Skip to main content
Top
Published in: Journal of Translational Medicine 1/2016

Open Access 01-12-2016 | Research

ProInflam: a webserver for the prediction of proinflammatory antigenicity of peptides and proteins

Authors: Sudheer Gupta, Midhun K. Madhu, Ashok K. Sharma, Vineet K. Sharma

Published in: Journal of Translational Medicine | Issue 1/2016

Login to get access

Abstract

Background

Proinflammatory immune response involves a complex series of molecular events leading to inflammatory reaction at a site, which enables host to combat plurality of infectious agents. It can be initiated by specific stimuli such as viral, bacterial, parasitic or allergenic antigens, or by non-specific stimuli such as LPS. On counter with such antigens, the complex interaction of antigen presenting cells, T cells and inflammatory mediators like IL1α, IL1β, TNFα, IL12, IL18 and IL23 lead to proinflammatory immune response and further clearance of infection. In this study, we have tried to establish a relation between amino acid sequence of antigen and induction of proinflammatory response.

Results

A total of 729 experimentally-validated proinflammatory and 171 non-proinflammatory epitopes were obtained from IEDB database. The A, F, I, L and V amino acids and AF, FA, FF, PF, IV, IN dipeptides were observed as preferred residues in proinflammatory epitopes. Using the compositional and motif-based features of proinflammatory and non-proinflammatory epitopes, we have developed machine learning-based models for prediction of proinflammatory response of peptides. The hybrid of motifs and dipeptide-based features displayed best performance with MCC = 0.58 and an accuracy of 87.6 %.

Conclusion

The amino acid sequence-based features of peptides were used to develop a machine learning-based prediction tool for the prediction of proinflammatory epitopes. This is a unique tool for the computational identification of proinflammatory peptide antigen/candidates and provides leads for experimental validations. The prediction model and tools for epitope mapping and similarity search are provided as a comprehensive web server which is freely available at http://​metagenomics.​iiserb.​ac.​in/​proinflam/​ and http://​metabiosys.​iiserb.​ac.​in/​proinflam/​.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20:122–8.CrossRefPubMed Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20:122–8.CrossRefPubMed
2.
go back to reference Shi J, Liu Y, Wang Y, Zhang J, Zhao S, Yang G. Biological and immunotoxicity evaluation of antimicrobial peptide-loaded coatings using a layer-by-layer process on titanium. Sci Rep. 2015;5:16336.CrossRefPubMedPubMedCentral Shi J, Liu Y, Wang Y, Zhang J, Zhao S, Yang G. Biological and immunotoxicity evaluation of antimicrobial peptide-loaded coatings using a layer-by-layer process on titanium. Sci Rep. 2015;5:16336.CrossRefPubMedPubMedCentral
3.
go back to reference Gustafsson A, Sigel S, Ljunggren L. The antimicrobial peptide LL37 and its truncated derivatives potentiates proinflammatory cytokine induction by lipoteichoic acid in whole blood. Scand J Clin Lab Invest. 2010;70:512–8.CrossRefPubMed Gustafsson A, Sigel S, Ljunggren L. The antimicrobial peptide LL37 and its truncated derivatives potentiates proinflammatory cytokine induction by lipoteichoic acid in whole blood. Scand J Clin Lab Invest. 2010;70:512–8.CrossRefPubMed
4.
go back to reference Gordon YJ, Romanowski EG, McDermott AM. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res. 2005;30:505–15.CrossRefPubMedPubMedCentral Gordon YJ, Romanowski EG, McDermott AM. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res. 2005;30:505–15.CrossRefPubMedPubMedCentral
5.
go back to reference Hsu HY, Chang MH, Ni YH, Huang SF. Cytomegalovirus infection and proinflammatory cytokine activation modulate the surface immune determinant expression and immunogenicity of cultured murine extrahepatic bile duct epithelial cells. Clin Exp Immunol. 2001;126:84–91.CrossRefPubMedPubMedCentral Hsu HY, Chang MH, Ni YH, Huang SF. Cytomegalovirus infection and proinflammatory cytokine activation modulate the surface immune determinant expression and immunogenicity of cultured murine extrahepatic bile duct epithelial cells. Clin Exp Immunol. 2001;126:84–91.CrossRefPubMedPubMedCentral
7.
go back to reference Bylund J, Christophe T, Boulay F, Nystrom T, Karlsson A, Dahlgren C. Proinflammatory activity of a cecropin-like antibacterial peptide from Helicobacter pylori. Antimicrob Agents Chemother. 2001;45:1700–4.CrossRefPubMedPubMedCentral Bylund J, Christophe T, Boulay F, Nystrom T, Karlsson A, Dahlgren C. Proinflammatory activity of a cecropin-like antibacterial peptide from Helicobacter pylori. Antimicrob Agents Chemother. 2001;45:1700–4.CrossRefPubMedPubMedCentral
8.
go back to reference Bellner L, Thoren F, Nygren E, Liljeqvist JA, Karlsson A, Eriksson K. A proinflammatory peptide from herpes simplex virus type 2 glycoprotein G affects neutrophil, monocyte, and NK cell functions. J Immunol. 2005;174:2235–41.CrossRefPubMed Bellner L, Thoren F, Nygren E, Liljeqvist JA, Karlsson A, Eriksson K. A proinflammatory peptide from herpes simplex virus type 2 glycoprotein G affects neutrophil, monocyte, and NK cell functions. J Immunol. 2005;174:2235–41.CrossRefPubMed
9.
go back to reference Bacot SM, Lenz P, Frazier-Jessen MR, Feldman GM. Activation by prion peptide PrP106-126 induces a NF-kappaB-driven proinflammatory response in human monocyte-derived dendritic cells. J Leukoc Biol. 2003;74:118–25.CrossRefPubMed Bacot SM, Lenz P, Frazier-Jessen MR, Feldman GM. Activation by prion peptide PrP106-126 induces a NF-kappaB-driven proinflammatory response in human monocyte-derived dendritic cells. J Leukoc Biol. 2003;74:118–25.CrossRefPubMed
10.
go back to reference Kahlenberg JM, Kaplan MJ. Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease. J Immunol. 2013;191:4895–901.CrossRefPubMed Kahlenberg JM, Kaplan MJ. Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease. J Immunol. 2013;191:4895–901.CrossRefPubMed
11.
go back to reference Vasic D, Walcher D. Proinflammatory effects of C-Peptide in different tissues. Int J Inflamm. 2012;2012:932725.CrossRef Vasic D, Walcher D. Proinflammatory effects of C-Peptide in different tissues. Int J Inflamm. 2012;2012:932725.CrossRef
12.
13.
14.
go back to reference Y EL-Manzalawy Y, Honavar V. Building classifier ensembles for B-cell epitope prediction. Methods Mol Biol. 2014;1184:285–94.CrossRef Y EL-Manzalawy Y, Honavar V. Building classifier ensembles for B-cell epitope prediction. Methods Mol Biol. 2014;1184:285–94.CrossRef
15.
go back to reference Desai DV, Kulkarni-Kale U. T-cell epitope prediction methods: an overview. Methods Mol Biol. 2014;1184:333–64.CrossRefPubMed Desai DV, Kulkarni-Kale U. T-cell epitope prediction methods: an overview. Methods Mol Biol. 2014;1184:333–64.CrossRefPubMed
16.
go back to reference Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003;12:1007–17.CrossRefPubMedPubMedCentral Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003;12:1007–17.CrossRefPubMedPubMedCentral
17.
go back to reference Bhasin M, Raghava GP. Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine. 2004;22:3195–204.CrossRefPubMed Bhasin M, Raghava GP. Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine. 2004;22:3195–204.CrossRefPubMed
18.
go back to reference Bhasin M, Raghava GP. A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes. J Biosci. 2007;32:31–42.CrossRefPubMed Bhasin M, Raghava GP. A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes. J Biosci. 2007;32:31–42.CrossRefPubMed
22.
go back to reference Dimitrov I, Flower DR, Doytchinova I. AllerTOP—a server for in silico prediction of allergens. BMC Bioinform. 2013;14(Suppl 6):S4.CrossRef Dimitrov I, Flower DR, Doytchinova I. AllerTOP—a server for in silico prediction of allergens. BMC Bioinform. 2013;14(Suppl 6):S4.CrossRef
23.
go back to reference Wan M, Godson C, Guiry PJ, Agerberth B, Haeggstrom JZ. Leukotriene B4/antimicrobial peptide LL-37 proinflammatory circuits are mediated by BLT1 and FPR2/ALX and are counterregulated by lipoxin A4 and resolvin E1. FASEB J. 2011;25:1697–705.CrossRefPubMed Wan M, Godson C, Guiry PJ, Agerberth B, Haeggstrom JZ. Leukotriene B4/antimicrobial peptide LL-37 proinflammatory circuits are mediated by BLT1 and FPR2/ALX and are counterregulated by lipoxin A4 and resolvin E1. FASEB J. 2011;25:1697–705.CrossRefPubMed
24.
go back to reference Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GP. Peptide toxicity prediction. Methods Mol Biol. 2015;1268:143–57.CrossRefPubMed Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GP. Peptide toxicity prediction. Methods Mol Biol. 2015;1268:143–57.CrossRefPubMed
26.
go back to reference Vogt AB, Kropshofer H, Kalbacher H, Kalbus M, Rammensee HG, Coligan JE, Martin R. Ligand motifs of HLA-DRB5*0101 and DRB1*1501 molecules delineated from self-peptides. J Immunol. 1994;153:1665–73.PubMed Vogt AB, Kropshofer H, Kalbacher H, Kalbus M, Rammensee HG, Coligan JE, Martin R. Ligand motifs of HLA-DRB5*0101 and DRB1*1501 molecules delineated from self-peptides. J Immunol. 1994;153:1665–73.PubMed
27.
go back to reference Zhang Q, Wang P, Kim Y, Haste-Andersen P, Beaver J, Bourne PE, Bui HH, Buus S, Frankild S, Greenbaum J, et al. Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res. 2008;36:W513–8.CrossRefPubMedPubMedCentral Zhang Q, Wang P, Kim Y, Haste-Andersen P, Beaver J, Bourne PE, Bui HH, Buus S, Frankild S, Greenbaum J, et al. Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res. 2008;36:W513–8.CrossRefPubMedPubMedCentral
28.
go back to reference Gupta A, Kapil R, Dhakan DB, Sharma VK. MP3: a software tool for the prediction of pathogenic proteins in genomic and metagenomic data. PLoS One. 2014;9:e93907.CrossRefPubMedPubMedCentral Gupta A, Kapil R, Dhakan DB, Sharma VK. MP3: a software tool for the prediction of pathogenic proteins in genomic and metagenomic data. PLoS One. 2014;9:e93907.CrossRefPubMedPubMedCentral
29.
go back to reference Sharma AK, Gupta A, Kumar S, Dhakan DB, Sharma VK. Woods: a fast and accurate functional annotator and classifier of genomic and metagenomic sequences. Genomics. 2015;106:1–6.CrossRefPubMed Sharma AK, Gupta A, Kumar S, Dhakan DB, Sharma VK. Woods: a fast and accurate functional annotator and classifier of genomic and metagenomic sequences. Genomics. 2015;106:1–6.CrossRefPubMed
30.
go back to reference Zhang J, Zhao X, Sun P, Gao B, Ma Z. Conformational B-cell epitopes prediction from sequences using cost-sensitive ensemble classifiers and spatial clustering. Biomed Res Int. 2014;2014:689219.PubMedPubMedCentral Zhang J, Zhao X, Sun P, Gao B, Ma Z. Conformational B-cell epitopes prediction from sequences using cost-sensitive ensemble classifiers and spatial clustering. Biomed Res Int. 2014;2014:689219.PubMedPubMedCentral
31.
go back to reference Gupta S, Ansari HR, Gautam A, Raghava GP. Identification of B-cell epitopes in an antigen for inducing specific class of antibodies. Biol Direct. 2013;8:27.CrossRefPubMedPubMedCentral Gupta S, Ansari HR, Gautam A, Raghava GP. Identification of B-cell epitopes in an antigen for inducing specific class of antibodies. Biol Direct. 2013;8:27.CrossRefPubMedPubMedCentral
32.
go back to reference Melo MN, Ferre R, Feliu L, Bardaji E, Planas M, Castanho MA. Prediction of antibacterial activity from physicochemical properties of antimicrobial peptides. PLoS One. 2011;6:e28549.CrossRefPubMedPubMedCentral Melo MN, Ferre R, Feliu L, Bardaji E, Planas M, Castanho MA. Prediction of antibacterial activity from physicochemical properties of antimicrobial peptides. PLoS One. 2011;6:e28549.CrossRefPubMedPubMedCentral
33.
go back to reference Sharma A, Singla D, Rashid M, Raghava GP. Designing of peptides with desired half-life in intestine-like environment. BMC Bioinform. 2014;15:282.CrossRef Sharma A, Singla D, Rashid M, Raghava GP. Designing of peptides with desired half-life in intestine-like environment. BMC Bioinform. 2014;15:282.CrossRef
34.
go back to reference Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GP. In silico approach for predicting toxicity of peptides and proteins. PLoS One. 2013;8:e73957.CrossRefPubMedPubMedCentral Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GP. In silico approach for predicting toxicity of peptides and proteins. PLoS One. 2013;8:e73957.CrossRefPubMedPubMedCentral
35.
go back to reference Vens C, Rosso MN, Danchin EG. Identifying discriminative classification-based motifs in biological sequences. Bioinformatics. 2011;27:1231–8.CrossRefPubMed Vens C, Rosso MN, Danchin EG. Identifying discriminative classification-based motifs in biological sequences. Bioinformatics. 2011;27:1231–8.CrossRefPubMed
36.
go back to reference Rammensee HG, Friede T, Stevanoviic S. MHC ligands and peptide motifs: first listing. Immunogenetics. 1995;41:178–228.CrossRefPubMed Rammensee HG, Friede T, Stevanoviic S. MHC ligands and peptide motifs: first listing. Immunogenetics. 1995;41:178–228.CrossRefPubMed
38.
go back to reference Ward JJ, McGuffin LJ, Buxton BF, Jones DT. Secondary structure prediction with support vector machines. Bioinformatics. 2003;19:1650–5.CrossRefPubMed Ward JJ, McGuffin LJ, Buxton BF, Jones DT. Secondary structure prediction with support vector machines. Bioinformatics. 2003;19:1650–5.CrossRefPubMed
39.
go back to reference Wang HW, Pai TW. Machine learning-based methods for prediction of linear B-cell epitopes. Methods Mol Biol. 2014;1184:217–36.CrossRefPubMed Wang HW, Pai TW. Machine learning-based methods for prediction of linear B-cell epitopes. Methods Mol Biol. 2014;1184:217–36.CrossRefPubMed
40.
go back to reference Mohammad TA, Nagarajaram HA. SVM-based method for protein structural class prediction using secondary structural content and structural information of amino acids. J Bioinform Comput Biol. 2011;9:489–502.CrossRefPubMed Mohammad TA, Nagarajaram HA. SVM-based method for protein structural class prediction using secondary structural content and structural information of amino acids. J Bioinform Comput Biol. 2011;9:489–502.CrossRefPubMed
41.
go back to reference Liu Y. Active learning with support vector machine applied to gene expression data for cancer classification. J Chem Inf Comput Sci. 2004;44:1936–41.CrossRefPubMed Liu Y. Active learning with support vector machine applied to gene expression data for cancer classification. J Chem Inf Comput Sci. 2004;44:1936–41.CrossRefPubMed
42.
go back to reference Zavaljevski N, Stevens FJ, Reifman J. Support vector machines with selective kernel scaling for protein classification and identification of key amino acid positions. Bioinformatics. 2002;18:689–96.CrossRefPubMed Zavaljevski N, Stevens FJ, Reifman J. Support vector machines with selective kernel scaling for protein classification and identification of key amino acid positions. Bioinformatics. 2002;18:689–96.CrossRefPubMed
43.
go back to reference Chaudhary N, Sharma AK, Agarwal P, Gupta A, Sharma VK. 16S classifier: a tool for fast and accurate taxonomic classification of 16S rRNA hypervariable regions in metagenomic datasets. PLoS One. 2015;10:e0116106.CrossRefPubMedPubMedCentral Chaudhary N, Sharma AK, Agarwal P, Gupta A, Sharma VK. 16S classifier: a tool for fast and accurate taxonomic classification of 16S rRNA hypervariable regions in metagenomic datasets. PLoS One. 2015;10:e0116106.CrossRefPubMedPubMedCentral
44.
go back to reference Bhasin M, Raghava GP. Pcleavage: an SVM based method for prediction of constitutive proteasome and immunoproteasome cleavage sites in antigenic sequences. Nucleic Acids Res. 2005;33:W202–7.CrossRefPubMedPubMedCentral Bhasin M, Raghava GP. Pcleavage: an SVM based method for prediction of constitutive proteasome and immunoproteasome cleavage sites in antigenic sequences. Nucleic Acids Res. 2005;33:W202–7.CrossRefPubMedPubMedCentral
Metadata
Title
ProInflam: a webserver for the prediction of proinflammatory antigenicity of peptides and proteins
Authors
Sudheer Gupta
Midhun K. Madhu
Ashok K. Sharma
Vineet K. Sharma
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2016
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-016-0928-3

Other articles of this Issue 1/2016

Journal of Translational Medicine 1/2016 Go to the issue