-regulating protein hepcidin in the murine central nervous system. J Neurosci Res. 2006;84:790–800.PubMedCrossRef Zechel S, Huber-Wittmer K, von Bohlen und Halbach O. Distribution of the iron-regulating protein hepcidin in the murine central nervous system. J Neurosci Res. 2006;84:790–800.PubMedCrossRef
33.
go back to reference Raha-Chowdhury R, Raha AA, Forostyak S, et al. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain. BMC Neurosci. 2015;16:24.PubMedPubMedCentralCrossRef Raha-Chowdhury R, Raha AA, Forostyak S, et al. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain. BMC Neurosci. 2015;16:24.PubMedPubMedCentralCrossRef
34.
go back to reference Wang S-M, Fu L-J, Duan X-L, et al. Role of hepcidin in murine brain iron metabolism. Cell Mol Life Sci. 2010;67:123–33.PubMedCrossRef Wang S-M, Fu L-J, Duan X-L, et al. Role of hepcidin in murine brain iron metabolism. Cell Mol Life Sci. 2010;67:123–33.PubMedCrossRef
35.
go back to reference Raha AA, Vaishnav RA, Friedland RP, et al. The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer’s disease. Acta Neuropathol Commun. 2013;1:55.PubMedPubMedCentralCrossRef Raha AA, Vaishnav RA, Friedland RP, et al. The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer’s disease. Acta Neuropathol Commun. 2013;1:55.PubMedPubMedCentralCrossRef
36.
go back to reference Rutgers MP, Pielen A, Gille M. Chronic cerebellar ataxia and hereditary hemochromatosis: causal or coincidental association? J Neurol. 2007;254:1296–7.PubMedCrossRef Rutgers MP, Pielen A, Gille M. Chronic cerebellar ataxia and hereditary hemochromatosis: causal or coincidental association? J Neurol. 2007;254:1296–7.PubMedCrossRef
37.
go back to reference Nielsen JE, Jensen LN, Krabbe K. Hereditary haemochromatosis: a case of iron accumulation in the basal ganglia associated with a parkinsonian syndrome. J Neurol Neurosurg Psychiatry. 1995;59:318–21.PubMedPubMedCentralCrossRef Nielsen JE, Jensen LN, Krabbe K. Hereditary haemochromatosis: a case of iron accumulation in the basal ganglia associated with a parkinsonian syndrome. J Neurol Neurosurg Psychiatry. 1995;59:318–21.PubMedPubMedCentralCrossRef
38.
go back to reference Miyasaki K, Murao S, Koizumi N. Hemochromatosis associated with brain lesions—a disorder of trace-metal binding proteins and/or polymers? J Neuropathol Exp Neurol. 1977;36:964–76.PubMedCrossRef Miyasaki K, Murao S, Koizumi N. Hemochromatosis associated with brain lesions—a disorder of trace-metal binding proteins and/or polymers? J Neuropathol Exp Neurol. 1977;36:964–76.PubMedCrossRef
39.
go back to reference Lin D, Ding J, Liu J-Y, et al. Decreased serum hepcidin concentration correlates with brain iron deposition in patients with HBV-related cirrhosis. PLoS ONE. 2013;8:e65551.PubMedPubMedCentralCrossRef Lin D, Ding J, Liu J-Y, et al. Decreased serum hepcidin concentration correlates with brain iron deposition in patients with HBV-related cirrhosis. PLoS ONE. 2013;8:e65551.PubMedPubMedCentralCrossRef
41.
go back to reference Schluesener H, Meyermann R. Neutrophilic defensins penetrate the blood–brain barrier. J Neurosci Res. 1995;42:718–23.PubMedCrossRef Schluesener H, Meyermann R. Neutrophilic defensins penetrate the blood–brain barrier. J Neurosci Res. 1995;42:718–23.PubMedCrossRef
42.
43.
go back to reference Gnana-Prakasam JP, Martin PM, Mysona BA, et al. Hepcidin expression in mouse retina and its regulation via lipopolysaccharide/Toll-like receptor-4 pathway independent of Hfe. Biochem J. 2008;411:79–88.PubMedPubMedCentralCrossRef Gnana-Prakasam JP, Martin PM, Mysona BA, et al. Hepcidin expression in mouse retina and its regulation via lipopolysaccharide/Toll-like receptor-4 pathway independent of Hfe. Biochem J. 2008;411:79–88.PubMedPubMedCentralCrossRef
44.
go back to reference Hadziahmetovic M, Song Y, Wolkow N, et al. Bmp6 regulates retinal iron homeostasis and has altered expression in age-related macular degeneration. Am J Pathol. 2011;179:335–48.PubMedPubMedCentralCrossRef Hadziahmetovic M, Song Y, Wolkow N, et al. Bmp6 regulates retinal iron homeostasis and has altered expression in age-related macular degeneration. Am J Pathol. 2011;179:335–48.PubMedPubMedCentralCrossRef
45.
go back to reference Hadziahmetovic M, Song Y, Ponnuru P, et al. Age-dependent retinal iron accumulation and degeneration in hepcidin knockout mice. Investig Ophthalmol Vis Sci. 2011;52:109–18.CrossRef Hadziahmetovic M, Song Y, Ponnuru P, et al. Age-dependent retinal iron accumulation and degeneration in hepcidin knockout mice. Investig Ophthalmol Vis Sci. 2011;52:109–18.CrossRef
46.
47.
go back to reference Bardou-Jacquet E, Ben Ali Z, Beaumont-Epinette M-P, et al. Non-HFE hemochromatosis: pathophysiological and diagnostic aspects. Clin Res Hepatol Gastroenterol. 2014;38:143–54.PubMedCrossRef Bardou-Jacquet E, Ben Ali Z, Beaumont-Epinette M-P, et al. Non-HFE hemochromatosis: pathophysiological and diagnostic aspects. Clin Res Hepatol Gastroenterol. 2014;38:143–54.PubMedCrossRef
48.
go back to reference Zerbib J, Pierre-Kahn V, Sikorav A, et al. Unusual retinopathy associated with hemochromatosis. Retin Cases Brief Rep. 2015;9:190–4.PubMedCrossRef Zerbib J, Pierre-Kahn V, Sikorav A, et al. Unusual retinopathy associated with hemochromatosis. Retin Cases Brief Rep. 2015;9:190–4.PubMedCrossRef
49.
go back to reference Theurl M, Song D, Clark E, et al. Mice with hepcidin-resistant ferroportin accumulate iron in the retina. FASEB J. 2016;30:813–23.PubMedCrossRef Theurl M, Song D, Clark E, et al. Mice with hepcidin-resistant ferroportin accumulate iron in the retina. FASEB J. 2016;30:813–23.PubMedCrossRef
50.
go back to reference Lieblein-Boff JC, McKim DB, Shea DT, et al. Neonatal E. coli infection causes neuro-behavioral deficits associated with hypomyelination and neuronal sequestration of iron. J Neurosci. 2013;33:16334–45.PubMedPubMedCentralCrossRef Lieblein-Boff JC, McKim DB, Shea DT, et al. Neonatal E. coli infection causes neuro-behavioral deficits associated with hypomyelination and neuronal sequestration of iron. J Neurosci. 2013;33:16334–45.PubMedPubMedCentralCrossRef
51.
go back to reference Marques F, Falcao AM, Sousa JC, et al. Altered iron metabolism is part of the choroid plexus response to peripheral inflammation. Endocrinology. 2009;150:2822–8.PubMedCrossRef Marques F, Falcao AM, Sousa JC, et al. Altered iron metabolism is part of the choroid plexus response to peripheral inflammation. Endocrinology. 2009;150:2822–8.PubMedCrossRef
53.
go back to reference Wang Q, Du F, Qian Z-M, et al. Lipopolysaccharide induces a significant increase in expression of iron regulatory hormone hepcidin in the cortex and substantia nigra in rat brain. Endocrinology. 2008;149:3920–5.PubMedPubMedCentralCrossRef Wang Q, Du F, Qian Z-M, et al. Lipopolysaccharide induces a significant increase in expression of iron regulatory hormone hepcidin in the cortex and substantia nigra in rat brain. Endocrinology. 2008;149:3920–5.PubMedPubMedCentralCrossRef
55.
go back to reference Qian Z-M, He X, Liang T, et al. Lipopolysaccharides upregulate hepcidin in neuron via microglia and the IL-6/STAT3 signaling pathway. Mol Neurobiol. 2014;50:811–20.PubMedCrossRef Qian Z-M, He X, Liang T, et al. Lipopolysaccharides upregulate hepcidin in neuron via microglia and the IL-6/STAT3 signaling pathway. Mol Neurobiol. 2014;50:811–20.PubMedCrossRef
56.
go back to reference Urrutia P, Aguirre P, Esparza A, et al. Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem. 2013;126:541–9.PubMedCrossRef Urrutia P, Aguirre P, Esparza A, et al. Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem. 2013;126:541–9.PubMedCrossRef
57.
go back to reference Li W-Y, Li F-M, Zhou Y-F, et al. Aspirin down regulates hepcidin by inhibiting NF-κB and IL6/JAK2/STAT3 pathways in BV-2 microglial cells treated with lipopolysaccharide. Int J Mol Sci. 2016;17:1921.PubMedCentralCrossRef Li W-Y, Li F-M, Zhou Y-F, et al. Aspirin down regulates hepcidin by inhibiting NF-κB and IL6/JAK2/STAT3 pathways in BV-2 microglial cells treated with lipopolysaccharide. Int J Mol Sci. 2016;17:1921.PubMedCentralCrossRef
58.
go back to reference Du F, Qian C, Ming Qian Z, et al. Hepcidin directly inhibits transferrin receptor 1 expression in astrocytes via a cyclic AMP-protein kinase a pathway. Glia. 2011;59:936–45.PubMedCrossRef Du F, Qian C, Ming Qian Z, et al. Hepcidin directly inhibits transferrin receptor 1 expression in astrocytes via a cyclic AMP-protein kinase a pathway. Glia. 2011;59:936–45.PubMedCrossRef
59.
go back to reference Du F, Qian Z-M, Luo Q, et al. Hepcidin suppresses brain iron accumulation by downregulating iron transport proteins in iron-overloaded rats. Mol Neurobiol. 2015;52:101–14.PubMedCrossRef Du F, Qian Z-M, Luo Q, et al. Hepcidin suppresses brain iron accumulation by downregulating iron transport proteins in iron-overloaded rats. Mol Neurobiol. 2015;52:101–14.PubMedCrossRef
60.
go back to reference Gong J, Du F, Qian ZM, et al. Pre-treatment of rats with ad-hepcidin prevents iron-induced oxidative stress in the brain. Free Radic Biol Med. 2016;90:126–32.PubMedCrossRef Gong J, Du F, Qian ZM, et al. Pre-treatment of rats with ad-hepcidin prevents iron-induced oxidative stress in the brain. Free Radic Biol Med. 2016;90:126–32.PubMedCrossRef
62.
go back to reference Rathore KI, Redensek A, David S. Iron homeostasis in astrocytes and microglia is differentially regulated by TNF-α and TGF-β1. Glia. 2012;60:738–50.PubMedCrossRef Rathore KI, Redensek A, David S. Iron homeostasis in astrocytes and microglia is differentially regulated by TNF-α and TGF-β1. Glia. 2012;60:738–50.PubMedCrossRef
63.
go back to reference Zhang Z, Hou L, Song J-L, et al. Pro-inflammatory cytokine-mediated ferroportin down-regulation contributes to the nigral iron accumulation in lipopolysaccharide-induced Parkinsonian models. Neuroscience. 2014;257:20–30.PubMedCrossRef Zhang Z, Hou L, Song J-L, et al. Pro-inflammatory cytokine-mediated ferroportin down-regulation contributes to the nigral iron accumulation in lipopolysaccharide-induced Parkinsonian models. Neuroscience. 2014;257:20–30.PubMedCrossRef
64.
go back to reference Sun C, Song N, Xie A, et al. High hepcidin level accounts for the nigral iron accumulation in acute peripheral iron intoxication rats. Toxicol Lett. 2012;212:276–81.PubMedCrossRef Sun C, Song N, Xie A, et al. High hepcidin level accounts for the nigral iron accumulation in acute peripheral iron intoxication rats. Toxicol Lett. 2012;212:276–81.PubMedCrossRef
65.
go back to reference Urrutia PJ, Hirsch EC, González-Billault C, et al. Hepcidin attenuates amyloid beta-induced inflammatory and pro-oxidant responses in astrocytes and microglia. J Neurochem. 2017;142:140–52.PubMedCrossRef Urrutia PJ, Hirsch EC, González-Billault C, et al. Hepcidin attenuates amyloid beta-induced inflammatory and pro-oxidant responses in astrocytes and microglia. J Neurochem. 2017;142:140–52.PubMedCrossRef
66.
go back to reference De Domenico I, Zhang TY, Koening CL, et al. Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice. J Clin Investig. 2010;120:2395–405.PubMedPubMedCentralCrossRef De Domenico I, Zhang TY, Koening CL, et al. Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice. J Clin Investig. 2010;120:2395–405.PubMedPubMedCentralCrossRef
67.
go back to reference Burté F, Brown BJ, Orimadegun AE, et al. Circulatory hepcidin is associated with the anti-inflammatory response but not with iron or anemic status in childhood malaria. Blood. 2013;121:3016–22.PubMedCrossRef Burté F, Brown BJ, Orimadegun AE, et al. Circulatory hepcidin is associated with the anti-inflammatory response but not with iron or anemic status in childhood malaria. Blood. 2013;121:3016–22.PubMedCrossRef
68.
go back to reference Simpson IA, Ponnuru P, Klinger ME, et al. A novel model for brain iron uptake: introducing the concept of regulation. J Cereb Blood Flow Metab. 2015;35:48–57.PubMedCrossRef Simpson IA, Ponnuru P, Klinger ME, et al. A novel model for brain iron uptake: introducing the concept of regulation. J Cereb Blood Flow Metab. 2015;35:48–57.PubMedCrossRef
70.
go back to reference Rodriguez Martinez A, Niemela O, Parkkila S. Hepatic and extrahepatic expression of the new iron regulatory protein hemojuvelin. Haematologica. 2004;89:1441–5.PubMed Rodriguez Martinez A, Niemela O, Parkkila S. Hepatic and extrahepatic expression of the new iron regulatory protein hemojuvelin. Haematologica. 2004;89:1441–5.PubMed
71.
go back to reference Wang Y, Chang C-F, Morales M, et al. Bone morphogenetic protein-6 reduces ischemia-induced brain damage in rats. Stroke. 2001;32:2170–8.PubMedCrossRef Wang Y, Chang C-F, Morales M, et al. Bone morphogenetic protein-6 reduces ischemia-induced brain damage in rats. Stroke. 2001;32:2170–8.PubMedCrossRef
72.
go back to reference Crews L, Adame A, Patrick C, et al. Increased BMP6 levels in the brains of Alzheimer’s disease patients and APP transgenic mice are accompanied by impaired neurogenesis. J Neurosci. 2010;30:12252–62.PubMedPubMedCentralCrossRef Crews L, Adame A, Patrick C, et al. Increased BMP6 levels in the brains of Alzheimer’s disease patients and APP transgenic mice are accompanied by impaired neurogenesis. J Neurosci. 2010;30:12252–62.PubMedPubMedCentralCrossRef
73.
go back to reference Pellegrino RM, Boda E, Montarolo F, et al. Transferrin receptor 2 dependent alterations of brain iron metabolism affect anxiety circuits in the mouse. Sci Rep. 2016;6:30725.PubMedPubMedCentralCrossRef Pellegrino RM, Boda E, Montarolo F, et al. Transferrin receptor 2 dependent alterations of brain iron metabolism affect anxiety circuits in the mouse. Sci Rep. 2016;6:30725.PubMedPubMedCentralCrossRef
74.
go back to reference Benkovic SA, Connor JR. Ferritin, transferrin, and iron in selected regions of the adult and aged rat brain. J Comp Neurol. 1993;338:97–113.PubMedCrossRef Benkovic SA, Connor JR. Ferritin, transferrin, and iron in selected regions of the adult and aged rat brain. J Comp Neurol. 1993;338:97–113.PubMedCrossRef
75.
go back to reference Belaidi AA, Bush AI. Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem. 2016;139:179–97.PubMedCrossRef Belaidi AA, Bush AI. Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem. 2016;139:179–97.PubMedCrossRef
76.
go back to reference Lu LN, Qian ZM, Wu KC, et al. Expression of iron transporters and pathological hallmarks of Parkinson’s and Alzheimer’s diseases in the brain of young, adult, and aged rats. Mol Neurobiol. 2017;54:5213–24.PubMedCrossRef Lu LN, Qian ZM, Wu KC, et al. Expression of iron transporters and pathological hallmarks of Parkinson’s and Alzheimer’s diseases in the brain of young, adult, and aged rats. Mol Neurobiol. 2017;54:5213–24.PubMedCrossRef
77.
go back to reference Hofer T, Perry G. Nucleic acid oxidative damage in Alzheimer’s disease—explained by the hepcidin–ferroportin neuronal iron overload hypothesis? J Trace Elem Med Biol. 2016;38:1–9.PubMedCrossRef Hofer T, Perry G. Nucleic acid oxidative damage in Alzheimer’s disease—explained by the hepcidin–ferroportin neuronal iron overload hypothesis? J Trace Elem Med Biol. 2016;38:1–9.PubMedCrossRef
78.
go back to reference Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol. 2001;60:759–67.PubMedCrossRef Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol. 2001;60:759–67.PubMedCrossRef
79.
go back to reference Smith MA, Zhu X, Tabaton M, et al. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis. 2010;19:363–72.PubMedPubMedCentralCrossRef Smith MA, Zhu X, Tabaton M, et al. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis. 2010;19:363–72.PubMedPubMedCentralCrossRef
80.
go back to reference Raven EP, Lu PH, Tishler TA, et al. Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer’s disease detected in vivo with magnetic resonance imaging. J Alzheimers Dis. 2013;37:127–36.PubMed Raven EP, Lu PH, Tishler TA, et al. Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer’s disease detected in vivo with magnetic resonance imaging. J Alzheimers Dis. 2013;37:127–36.PubMed
81.
go back to reference Bartzokis G, Sultzer D, Cummings J, et al. In vivo evaluation of brain iron in Alzheimer disease using magnetic resonance imaging. Arch Gen Psychiatry. 2000;57:47.PubMedCrossRef Bartzokis G, Sultzer D, Cummings J, et al. In vivo evaluation of brain iron in Alzheimer disease using magnetic resonance imaging. Arch Gen Psychiatry. 2000;57:47.PubMedCrossRef
82.
go back to reference Skjørringe T, Møller LB, Moos T. Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders. Front Pharmacol. 2012;3:169.PubMedPubMedCentralCrossRef Skjørringe T, Møller LB, Moos T. Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders. Front Pharmacol. 2012;3:169.PubMedPubMedCentralCrossRef
83.
go back to reference Rottkamp CA, Raina AK, Zhu X, et al. Redox-active iron mediates amyloid-beta toxicity. Free Radic Biol Med. 2001;30:447–50.PubMedCrossRef Rottkamp CA, Raina AK, Zhu X, et al. Redox-active iron mediates amyloid-beta toxicity. Free Radic Biol Med. 2001;30:447–50.PubMedCrossRef
84.
go back to reference Peters DG, Connor JR, Meadowcroft MD. The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer’s disease: two sides of the same coin. Neurobiol Dis. 2015;81:49–65.PubMedPubMedCentralCrossRef Peters DG, Connor JR, Meadowcroft MD. The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer’s disease: two sides of the same coin. Neurobiol Dis. 2015;81:49–65.PubMedPubMedCentralCrossRef
85.
go back to reference Duce JA, Tsatsanis A, Cater MA, et al. Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell. 2010;142:857–67.PubMedPubMedCentralCrossRef Duce JA, Tsatsanis A, Cater MA, et al. Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell. 2010;142:857–67.PubMedPubMedCentralCrossRef
86.
go back to reference Wong BX, Tsatsanis A, Lim LQ, et al. β-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PLoS ONE. 2014;9:e114174.PubMedPubMedCentralCrossRef Wong BX, Tsatsanis A, Lim LQ, et al. β-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PLoS ONE. 2014;9:e114174.PubMedPubMedCentralCrossRef
87.
go back to reference Zheng W, Xin N, Chi Z-H, et al. Divalent metal transporter 1 is involved in amyloid precursor protein processing and A generation. FASEB J. 2009;23:4207–17.PubMedCrossRef Zheng W, Xin N, Chi Z-H, et al. Divalent metal transporter 1 is involved in amyloid precursor protein processing and A generation. FASEB J. 2009;23:4207–17.PubMedCrossRef
88.
go back to reference Crespo ÂC, Silva B, Marques L, et al. Genetic and biochemical markers in patients with Alzheimer’s disease support a concerted systemic iron homeostasis dysregulation. Neurobiol Aging. 2014;35:777–85.PubMedCrossRef Crespo ÂC, Silva B, Marques L, et al. Genetic and biochemical markers in patients with Alzheimer’s disease support a concerted systemic iron homeostasis dysregulation. Neurobiol Aging. 2014;35:777–85.PubMedCrossRef
89.
go back to reference Sternberg Z, Hu Z, Sternberg D, et al. Serum hepcidin levels, iron dyshomeostasis and cognitive loss in Alzheimer’s disease. Aging Dis. 2017;8:215–27.PubMedPubMedCentralCrossRef Sternberg Z, Hu Z, Sternberg D, et al. Serum hepcidin levels, iron dyshomeostasis and cognitive loss in Alzheimer’s disease. Aging Dis. 2017;8:215–27.PubMedPubMedCentralCrossRef
90.
go back to reference Wang J-Y, Zhuang Q-Q, Zhu L-B, et al. Meta-analysis of brain iron levels of Parkinson’s disease patients determined by postmortem and MRI measurements. Sci Rep. 2016;6:36669.PubMedPubMedCentralCrossRef Wang J-Y, Zhuang Q-Q, Zhu L-B, et al. Meta-analysis of brain iron levels of Parkinson’s disease patients determined by postmortem and MRI measurements. Sci Rep. 2016;6:36669.PubMedPubMedCentralCrossRef
91.
go back to reference Guan X, Xuan M, Gu Q, et al. Regionally progressive accumulation of iron in Parkinson’s disease as measured by quantitative susceptibility mapping. NMR Biomed. 2017;30:e3489.CrossRef Guan X, Xuan M, Gu Q, et al. Regionally progressive accumulation of iron in Parkinson’s disease as measured by quantitative susceptibility mapping. NMR Biomed. 2017;30:e3489.CrossRef
92.
go back to reference Brar S, Henderson D, Schenck J, et al. Iron accumulation in the substantia nigra of patients with Alzheimer disease and parkinsonism. Arch Neurol. 2009;66:224–36.CrossRef Brar S, Henderson D, Schenck J, et al. Iron accumulation in the substantia nigra of patients with Alzheimer disease and parkinsonism. Arch Neurol. 2009;66:224–36.CrossRef
93.
go back to reference Freed J, Chakrabarti L. Defining a role for hemoglobin in Parkinson’s disease. npj Park Dis. 2016;2:16021.CrossRef Freed J, Chakrabarti L. Defining a role for hemoglobin in Parkinson’s disease. npj Park Dis. 2016;2:16021.CrossRef
94.
go back to reference Chen D, Kanthasamy AG, Reddy MB. EGCG protects against 6-OHDA-induced neurotoxicity in a cell culture model. Parkinsons Dis. 2015;2015:843906.PubMedPubMedCentral Chen D, Kanthasamy AG, Reddy MB. EGCG protects against 6-OHDA-induced neurotoxicity in a cell culture model. Parkinsons Dis. 2015;2015:843906.PubMedPubMedCentral
95.
go back to reference Xu Q, Kanthasamy AG, Jin H, et al. Hepcidin plays a key role in 6-OHDA induced iron overload and apoptotic cell death in a cell culture model of Parkinson’s disease. Parkinsons Dis. 2016;2016:8684130.PubMedPubMedCentral Xu Q, Kanthasamy AG, Jin H, et al. Hepcidin plays a key role in 6-OHDA induced iron overload and apoptotic cell death in a cell culture model of Parkinson’s disease. Parkinsons Dis. 2016;2016:8684130.PubMedPubMedCentral
96.
go back to reference Salazar J, Mena N, Hunot S, et al. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci USA. 2008;105:18578–83.PubMedPubMedCentralCrossRef Salazar J, Mena N, Hunot S, et al. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci USA. 2008;105:18578–83.PubMedPubMedCentralCrossRef
97.
go back to reference Howitt J, Gysbers AM, Ayton S, et al. Increased Ndfip1 in the substantia nigra of Parkinsonian brains is associated with elevated iron levels. PLoS ONE. 2014;9:e87119.PubMedPubMedCentralCrossRef Howitt J, Gysbers AM, Ayton S, et al. Increased Ndfip1 in the substantia nigra of Parkinsonian brains is associated with elevated iron levels. PLoS ONE. 2014;9:e87119.PubMedPubMedCentralCrossRef
98.
go back to reference Howitt J, Putz U, Lackovic J, et al. Divalent metal transporter 1 (DMT1) regulation by Ndfip1 prevents metal toxicity in human neurons. Proc Natl Acad Sci USA. 2009;106:15489–94.PubMedPubMedCentralCrossRef Howitt J, Putz U, Lackovic J, et al. Divalent metal transporter 1 (DMT1) regulation by Ndfip1 prevents metal toxicity in human neurons. Proc Natl Acad Sci USA. 2009;106:15489–94.PubMedPubMedCentralCrossRef
99.
go back to reference Jiang H, Song N, Xu H, et al. Up-regulation of divalent metal transporter 1 in 6-hydroxydopamine intoxication is IRE/IRP dependent. Cell Res. 2010;20:345–56.PubMedCrossRef Jiang H, Song N, Xu H, et al. Up-regulation of divalent metal transporter 1 in 6-hydroxydopamine intoxication is IRE/IRP dependent. Cell Res. 2010;20:345–56.PubMedCrossRef
100.
go back to reference He Q, Du T, Yu X, et al. DMT1 polymorphism and risk of Parkinson’s disease. Neurosci Lett. 2011;501:128–31.PubMedCrossRef He Q, Du T, Yu X, et al. DMT1 polymorphism and risk of Parkinson’s disease. Neurosci Lett. 2011;501:128–31.PubMedCrossRef
101.
go back to reference Castellani RJ, Siedlak SL, Perry G, et al. Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathol. 2000;100:111–4.PubMedCrossRef Castellani RJ, Siedlak SL, Perry G, et al. Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathol. 2000;100:111–4.PubMedCrossRef
102.
go back to reference Song N, Wang J, Jiang H, et al. Ferroportin1 and hephaestin overexpression attenuate iron-induced oxidative stress in MES23.5 dopaminergic cells. J Cell Biochem. 2010;110:1063–72.PubMedCrossRef Song N, Wang J, Jiang H, et al. Ferroportin1 and hephaestin overexpression attenuate iron-induced oxidative stress in MES23.5 dopaminergic cells. J Cell Biochem. 2010;110:1063–72.PubMedCrossRef
103.
go back to reference Song N, Wang J, Jiang H, et al. Ferroportin 1 but not hephaestin contributes to iron accumulation in a cell model of Parkinson’s disease. Free Radic Biol Med. 2010;48:332–41.PubMedCrossRef Song N, Wang J, Jiang H, et al. Ferroportin 1 but not hephaestin contributes to iron accumulation in a cell model of Parkinson’s disease. Free Radic Biol Med. 2010;48:332–41.PubMedCrossRef
104.
go back to reference Zhang H-Y, Wang N-D, Song N, et al. 6-Hydroxydopamine promotes iron traffic in primary cultured astrocytes. Biometals. 2013;26:705–14.PubMedCrossRef Zhang H-Y, Wang N-D, Song N, et al. 6-Hydroxydopamine promotes iron traffic in primary cultured astrocytes. Biometals. 2013;26:705–14.PubMedCrossRef
106.
go back to reference García-Yébenes I, Sobrado M, Moraga A, et al. Iron overload, measured as serum ferritin, increases brain damage induced by focal ischemia and early reperfusion. Neurochem Int. 2012;61:1364–9.PubMedCrossRef García-Yébenes I, Sobrado M, Moraga A, et al. Iron overload, measured as serum ferritin, increases brain damage induced by focal ischemia and early reperfusion. Neurochem Int. 2012;61:1364–9.PubMedCrossRef
107.
go back to reference Mehdiratta M, Kumar S, Hackney D, et al. Association between serum ferritin level and perihematoma edema volume in patients with spontaneous intracerebral hemorrhage. Stroke. 2008;39:1165–70.PubMedCrossRef Mehdiratta M, Kumar S, Hackney D, et al. Association between serum ferritin level and perihematoma edema volume in patients with spontaneous intracerebral hemorrhage. Stroke. 2008;39:1165–70.PubMedCrossRef
108.
go back to reference Millerot-Serrurot E, Bertrand N, Mossiat C, et al. Temporal changes in free iron levels after brain ischemia. Neurochem Int. 2008;52:1442–8.PubMedCrossRef Millerot-Serrurot E, Bertrand N, Mossiat C, et al. Temporal changes in free iron levels after brain ischemia. Neurochem Int. 2008;52:1442–8.PubMedCrossRef
109.
110.
go back to reference Ellervik C, Tybjaerg-Hansen A, Appleyard M, et al. Hereditary hemochromatosis genotypes and risk of ischemic stroke. Neurology. 2007;68:1025–31.PubMedCrossRef Ellervik C, Tybjaerg-Hansen A, Appleyard M, et al. Hereditary hemochromatosis genotypes and risk of ischemic stroke. Neurology. 2007;68:1025–31.PubMedCrossRef
112.
go back to reference Słomka A, Świtońska M, Żekanowska E. Hepcidin levels are increased in patients with acute ischemic stroke: preliminary report. J Stroke Cerebrovasc Dis. 2015;24:1570–6.PubMedCrossRef Słomka A, Świtońska M, Żekanowska E. Hepcidin levels are increased in patients with acute ischemic stroke: preliminary report. J Stroke Cerebrovasc Dis. 2015;24:1570–6.PubMedCrossRef
113.
go back to reference Petrova J, Manolov V, Vasilev V, et al. Ischemic stroke, inflammation, iron overload—connection to a hepcidin. Int J Stroke. 2016;11:NP16–7.PubMedCrossRef Petrova J, Manolov V, Vasilev V, et al. Ischemic stroke, inflammation, iron overload—connection to a hepcidin. Int J Stroke. 2016;11:NP16–7.PubMedCrossRef
114.
go back to reference Xiong X-Y, Chen J, Zhu W-Y, et al. Serum hepcidin concentrations correlate with serum iron level and outcome in patients with intracerebral hemorrhage. Neurol Sci. 2015;36:1843–9.PubMedCrossRef Xiong X-Y, Chen J, Zhu W-Y, et al. Serum hepcidin concentrations correlate with serum iron level and outcome in patients with intracerebral hemorrhage. Neurol Sci. 2015;36:1843–9.PubMedCrossRef
115.
116.
go back to reference Lin S, Yin Q, Zhong Q, et al. Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J Neuroinflamm. 2012;9:46. Lin S, Yin Q, Zhong Q, et al. Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J Neuroinflamm. 2012;9:46.
117.
go back to reference Ingrassia R, Lanzillotta A, Sarnico I, et al. 1B/(−)IRE DMT1 expression during brain ischemia contributes to cell death mediated by NF-κB/RelA acetylation at Lys310. PLoS ONE. 2012;7:e38019.PubMedPubMedCentralCrossRef Ingrassia R, Lanzillotta A, Sarnico I, et al. 1B/(−)IRE DMT1 expression during brain ischemia contributes to cell death mediated by NF-κB/RelA acetylation at Lys310. PLoS ONE. 2012;7:e38019.PubMedPubMedCentralCrossRef
118.
go back to reference Yang L, Zhang B, Yin L, et al. Tanshinone IIA prevented brain iron dyshomeostasis in cerebral ischemic rats. Cell Physiol Biochem. 2011;27:23–30.PubMedCrossRef Yang L, Zhang B, Yin L, et al. Tanshinone IIA prevented brain iron dyshomeostasis in cerebral ischemic rats. Cell Physiol Biochem. 2011;27:23–30.PubMedCrossRef
119.
go back to reference Tan G, Liu L, He Z, et al. Role of hepcidin and its downstream proteins in early brain injury after experimental subarachnoid hemorrhage in rats. Mol Cell Biochem. 2016;418:31–8.PubMedCrossRef Tan G, Liu L, He Z, et al. Role of hepcidin and its downstream proteins in early brain injury after experimental subarachnoid hemorrhage in rats. Mol Cell Biochem. 2016;418:31–8.PubMedCrossRef
120.
go back to reference Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci. 2015;16:358–72.PubMedCrossRef Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci. 2015;16:358–72.PubMedCrossRef
121.
go back to reference Ceccarelli A, Filippi M, Neema M, et al. T2 hypointensity in the deep gray matter of patients with benign multiple sclerosis. Mult Scler J. 2009;15:678–86.CrossRef Ceccarelli A, Filippi M, Neema M, et al. T2 hypointensity in the deep gray matter of patients with benign multiple sclerosis. Mult Scler J. 2009;15:678–86.CrossRef
122.
go back to reference Stankiewicz JM, Neema M, Ceccarelli A. Iron and multiple sclerosis. Neurobiol Aging. 2014;35:S51–8.PubMedCrossRef Stankiewicz JM, Neema M, Ceccarelli A. Iron and multiple sclerosis. Neurobiol Aging. 2014;35:S51–8.PubMedCrossRef
123.
go back to reference van Rensburg SJ, Kotze MJ, van Toorn R. The conundrum of iron in multiple sclerosis–time for an individualised approach. Metab Brain Dis. 2012;27:239–53.PubMedPubMedCentralCrossRef van Rensburg SJ, Kotze MJ, van Toorn R. The conundrum of iron in multiple sclerosis–time for an individualised approach. Metab Brain Dis. 2012;27:239–53.PubMedPubMedCentralCrossRef
124.
go back to reference Ellidag HY, Kurtulus F, Yaman A, et al. Serum iron metabolism markers including hepcidin in multiple sclerosis patients. Neurochem J. 2014;8:226–30.CrossRef Ellidag HY, Kurtulus F, Yaman A, et al. Serum iron metabolism markers including hepcidin in multiple sclerosis patients. Neurochem J. 2014;8:226–30.CrossRef
126.
go back to reference Zarruk JG, Berard JL, Passos dos Santos R, et al. Expression of iron homeostasis proteins in the spinal cord in experimental autoimmune encephalomyelitis and their implications for iron accumulation. Neurobiol Dis. 2015;81:93–107.PubMedCrossRef Zarruk JG, Berard JL, Passos dos Santos R, et al. Expression of iron homeostasis proteins in the spinal cord in experimental autoimmune encephalomyelitis and their implications for iron accumulation. Neurobiol Dis. 2015;81:93–107.PubMedCrossRef
127.
go back to reference Gajowiak A, Styś A, Starzyński RR, et al. Mice overexpressing both non-mutated human SOD1 and mutated SOD1G93A genes: a competent experimental model for studying iron metabolism in amyotrophic lateral sclerosis. Front Mol Neurosci. 2016;8:82.PubMedPubMedCentralCrossRef Gajowiak A, Styś A, Starzyński RR, et al. Mice overexpressing both non-mutated human SOD1 and mutated SOD1G93A genes: a competent experimental model for studying iron metabolism in amyotrophic lateral sclerosis. Front Mol Neurosci. 2016;8:82.PubMedPubMedCentralCrossRef
128.
go back to reference Su XW, Simmons Z, Mitchell RM, et al. Biomarker-based predictive models for prognosis in amyotrophic lateral sclerosis. JAMA Neurol. 2013;31:703–6. Su XW, Simmons Z, Mitchell RM, et al. Biomarker-based predictive models for prognosis in amyotrophic lateral sclerosis. JAMA Neurol. 2013;31:703–6.
129.
130.
go back to reference Jeong SY, Rathore KI, Schulz K, et al. Dysregulation of iron homeostasis in the CNS contributes to disease progression in a mouse model of amyotrophic lateral sclerosis. J Neurosci. 2009;29:610–9.PubMedCrossRef Jeong SY, Rathore KI, Schulz K, et al. Dysregulation of iron homeostasis in the CNS contributes to disease progression in a mouse model of amyotrophic lateral sclerosis. J Neurosci. 2009;29:610–9.PubMedCrossRef
131.
go back to reference Kwan JY, Jeong SY, Van Gelderen P, et al. Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PLoS ONE. 2012;7:e35241.PubMedPubMedCentralCrossRef Kwan JY, Jeong SY, Van Gelderen P, et al. Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PLoS ONE. 2012;7:e35241.PubMedPubMedCentralCrossRef
132.
go back to reference Lovejoy DB, Guillemin GJ. The potential for transition metal-mediated neurodegeneration in amyotrophic lateral sclerosis. Front Aging Neurosci. 2014;6:173.PubMedPubMedCentralCrossRef Lovejoy DB, Guillemin GJ. The potential for transition metal-mediated neurodegeneration in amyotrophic lateral sclerosis. Front Aging Neurosci. 2014;6:173.PubMedPubMedCentralCrossRef
133.
go back to reference Wang Q, Zhang X, Chen S, et al. Prevention of motor neuron degeneration by novel iron chelators in SOD1(G93A) transgenic mice of amyotrophic lateral sclerosis. Neurodegener Dis. 2011;8:310–21.PubMedCrossRef Wang Q, Zhang X, Chen S, et al. Prevention of motor neuron degeneration by novel iron chelators in SOD1(G93A) transgenic mice of amyotrophic lateral sclerosis. Neurodegener Dis. 2011;8:310–21.PubMedCrossRef
134.
go back to reference Halon M, Kaczor JJ, Ziolkowski W, et al. Changes in skeletal muscle iron metabolism outpace amyotrophic lateral sclerosis onset in transgenic rats bearing the G93A hmSOD1 gene mutation. Free Radic Res. 2014;48:1363–70.PubMedCrossRef Halon M, Kaczor JJ, Ziolkowski W, et al. Changes in skeletal muscle iron metabolism outpace amyotrophic lateral sclerosis onset in transgenic rats bearing the G93A hmSOD1 gene mutation. Free Radic Res. 2014;48:1363–70.PubMedCrossRef
135.
136.
137.
go back to reference Legendre C, Avril S, Guillet C. Low oxygen tension reverses antineoplastic effect of iron chelator deferasirox in human glioblastoma cells. BMC Cancer. 2016;16:51.PubMedPubMedCentralCrossRef Legendre C, Avril S, Guillet C. Low oxygen tension reverses antineoplastic effect of iron chelator deferasirox in human glioblastoma cells. BMC Cancer. 2016;16:51.PubMedPubMedCentralCrossRef
138.
go back to reference Weinstock LB, Walters AS, Paueksakon P. Restless legs syndrome—theoretical roles of inflammatory and immune mechanisms. Sleep Med Rev. 2012;16:341–54.PubMedCrossRef Weinstock LB, Walters AS, Paueksakon P. Restless legs syndrome—theoretical roles of inflammatory and immune mechanisms. Sleep Med Rev. 2012;16:341–54.PubMedCrossRef
139.
go back to reference Rizzo G, Manners D, Testa C, et al. Low brain iron content in idiopathic restless legs syndrome patients detected by phase imaging. Mov Disord. 2013;28:1886–90.PubMedCrossRef Rizzo G, Manners D, Testa C, et al. Low brain iron content in idiopathic restless legs syndrome patients detected by phase imaging. Mov Disord. 2013;28:1886–90.PubMedCrossRef
140.
go back to reference Clardy SL, Wang X, Boyer PJ, et al. Is ferroportin–hepcidin signaling altered in restless legs syndrome? J Neurol Sci. 2006;247:173–9.PubMedCrossRef Clardy SL, Wang X, Boyer PJ, et al. Is ferroportin–hepcidin signaling altered in restless legs syndrome? J Neurol Sci. 2006;247:173–9.PubMedCrossRef
141.
go back to reference Haba-Rubio J, Staner L, Petiau C, et al. Restless legs syndrome and low brain iron levels in patients with haemochromatosis. J Neurol Neurosurg Psychiatry. 2005;76:1009–10.PubMedPubMedCentralCrossRef Haba-Rubio J, Staner L, Petiau C, et al. Restless legs syndrome and low brain iron levels in patients with haemochromatosis. J Neurol Neurosurg Psychiatry. 2005;76:1009–10.PubMedPubMedCentralCrossRef
143.
go back to reference Muller M, Leavitt BR. Iron dysregulation in Huntington’s disease. J Neurochem. 2014;130:328–50.PubMedCrossRef Muller M, Leavitt BR. Iron dysregulation in Huntington’s disease. J Neurochem. 2014;130:328–50.PubMedCrossRef
144.
go back to reference van Bergen JMG, Hua J, Unschuld PG, et al. Quantitative susceptibility mapping suggests altered brain iron in premanifest Huntington disease. AJNR Am J Neuroradiol. 2016;37:789–96.PubMedCrossRef van Bergen JMG, Hua J, Unschuld PG, et al. Quantitative susceptibility mapping suggests altered brain iron in premanifest Huntington disease. AJNR Am J Neuroradiol. 2016;37:789–96.PubMedCrossRef
145.
go back to reference Phillips O, Squitieri F, Sanchez-Castaneda C, et al. The corticospinal tract in Huntington’s disease. Cereb Cortex. 2015;25:2670–82.PubMedCrossRef Phillips O, Squitieri F, Sanchez-Castaneda C, et al. The corticospinal tract in Huntington’s disease. Cereb Cortex. 2015;25:2670–82.PubMedCrossRef
146.
go back to reference Bartzokis G, Cummings J, Perlman S, et al. Increased basal ganglia iron levels in Huntington disease. Arch Neurol. 1999;56:569.PubMedCrossRef Bartzokis G, Cummings J, Perlman S, et al. Increased basal ganglia iron levels in Huntington disease. Arch Neurol. 1999;56:569.PubMedCrossRef
148.
go back to reference Anzovino A, Lane DJR, Huang ML-H, et al. Fixing frataxin: “ironing out” the metabolic defect in Friedreich’s ataxia. Br J Pharmacol. 2014;171:2174–90.PubMedPubMedCentralCrossRef Anzovino A, Lane DJR, Huang ML-H, et al. Fixing frataxin: “ironing out” the metabolic defect in Friedreich’s ataxia. Br J Pharmacol. 2014;171:2174–90.PubMedPubMedCentralCrossRef
150.
go back to reference Koeppen AH, Ramirez RL, Yu D, et al. Friedreich’s ataxia causes redistribution of iron, copper, and zinc in the dentate nucleus. Cerebellum. 2012;11:845–60.PubMedPubMedCentralCrossRef Koeppen AH, Ramirez RL, Yu D, et al. Friedreich’s ataxia causes redistribution of iron, copper, and zinc in the dentate nucleus. Cerebellum. 2012;11:845–60.PubMedPubMedCentralCrossRef
151.
go back to reference Santos R, Lefevre S, Sliwa D, et al. Friedreich ataxia: molecular mechanisms, redox considerations, and therapeutic opportunities. Antioxid Redox Signal. 2010;13:651–90.PubMedPubMedCentralCrossRef Santos R, Lefevre S, Sliwa D, et al. Friedreich ataxia: molecular mechanisms, redox considerations, and therapeutic opportunities. Antioxid Redox Signal. 2010;13:651–90.PubMedPubMedCentralCrossRef
153.
go back to reference Lu C, Schoenfeld R, Shan Y, et al. Frataxin deficiency induces Schwann cell inflammation and death. Biochim Biophys Acta Mol Basis Dis. 2009;1792:1052–61.CrossRef Lu C, Schoenfeld R, Shan Y, et al. Frataxin deficiency induces Schwann cell inflammation and death. Biochim Biophys Acta Mol Basis Dis. 2009;1792:1052–61.CrossRef
154.
go back to reference Koeppen AH, Morral JA, Davis AN, et al. The dorsal root ganglion in Friedreich’s ataxia. Acta Neuropathol. 2009;118:763–76.PubMedCrossRef Koeppen AH, Morral JA, Davis AN, et al. The dorsal root ganglion in Friedreich’s ataxia. Acta Neuropathol. 2009;118:763–76.PubMedCrossRef
156.
go back to reference Farajdokht F, Soleimani M, Mehrpouya S, et al. The role of hepcidin in chronic mild stress-induced depression. Neurosci Lett. 2015;588:120–4.PubMedCrossRef Farajdokht F, Soleimani M, Mehrpouya S, et al. The role of hepcidin in chronic mild stress-induced depression. Neurosci Lett. 2015;588:120–4.PubMedCrossRef
Metadata
Title
Hepcidin, an emerging and important player in brain iron homeostasis
Author
Driton Vela
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2018
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-018-1399-5

Other articles of this Issue 1/2018

Journal of Translational Medicine 1/2018 Go to the issue