Skip to main content
Top
Published in: Journal of Translational Medicine 1/2017

Open Access 01-12-2017 | Research

Development of an objective gene expression panel as an alternative to self-reported symptom scores in human influenza challenge trials

Authors: Julius Muller, Eneida Parizotto, Richard Antrobus, James Francis, Campbell Bunce, Amanda Stranks, Marshall Nichols, Micah McClain, Adrian V. S. Hill, Adaikalavan Ramasamy, Sarah C. Gilbert

Published in: Journal of Translational Medicine | Issue 1/2017

Login to get access

Abstract

Background

Influenza challenge trials are important for vaccine efficacy testing. Currently, disease severity is determined by self-reported scores to a list of symptoms which can be highly subjective. A more objective measure would allow for improved data analysis.

Methods

Twenty-one volunteers participated in an influenza challenge trial. We calculated the daily sum of scores (DSS) for a list of 16 influenza symptoms. Whole blood collected at baseline and 24, 48, 72 and 96 h post challenge was profiled on Illumina HT12v4 microarrays. Changes in gene expression most strongly correlated with DSS were selected to train a Random Forest model and tested on two independent test sets consisting of 41 individuals profiled on a different microarray platform and 33 volunteers assayed by qRT-PCR.

Results

1456 probes are significantly associated with DSS at 1% false discovery rate. We selected 19 genes with the largest fold change to train a random forest model. We observed good concordance between predicted and actual scores in the first test set (r = 0.57; RMSE = −16.1%) with the greatest agreement achieved on samples collected approximately 72 h post challenge. Therefore, we assayed samples collected at baseline and 72 h post challenge in the second test set by qRT-PCR and observed good concordance (r = 0.81; RMSE = −36.1%).

Conclusions

We developed a 19-gene qRT-PCR panel to predict DSS, validated on two independent datasets. A transcriptomics based panel could provide a more objective measure of symptom scoring in future influenza challenge studies.
Trial registration Samples were obtained from a clinical trial with the ClinicalTrials.gov Identifier: NCT02014870, first registered on December 5, 2013
Appendix
Available only for authorised users
Literature
2.
go back to reference Fry AM, Gubareva L, Garten R, Clippard J, Mishin V, Spencer S, et al. Influenza vaccine effectiveness against drifted versus vaccine-like A/H3N2 viruses during the 2014–15 influenza season—US flu VE network. Open Forum Infect Dis. 2015;2(suppl):1. doi:10.1093/ofid/ofv131.141. Fry AM, Gubareva L, Garten R, Clippard J, Mishin V, Spencer S, et al. Influenza vaccine effectiveness against drifted versus vaccine-like A/H3N2 viruses during the 2014–15 influenza season—US flu VE network. Open Forum Infect Dis. 2015;2(suppl):1. doi:10.​1093/​ofid/​ofv131.​141.
4.
go back to reference Nohynek H, Baum U, Syrjänen R, Ikonen N, Sundman J, Jokinen J. Effectiveness of the live attenuated and the inactivated influenza vaccine in two-year-olds—a nationwide cohort study Finland, influenza season 2015/16. Eurosurveillance. 2016;21. doi:10.2807/1560-7917.ES.2016.21.38.30346. Nohynek H, Baum U, Syrjänen R, Ikonen N, Sundman J, Jokinen J. Effectiveness of the live attenuated and the inactivated influenza vaccine in two-year-olds—a nationwide cohort study Finland, influenza season 2015/16. Eurosurveillance. 2016;21. doi:10.​2807/​1560-7917.​ES.​2016.​21.​38.​30346.
5.
go back to reference Peters W, Brandl JR, Lindbloom JD, Martinez CJ, Scallan CD, Trager GR, et al. Oral administration of an adenovirus vector encoding both an avian influenza A hemagglutinin and a TLR3 ligand induces antigen specific granzyme B and IFN-γ T cell responses in humans. Vaccine. 2013;31:1752–8. doi:10.1016/j.vaccine.2013.01.023.CrossRefPubMed Peters W, Brandl JR, Lindbloom JD, Martinez CJ, Scallan CD, Trager GR, et al. Oral administration of an adenovirus vector encoding both an avian influenza A hemagglutinin and a TLR3 ligand induces antigen specific granzyme B and IFN-γ T cell responses in humans. Vaccine. 2013;31:1752–8. doi:10.​1016/​j.​vaccine.​2013.​01.​023.CrossRefPubMed
6.
7.
go back to reference Antrobus RD, Berthoud TK, Mullarkey CE, Hoschler K, Coughlan L, Zambon M, et al. Coadministration of seasonal influenza vaccine and MVA-NP+ M1 simultaneously achieves potent humoral and cell-mediated responses. Mol Ther. 2014;22:233–8. doi:10.1038/mt.2013.162.CrossRefPubMed Antrobus RD, Berthoud TK, Mullarkey CE, Hoschler K, Coughlan L, Zambon M, et al. Coadministration of seasonal influenza vaccine and MVA-NP+ M1 simultaneously achieves potent humoral and cell-mediated responses. Mol Ther. 2014;22:233–8. doi:10.​1038/​mt.​2013.​162.CrossRefPubMed
10.
go back to reference Zaas AK, Chen M, Varkey J, Veldman T, Hero AO, Lucas J, et al. Gene expression signatures diagnose influenza and other symptomatic respiratory viral infections in humans. Cell Host Microbe. 2009;6:207–17.CrossRefPubMedPubMedCentral Zaas AK, Chen M, Varkey J, Veldman T, Hero AO, Lucas J, et al. Gene expression signatures diagnose influenza and other symptomatic respiratory viral infections in humans. Cell Host Microbe. 2009;6:207–17.CrossRefPubMedPubMedCentral
12.
go back to reference Huang Y, Zaas AK, Rao A, Dobigeon N, Woolf PJ, Veldman T, et al. Temporal dynamics of host molecular responses differentiate symptomatic and asymptomatic influenza a infection. PLoS Genet. 2011;7:e1002234.CrossRefPubMedPubMedCentral Huang Y, Zaas AK, Rao A, Dobigeon N, Woolf PJ, Veldman T, et al. Temporal dynamics of host molecular responses differentiate symptomatic and asymptomatic influenza a infection. PLoS Genet. 2011;7:e1002234.CrossRefPubMedPubMedCentral
21.
22.
go back to reference Benjamini Y, Hochberg Y, Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57:289–300. doi:10.2307/2346101. Benjamini Y, Hochberg Y, Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57:289–300. doi:10.​2307/​2346101.
25.
go back to reference Genuer R, Poggi J-M, Tuleau-Malot C. VSURF: an R package for variable selection using random forests. R J. 2015;7:19–33. Genuer R, Poggi J-M, Tuleau-Malot C. VSURF: an R package for variable selection using random forests. R J. 2015;7:19–33.
27.
go back to reference Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, et al. Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am J Epidemiol. 2008;167:775–85. doi:10.1093/aje/kwm375.CrossRefPubMed Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, et al. Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am J Epidemiol. 2008;167:775–85. doi:10.​1093/​aje/​kwm375.CrossRefPubMed
28.
go back to reference Herberg JA, Kaforou M, Gormley S, Sumner ER, Patel S, Jones KDJ, et al. Transcriptomic profiling in childhood H1N1/09 influenza reveals reduced expression of protein synthesis genes. J Infect Dis. 2013;208:1664–8.CrossRefPubMedPubMedCentral Herberg JA, Kaforou M, Gormley S, Sumner ER, Patel S, Jones KDJ, et al. Transcriptomic profiling in childhood H1N1/09 influenza reveals reduced expression of protein synthesis genes. J Infect Dis. 2013;208:1664–8.CrossRefPubMedPubMedCentral
30.
go back to reference Go JT, Belisle SE, Tchitchek N, Tumpey TM, Ma W, Richt JA, et al. Pandemic H1N1 influenza virus elicits similar clinical course but differential host transcriptional response in mouse, macaque, and swine infection models. BMC Genom. 2009;2012(13):627. doi:10.1186/1471-2164-13-627. Go JT, Belisle SE, Tchitchek N, Tumpey TM, Ma W, Richt JA, et al. Pandemic H1N1 influenza virus elicits similar clinical course but differential host transcriptional response in mouse, macaque, and swine infection models. BMC Genom. 2009;2012(13):627. doi:10.​1186/​1471-2164-13-627.
31.
go back to reference Dallas PB, Gottardo NG, Firth MJ, Beesley AH, Hoffmann K, Terry PA, et al. Gene expression levels assessed by oligonucleotide microarray analysis and quantitative real-time RT-PCR—how well do they correlate? BMC Genom. 2005;6:59.CrossRef Dallas PB, Gottardo NG, Firth MJ, Beesley AH, Hoffmann K, Terry PA, et al. Gene expression levels assessed by oligonucleotide microarray analysis and quantitative real-time RT-PCR—how well do they correlate? BMC Genom. 2005;6:59.CrossRef
Metadata
Title
Development of an objective gene expression panel as an alternative to self-reported symptom scores in human influenza challenge trials
Authors
Julius Muller
Eneida Parizotto
Richard Antrobus
James Francis
Campbell Bunce
Amanda Stranks
Marshall Nichols
Micah McClain
Adrian V. S. Hill
Adaikalavan Ramasamy
Sarah C. Gilbert
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2017
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-017-1235-3

Other articles of this Issue 1/2017

Journal of Translational Medicine 1/2017 Go to the issue