Skip to main content
Top
Published in: Journal of Translational Medicine 1/2017

Open Access 01-12-2017 | Research

Effects of the intradiscal implantation of stromal vascular fraction plus platelet rich plasma in patients with degenerative disc disease

Authors: Kristin Comella, Robert Silbert, Michelle Parlo

Published in: Journal of Translational Medicine | Issue 1/2017

Login to get access

Abstract

Background

Stromal vascular fraction (SVF) can easily be obtained from a mini-lipoaspirate procedure of fat tissue and platelet rich plasma (PRP) can be obtained from peripheral blood. The SVF contains a mixture of cells including ADSCs and growth factors and has been depleted of the adipocyte (fat cell) population. We evaluated the safety and efficacy of administering SVF and PRP intra-discally into patients with degenerative disc disease.

Methods

A total of 15 patients underwent a local tumescent liposuction procedure to remove approximately 60 ml of fat tissue. The fat was separated to isolate the SVF and the cells were delivered into the disc nucleus of patients with degenerative disc disease. The subjects were then monitored for adverse events, range of motion, visual analog scale (VAS), present pain intensity (PPI), Oswestry Disability Index (ODI), Beck Depression Inventory (BDI), Dallas Pain Questionnaire and Short Form (SF)-12 scores over a period of 6 months. Safety events were followed for 12 months.

Results

No severe adverse events (SAEs) were reported during a 12 month follow up period with no incidences of infection. Patients demonstrated statistically significant improvements in several parameters including flexion, pain ratings, VAS, PPI, and short form questionnaires. In addition, both ODI and BDI data was trending positive and a majority of patients reported improvements in their Dallas Pain Questionnaire scores.

Conclusions

Overall, patients were pleased with the treatment results. More importantly, the procedure demonstrated a strong safety profile with no severe adverse events or complications linked to the therapy.
Trial registration NCT02097862. Name of registry: www.​clinicaltrials.​gov. https://​clinicaltrials.​gov/​ct2/​show/​NCT02097862?​term=​bioheart&​rank=​6. Date of registration: March 25, 2014; Date of enrollment: March 2014
Literature
1.
go back to reference Hematti P, Keating A. Mesenchymal stromal cells in regenerative medicine: A Perspective. In: Hematti P, Keating A, editors. Mesenchymal stromal cells—Biology and clinical applications. New York: Humana Press; 2013. p. 3–16.CrossRef Hematti P, Keating A. Mesenchymal stromal cells in regenerative medicine: A Perspective. In: Hematti P, Keating A, editors. Mesenchymal stromal cells—Biology and clinical applications. New York: Humana Press; 2013. p. 3–16.CrossRef
2.
go back to reference Przybyt E, Harmsen MC. Mesenchymal stem cells: promising for myocardial regeneration. Curr Stem Cell Res Ther. 2013;8(4):270–7.CrossRefPubMed Przybyt E, Harmsen MC. Mesenchymal stem cells: promising for myocardial regeneration. Curr Stem Cell Res Ther. 2013;8(4):270–7.CrossRefPubMed
4.
5.
go back to reference Bunnell B. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;00:1249–60. Bunnell B. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;00:1249–60.
6.
go back to reference Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm CJ, Bovenkerk JE, Pell C, Johnstone B, Considine RV, March KL. The secretion of angiogenic and anti-apoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1291–8.CrossRef Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm CJ, Bovenkerk JE, Pell C, Johnstone B, Considine RV, March KL. The secretion of angiogenic and anti-apoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1291–8.CrossRef
7.
go back to reference Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, Johnstone BH, March KL. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res. 2008;102(1):77–85.CrossRefPubMed Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, Johnstone BH, March KL. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res. 2008;102(1):77–85.CrossRefPubMed
9.
go back to reference Jang Y, Koh YG, Choi YJ, Kim SH, Yoon DS, Lee M, Lee JW. Characterization of adipose tissue-derived stromal vascular fraction for clinical application to cartilage regeneration. Vitro Cell Dev Biol Anim. 2015;51(2):142–50. doi:10.1007/s11626-014-9814-6.CrossRef Jang Y, Koh YG, Choi YJ, Kim SH, Yoon DS, Lee M, Lee JW. Characterization of adipose tissue-derived stromal vascular fraction for clinical application to cartilage regeneration. Vitro Cell Dev Biol Anim. 2015;51(2):142–50. doi:10.​1007/​s11626-014-9814-6.CrossRef
10.
go back to reference Aust I, Devlin B, Foster SJ, Halverson YD, Hicok K, du Laney T, et al. Yield of Human adipose- derived adult stem cells from liposuction aspirates. Cytotherapy. 2004;6:7–14.CrossRefPubMed Aust I, Devlin B, Foster SJ, Halverson YD, Hicok K, du Laney T, et al. Yield of Human adipose- derived adult stem cells from liposuction aspirates. Cytotherapy. 2004;6:7–14.CrossRefPubMed
11.
go back to reference Song K, Gu T, Shuang F, Tang J, Ren D, Qin J, Hou S. Adipose-derived stem cells improve the viability of nucleus pulposus cells in degenerated intervertebral discs. Mol Med Rep. 2015;12(3):4664–8.PubMed Song K, Gu T, Shuang F, Tang J, Ren D, Qin J, Hou S. Adipose-derived stem cells improve the viability of nucleus pulposus cells in degenerated intervertebral discs. Mol Med Rep. 2015;12(3):4664–8.PubMed
12.
go back to reference Marfia G, Campanella R, Navone SE, et al. Potential use of human adipose mesenchymal stromal cells for intervertebral disc regeneration: a preliminary study on biglycan-deficient murine model of chronic disc degeneration. Arthritis Res Ther. 2014;16(5):457. doi:10.1186/s13075-014-0457-5.CrossRefPubMedPubMedCentral Marfia G, Campanella R, Navone SE, et al. Potential use of human adipose mesenchymal stromal cells for intervertebral disc regeneration: a preliminary study on biglycan-deficient murine model of chronic disc degeneration. Arthritis Res Ther. 2014;16(5):457. doi:10.​1186/​s13075-014-0457-5.CrossRefPubMedPubMedCentral
13.
go back to reference Chun HJ, Kim YS, Kim BK, et al. Transplantation of human adipose-derived stem cells in a rabbit model of traumatic degeneration of lumbar discs. World Neurosurg. 2012;78:364–71.CrossRefPubMed Chun HJ, Kim YS, Kim BK, et al. Transplantation of human adipose-derived stem cells in a rabbit model of traumatic degeneration of lumbar discs. World Neurosurg. 2012;78:364–71.CrossRefPubMed
14.
go back to reference Tuakli-Wosornu YA, Terry A, Boachie-Adjei K, Harrison JR, Gribbin CK, LaSalle EE, Nguyen JT, Solomon JL, Lutz GE. Lumbar intradiskal platelet-rich plasma (PRP) injections: a prospective, double-blind, randomized controlled study. Am J Phys Med Rehabil. 2016;8(1):1. Tuakli-Wosornu YA, Terry A, Boachie-Adjei K, Harrison JR, Gribbin CK, LaSalle EE, Nguyen JT, Solomon JL, Lutz GE. Lumbar intradiskal platelet-rich plasma (PRP) injections: a prospective, double-blind, randomized controlled study. Am J Phys Med Rehabil. 2016;8(1):1.
15.
go back to reference Pettine K, Suzuki R, Sand T, Murphy M. Treatment of discogenic back pain with autologous bone marrow concentrate injection with minimum two year follow-up. Int Orthop. 2016;40(1):135–40.CrossRefPubMed Pettine K, Suzuki R, Sand T, Murphy M. Treatment of discogenic back pain with autologous bone marrow concentrate injection with minimum two year follow-up. Int Orthop. 2016;40(1):135–40.CrossRefPubMed
16.
go back to reference Orozco L, Soler R, Morera C, Alberca M, Sánchez A, García-Sancho J. Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study. Transplantation. 2011;92(7):822–8.CrossRefPubMed Orozco L, Soler R, Morera C, Alberca M, Sánchez A, García-Sancho J. Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study. Transplantation. 2011;92(7):822–8.CrossRefPubMed
17.
go back to reference Ullrich P. Laminectomy and spinal stenosis: risks and complications—Spine-health. 2009. Ullrich P. Laminectomy and spinal stenosis: risks and complications—Spine-health. 2009.
Metadata
Title
Effects of the intradiscal implantation of stromal vascular fraction plus platelet rich plasma in patients with degenerative disc disease
Authors
Kristin Comella
Robert Silbert
Michelle Parlo
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2017
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-016-1109-0

Other articles of this Issue 1/2017

Journal of Translational Medicine 1/2017 Go to the issue